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Abstract

We present Location Field Descriptors, a novel approach
for single image 3D model retrieval in the wild. In con-
trast to previous methods that directly map 3D models and
RGB images to an embedding space, we establish a com-
mon low-level representation in the form of location fields
from which we compute pose invariant 3D shape descrip-
tors. Location fields encode correspondences between 2D
pixels and 3D surface coordinates and, thus, explicitly cap-
ture 3D shape and 3D pose information without appearance
variations which are irrelevant for the task. This early fu-
sion of 3D models and RGB images results in three main ad-
vantages: First, the bottleneck location field prediction acts
as a regularizer during training. Second, major parts of the
system benefit from training on a virtually infinite amount
of synthetic data. Finally, the predicted location fields are
visually interpretable and unblackbox the system. We evalu-
ate our proposed approach on three challenging real-world
datasets (Pix3D, Comp, and Stanford) with different object
categories and significantly outperform the state-of-the-art
by up to 20% absolute in multiple 3D retrieval metrics.

1. Introduction
3D model retrieval from a single RGB image, as shown

in Fig. 1, is a challenging but important task with applica-
tions in augmented reality, robotics, 3D printing, 3D scene
understanding, and 3D scene modeling. Compared to re-
construction [13, 57], retrieval provides 3D models de-
signed by humans which are rich in detail. Due to the
growing number of large-scale 3D model databases, like
ShapeNet [9] or 3D Warehouse1, efficient image-based re-
trieval approaches have become a fundamental requirement.

Recent works address the retrieval task by directly map-
ping 3D models and RGB images to a common embed-
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Figure 1: Given a single RGB image, we retrieve a 3D
model with accurate geometry for each object in the image
from a previously seen or unseen 3D model database.

ding space [32, 54]. However, previous approaches have a
number of limitations in practice. First, the learned map-
ping is highly prone to overfitting, because training data
in the form of RGB images with 3D model annotations is
scarce [52, 60]. Second, systems purely trained on synthetic
data do not generalize to real data due to the domain gap be-
tween RGB images and RGB renderings [13, 35]. Finally,
the black box characteristic of these systems makes it hard
to understand why the approaches fail in certain scenarios.

To overcome these limitations, we map 3D models and
RGB images to a common low-level representation in the
form of location fields from which we compute pose in-
variant 3D shape descriptors. Location fields [56, 60] are
image-like representations that encode a 3D surface co-
ordinate for each object pixel (see Fig. 2). In particular,
we render location fields from 3D models and predict lo-
cation fields from RGB images using a CNN. Then, in-
stead of exhaustively comparing location fields from dif-
ferent viewpoints [25, 35], we compute pose invariant 3D
shape descriptors in an embedding space optimized for re-
trieval from the location fields. Thus, we call our approach
Location Field Descriptors.

Regarding 3D model retrieval, location fields have sev-
eral advantages compared to other rendered representations:
RGB renderings [13, 66] are subject to appearance vari-
ations which are irrelevant for the task caused by mate-
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rial, texture, and lighting. Texture-less gray-scale render-
ings [31, 35] are still affected by the scene lighting. Silhou-
ettes [10] are not affected by such appearance variations but
discard valuable 3D shape information. Depth [14, 68] and
normal renderings [59, 65] capture 3D geometry but lose
the relation to the 3D pose in the object’s canonical coor-
dinate system. In contrast, location fields explicitly present
3D shape and 3D pose information, as they establish corre-
spondences between 2D object pixels and 3D coordinates
on the object surface. Considering 3D shape, the dense
3D coordinates provide a partial reconstruction of the ob-
ject geometry. Considering 3D pose, the object rotation and
translation can be geometrically recovered from the 2D-3D
correspondences using a PnP algorithm [8, 26].

The benefits of our approach are threefold: First, the in-
termediate location field prediction serves as a regularizing
bottleneck which reduces the risk of overfitting in the case
of limited training data compared to directly mapping to an
embedding space. Second, major parts of the system bene-
fit from training on a virtually infinite amount of synthetic
data due to the early fusion of 3D models and RGB im-
ages. Third, the predicted location fields are visually in-
terpretable and offer valuable insights in cases where the
approach fails.

Finally, to demonstrate the benefits of our novel 3D
model retrieval approach, we evaluate it on three chal-
lenging real-world datasets with different object categories:
Pix3D [52] (bed, chair, sofa, table), Comp [60] (car), and
Stanford [60] (car). We present quantitative as well as qual-
itative results and significantly outperform the state-of-the-
art. To summarize, our main contributions are:

• We present the first method that uses location fields
for pose invariant 3D model retrieval. Our approach is
accurate, scalable, and interpretable.

• We outperform the state-of-the-art by up to 20% abso-
lute in multiple 3D retrieval metrics given both previ-
ously seen and unseen 3D model databases.

2. Related Work
In this section, we discuss previous works in the fields

of 3D coordinate regression and 3D model retrieval from a
single RGB image.

2.1. Location Fields

Regressing 3D coordinates from 2D observations is a
well-studied problem in computer vision [16]. While tradi-
tional approaches generate 3D point clouds from multi-view
RGB images [50, 53], recent works predict unstructured 3D
point clouds from a single RGB image using deep learn-
ing [12, 34, 37]. Complementary to these works, Point-
Net [41] and successors [29, 42] showed that even such un-

structured 3D point clouds can be used to address various
3D vision tasks with deep learning.

In this work, however, we focus on predicting structured
3D point clouds in the form of location fields [56, 60]. A
location field encodes a 3D surface coordinate for each ob-
ject pixel. Thus, it is important to know which pixels belong
to an object and which pixels belong to the background or
another object [7, 8]. Recent works showed that deep learn-
ing techniques for instance segmentation [17] significantly
increase the accuracy on this task [15, 26, 58]. However,
until now location fields have only been used for 3D pose
estimation, but not for 3D model retrieval or other tasks.

2.2. 3D Model Retrieval

A large number of previous works perform retrieval
given a query 3D model [47, 48]. These methods either
directly operate on 3D data, e.g., in the form of voxel
grids [40, 64], spherical maps [11], or point clouds [41],
or process multi-view renderings of the query 3D model [5,
10, 40, 51] to compute a shape descriptor.

However, in this work, we focus on the much more chal-
lenging task of 3D model retrieval from a single RGB im-
age [27]. One approach to address this task is to train a
classifier which provides a 3D model for each fine-grained
class on top of handcrafted [2] or learned [36] features ex-
tracted from an RGB image. This, in consequence, restricts
the retrieval to 3D models seen during training.

The most popular strategy to overcome this limitation is
to map 3D models and RGB images to a common embed-
ding space in which retrieval is performed using distance-
based matching [30]. In this case, the mapping, the embed-
ding space, and the distance measure can be designed in a
variety of ways.

Numerous works match features extracted from an RGB
image against features extracted from multi-view RGB ren-
derings to predict both shape and viewpoint. In this context,
[3] uses a CNN trained for ImageNet classification [45] to
extract features. [35] takes a similar approach, but addition-
ally performs nonlinear feature adaption to overcome the
domain gap between real and rendered RGB images. [22]
and [25] use a CNN trained for object detection as a feature
extractor. However, the CNNs used in these methods are
not optimized for 3D model retrieval.

Thus, other approaches train mappings to predefined em-
bedding spaces. [54] trains CNNs to map 3D models, RGB
images, depth maps, and sketches to an embedding space
based on text for cross-modal retrieval. [24] constructs a
low-dimensional embedding space by performing PCA on
3D key points and maps 3D key points predicted using a
CNN to that space for retrieval. [32] and [55] train a CNN
to map RGB images to an embedding space computed from
pairwise similarities between 3D models.

Instead of handcrafting an embedding space, an embed-



ding space capturing 3D shape properties can be learned.
[57] reconstructs voxel grids from RGB images of objects
using CNNs. The low-dimensional bottle-neck shape de-
scriptor is also used for retrieval. [13] combines a 3D voxel
encoder and an RGB image encoder with a shared 3D voxel
decoder to perform reconstruction from a joint embedding.
3D model retrieval is performed by matching embeddings
of voxel grids against those of RGB images.

Finally, recent approaches explicitly learn an embedding
space which is optimized for 3D model retrieval. [66] uses
a single CNN to map RGB images and RGB renderings to
an embedding space which is optimized using a Euclidean
distance-based lifted structure loss [39]. At test time, the
distances between an embedding of an RGB image and em-
beddings of multi-view RGB renderings are averaged to
compensate for the unknown object pose. [31] uses two
CNNs to map RGB images and gray-scale renderings to an
embedding space and optimizes a Euclidean distance-based
Triplet loss [61]. Additionally, cross-view convolutions are
employed to aggregate a sequence of multi-view renderings
into a single descriptor to reduce the matching complexity.
[14] also trains two CNNs, but maps RGB images and depth
maps to a common space. In contrast to other approaches,
the 3D pose of the object in the RGB image is explicitly
estimated and used in the 3D model retrieval.

Compared to these approaches, we also learn an embed-
ding space which is optimized for 3D model retrieval, but
first predict location fields from RGB images and then com-
pute pose invariant 3D shape descriptors from predicted and
rendered location fields in an end-to-end trainable way.

3. Location Field Descriptors
Given a single RGB image and a 3D model database, we

retrieve a 3D model for each object in the image, as shown
in Fig. 3. For this purpose, we first generate location fields
from 3D models and RGB images. We then compute pose
invariant 3D shape descriptors from the locations fields. Fi-
nally, we match the descriptors to find the best 3D model.

3.1. Location Field Generation

The first step in our approach is to map 3D models and
RGB images to a common low-level representation in the
form of location fields. As illustrated in Fig. 2, a location
field [56, 60] is an image-like representation that encodes a
3D surface coordinate for each object pixel. Compared to
its reference RGB image, a location field has the same size
and spatial resolution, but the three channels encode XYZ
3D coordinates in the canonical object coordinate system
instead of RGB colors. Locations fields explicitly present
3D shape and 3D pose information, because they encode
dense correspondences between 2D pixel locations and 3D
surface coordinates. From these 2D-3D correspondences,
the 3D pose can be geometrically recovered using a PnP al-
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Figure 2: An image of an object and its location field. Loca-
tion fields encode a 3D surface coordinate in the canonical
object coordinate system for each object pixel. We show the
three channels which correspond to the X, Y, and Z values
of the 3D coordinates in separate images.

gorithm [8, 26]. Additionally, location fields can also be
interpreted as structured partial 3D point clouds.

Location fields can be directly rendered from 3D models.
For this purpose, we rasterize 3D meshes using OpenGL
and implement a custom fragment shader which linearly in-
terpolates per-vertex 3D coordinates along the triangles of
a 3D mesh. Because the interpolated values describe 3D
coordinates in the canonical object coordinate system, the
relation to the inherent object orientation is preserved.

In order to generate location fields from RGB images,
we need to detect objects in 2D and predict a location
field of each object. For this purpose, we introduce a
Location Field CNN (see Fig. 3) which extends the gen-
eralized Faster/Mask R-CNN framework [17, 44]. This
generic multi-task framework includes a 2D object detec-
tion pipeline to perform per-image and per-object computa-
tions. In this way, we address multiple different tasks using
a single end-to-end trainable network.

In the context of the generalized Faster/Mask R-CNN
framework, each output branch provides a task-specific sub-
network with different structure and functionality. We in-
troduce a dedicated output branch for estimating location
fields alongside the existing object detection branches [60].
Similar to the mask branch [17], the location field branch
performs region-based per-object computations: For each
detected object, an associated spatial region of interest in
the feature maps is aligned to a fixed size feature represen-
tation with a low spatial but high channel resolution using
linear interpolation, e.g., 14× 14× 256. These aligned fea-
tures serve as a shared input to the classification, mask and
location field branches. Each branch is evaluated N times
per image, where N is the number of detected objects.

Our location field branch uses a fully convolutional sub-
network to predict a tensor of 3D points at a resolution of
56 × 56 × 3 from the shared aligned features. We also
modify the mask branch to predict 2D masks at the same
spatial resolution and use the predicted masks to thresh-
old the tensor of 3D points to get low-resolution location
fields. We experimentally found this approach to generate



Figure 3: Overview of our approach. Given a single RGB image and a 3D model database, we use CNNs to predict a location
field and a pose invariant location field descriptor for each object in the image. For each 3D model in the database, we learn
a single center descriptor from multi-view location fields offline during training. Finally, we match location field descriptors
predicted from the image against offline computed center descriptors to retrieve a ranked list of the 3D models in the database.

significantly higher accuracy location fields compared to di-
rectly regressing low-resolution location fields, which tends
to predict over-smoothed 3D coordinates around the object
silhouette. During training, we optimize our predicted loca-
tion fields using the Huber loss [23].

The resulting low-resolution location fields can be up-
scaled and padded to obtain high-resolution location fields
with the same spatial resolution as the input image. This
is especially helpful in cases where our approach fails. A
visual overlay of the input image and the predicted location
fields is intuitively interpretable and offers valuable insights
to why the system fails.

However, we compute pose invariant descriptors from
the low-resolution location fields, because upscaling does
not provide additional information but increases the compu-
tational workload. Moreover, the predicted low-resolution
location fields are tightly localized crops, which reduces the
complexity of the descriptor computation.

3.2. 3D Shape Descriptors

Instead of exhaustively comparing each predicted loca-
tion field to multiple rendered location fields from different
viewpoints [25, 35], we map location fields to pose invari-
ant 3D shape descriptors in an embedding space. We refer
to descriptors in this space as Location Field Descriptors.

For this purpose, we introduce a Descriptor CNN (see
Fig. 3) which utilizes a dense connection pattern [21]. Sim-
ilar to ResNets [18, 19], DenseNets [21] introduce skip-
connections in the computational graph, but concatenate
feature maps instead of adding them. The dense connection
pattern encourages feature reuse throughout the network
and leads to compact but expressive models. This archi-
tecture is well-suited for computing descriptors from loca-
tion fields, because they already provide a high level of ab-
straction. Location fields are not affected by task irrelevant

appearance variations caused by color, material, texture or
lighting. The object is already segmented from the back-
ground and occlusions in the predicted location fields are
resolved by the 2D mask used for thresholding the tensor
of 3D points. In fact, even the raw 3D coordinates provide
useful matching attributes, for example by aligning query
and test point clouds using ICP [6]. Thus, extensive feature
reuse within the Descriptor CNN is rational.

In order to learn an embedding space which is optimized
for 3D model retrieval, we need to address two require-
ments. First, the embedding space has to be discriminative
in terms of 3D models. Second, the computed descriptors
have to be invariant to the 3D pose of the object in the lo-
cation field. We jointly address both requirements by learn-
ing a representative center descriptor for each 3D model, as
shown in Fig. 3. For this purpose, we train the Descriptor
CNN to map location fields of a 3D model from different
viewpoints close to its corresponding center descriptor. At
the same time, we make sure that all center descriptors are
discriminatively distributed in the embedding space. Thus,
during training, we penalize the distances between location
field descriptors and center descriptors in a way that each lo-
cation field descriptor and its corresponding center descrip-
tor are pulled closer together, while all center descriptors are
pulled further apart. This approach resembles a nonlinear
discriminant analysis [46], in which the intra-class variance
is minimized, while the inter-class variance is maximized to
train more discriminative embeddings.

In particular, we build on the ideas of Center loss [62]
and Triplet-Center loss [20] to optimize our embedding
space. The Center loss

LC =

N∑
i=1

D(fi, cyi) (1)



minimizes the distance D(fi, cyi) between a location field
descriptor fi and its corresponding center descriptor cyi . In
this case, yi is the index of the corresponding 3D model
and N denotes the number of samples. For the distance
function D(·), we use the Huber distance [23]. In contrast,
the Triplet-Center loss

LTC =

N∑
i=1

max
(
0 , D(fi, cyi)+m−min

j 6=yi

D(fi, cj)
)

(2)

enforces the same distance D(fi, cyi
) to be smaller than the

distance between a location field descriptor and its closest
non-corresponding center descriptor minj 6=yi

D(fi, cj) by
at least the margin m.

As a consequence, the Center loss only minimizes intra-
class variance, while the Triplet-Center loss aims at both
minimizing intra-class variance and maximizing inter-class
variance. In many cases, however, the Triplet-Center loss
fails to achieve these goals. Instead, it learns degener-
ated clusterings, because the optimization criterion does not
guarantee the desired properties [28]. Thus, we employ a
combination of Center loss and Triplet-Center loss in our
Descriptor loss

LD = Lsoftmax + αLC + βLTC (3)

to achieve both low intra-class variance and high inter-class
variance [28, 63]. In practice, these losses are combined
with a softmax loss Lsoftmax to learn more discriminative
embeddings than classification alone [20, 62]. The parame-
ters α and β control the impact of the different loss terms.

We want to emphasize that the center descriptors are not
fixed, but learned during training. In fact, the center de-
scriptors are trainable weights of the Descriptor CNN in our
implementation. Also, even though we optimize a triplet
criterion, we do not require location field triplets as training
input. Only a single location field and its corresponding 3D
model index yi are needed. The center descriptors required
for the Triplet loss are sampled within the Descriptor CNN.
Additionally, hard triplet mining [49] is less important, be-
cause we always sample the closest non-corresponding cen-
ter descriptor and also employ Center and softmax losses.

We jointly train the Descriptor CNN on predicted and
rendered location fields. This is a major advantage com-
pared to previous approaches that directly map to an em-
bedding space, because training data in the form of RGB
images with 3D model annotations is limited. In contrast,
we benefit from training on a virtually infinite amount of
synthetic data. Additionally, the intermediate location field
prediction serves as a regularizing bottleneck and reduces
the risk of overfitting, because regressing location fields is
more difficult than computing embeddings.

Since there is a domain gap between predicted and ren-
dered location fields, we perform Feature Mapping [43]. We

use a residual block [18, 19] to map location field descrip-
tors from the predicted to the rendered domain. Thus, the
training input either consists of pairs of corresponding pre-
dicted and rendered location fields or single location fields,
and a 3D model index yi in both cases. In the case of pairs,
we compute an additional Feature Mapping loss between
corresponding feature-mapped predicted and rendered lo-
cation field descriptor using the Huber distance [23].

To perform retrieval from a previously unseen 3D model
database, we generate center descriptors without retraining.
For each unseen 3D model, we render 100 location fields
under different 3D poses, compute their embeddings using
the Descriptor CNN and average them to obtain a new cen-
ter descriptor. Alternatively, we can retrain the Descriptor
CNN by incorporating the new 3D models as additional ren-
dered location fields. In any case, the center descriptors are
computed offline which results in fast inference.

During inference, we only need to process RGB images
using our CNNs, since the center descriptors have already
been computed offline. For each RGB image, we evaluate
the Location Field CNN once and the Descriptor CNN N
times to compute location field descriptors, where N is the
number of detected objects. We then match each computed
location field descriptors against all center descriptors and
generate a ranked list of 3D models based on the Euclidean
distance between the descriptors, as shown in Fig. 3.

Finally, the entire system, i.e., the Location Field CNN
and the Descriptor CNN, is end-to-end trainable. The sys-
tem loss is a combination of our Location Field loss, our De-
scriptor loss, our Feature Mapping loss, and the Detection
losses of the generalized Faster/Mask R-CNN framework.

4. Experimental Results
To demonstrate the benefits of Location Field Descrip-

tors, we evaluate our approach on three challenging real-
world datasets with different object categories: Pix3D [52]
(bed, chair, sofa, table), Comp [60] (car), and Stanford [60]
(car). Details on the datasets, the implementation, and the
evaluation are provided in the supplementary material.

In particular, we provide quantitative results for 3D
model retrieval from seen and unseen databases in compar-
ison to the state-of-the-art in Sec. 4.1, present qualitative
results of our approach in Sec. 4.2, and perform an ablation
study in Sec. 4.3. For our quantitative evaluation, we use
the following well-established metrics:

Detection. We report the detection accuracyAccD0.5
which

gives the percentage of objects for which the intersection
over union between the ground truth 2D bounding box and
the predicted 2D bounding box is larger than 50% [67]. This
metric is an upper bound for other Acc metrics since we do
not make blind predictions.

Retrieval Accuracy. We evaluate the retrieval accuracies



seen 3D models unseen 3D models

Method Dataset Category AccD0.5 AccTop-1 AccTop-10 dHAU dIOU dHAU dIOU

[3]
Pix3D bed 99.0%

19.4% 46.6% 0.0821 0.3397 0.0960 0.2487
[14] 35.1% 83.2% 0.0385 0.5598 0.0577 0.3013
Ours 64.4% 89.0% 0.0152 0.8074 0.0448 0.3490

[3]
Pix3D chair 91.5%

17.3% 49.1% 0.0559 0.3027 0.0843 0.1334
[14] 41.3% 73.9% 0.0305 0.5469 0.0502 0.1965
Ours 58.1% 81.8% 0.0170 0.7169 0.0375 0.2843

[3]
Pix3D sofa 96.9%

21.7% 52.2% 0.0503 0.3824 0.0590 0.3493
[14] 44.1% 89.8% 0.0197 0.7762 0.0294 0.6178
Ours 67.0% 94.4% 0.0075 0.9028 0.0178 0.7472

[3]
Pix3D table 91.2%

12.0% 34.2% 0.1003 0.1715 0.1239 0.1047
[14] 33.9% 66.1% 0.0607 0.4500 0.0753 0.1730
Ours 53.3% 80.1% 0.0288 0.6383 0.0482 0.2573

[3]
Pix3D mean 94.6%

17.6% 45.5% 0.0722 0.2991 0.0908 0.2090
[14] 38.6% 78.3% 0.0374 0.5832 0.0531 0.3222
Ours 60.7% 86.3% 0.0171 0.7663 0.0370 0.4095

[3]
Comp car 99.9%

2.4% 18.2% 0.0207 0.7224 0.0271 0.6344
[14] 10.2% 36.9% 0.0158 0.7805 0.0194 0.7230
Ours 20.5% 58.0% 0.0133 0.8142 0.0165 0.7707

[3]
Stanford car 99.6%

3.7% 20.1% 0.0198 0.7169 0.0242 0.6526
[14] 11.3% 42.2% 0.0153 0.7721 0.0183 0.7201
Ours 29.5% 69.4% 0.0110 0.8352 0.0150 0.7744

Table 1: Experimental results on the Pix3D, Comp, and Stanford datasets. We provide results for 3D model retrieval from both
seen (in training dataset) and unseen (ShapeNet) 3D model databases given unseen test images. We significantly outperform
the state-of-the-art in all metrics and datasets. A detailed discussion of the reported numbers is presented in Sec. 4.1.

AccTop-1 and AccTop-10 which give the percentage of objects
for which the ground truth 3D model equals the top ranked
3D model (Top-1) [14], or is in the top ten ranked 3D mod-
els (Top-10) [66]. These metrics can only be provided if the
ground truth 3D model is in the retrieval database.

Hausdorff Distance. We compute a modified Hausdorff
distance [1, 4]

dH =
1

|X |+ |Y|

( ∑
x∈X

min
y∈Y

D(x,y) +
∑
y∈Y

min
x∈X

D(y,x)
)

(4)
between the ground truth 3D model X and the retrieved 3D
model Y . For each vertex x ∈ X and y ∈ Y , we calculate
the Euclidean distance D(·) to the closest vertex from the
other 3D model and compute the mean over both sets. Be-
fore computing dH, we regularly resample each 3D model.
We report the mean modified Hausdorff distance for all de-
tected objects (dHAU). Since all 3D models are consistently
aligned, the score is in the interval [0,

√
2] (lower is better).

3D Intersection Over Union. We compute the 3D inter-

section over union between a voxelization of the ground
truth 3D model and a voxelization of the retrieved 3D
model [55]. For this purpose, we voxelize 3D models us-
ing binvox [38] with a resolution of 128×128×128. We
report the mean 3D IOU for all detected objects (dIOU). The
score is in the interval [0, 1] (higher is better).

4.1. Comparison to the State-of-the-Art

We are the first to present results for 3D model retrieval
on Pix3D, Comp, and Stanford. For this purpose, we com-
pare our approach to a baseline method [3] and a state-of-
the-art method [14]. Since [3] and [14] assume that objects
are already detected in 2D, we use the detections given by
our approach for a fair comparison. The results are sum-
marized in Table 1, where we significantly outperform the
state-of-the-art in all metrics and datasets.

First of all, we correctly detect 95% of all objects in
the images on average (AccD0.5 ), since object detection is
tightly integrated into our approach. In fact, our Location
Field CNN is initialized with weights trained for instance
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Figure 4: Qualitative results for 3D model retrieval from ShapeNet. From left to right, we show the input image, the ground
truth 3D model and the top ten ranked 3D models. The overall 3D shape of the retrieved models is consistent and accurate.
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Figure 5: Qualitative examples of our predicted location
fields. For each example image, the top row shows the
ground truth and the bottom row shows our prediction. The
overall 3D shape is recovered well, but fine-grained details
like the side mirrors of the car are missed.

segmentation [17] on COCO [33] and all evaluated cate-
gories are present in COCO.

Next, we evaluate two different retrieval setups: First, we
use all 3D models from the respective dataset as a 3D model
database for retrieval (seen 3D models). In this case, we
retrieve the correct 3D model (AccTop-1) for more than 60%
of all test samples on average on Pix3D. This is a significant
improvement of more than 20% absolute compared to the
state-of-the-art. Also, the retrieval accuracy quickly raises
if we consider the top ten ranked 3D models (AccTop-10).

In contrast, the retrieval accuracy on Comp and Stanford
is significantly lower for all evaluated methods. This is due
to the significantly smaller variation in the overall shape of
cars compared to chairs, for example. Thus, many 3D mod-
els of cars have a similar appearance in multiple 3D poses
and can only be discriminated by extremely fine-grained de-
tails like wheel rims or radiator grill structure. Such pixel-
level information is usually discarded by CNNs.

However, by analyzing the mesh similarity between the

ground truth 3D model and the top retrieved 3D model
(dHAU and dIOU), we observe consistent high performance
across all datasets and categories. To put the reported num-
bers in perspective, we compute the mean of the modified
Hausdorff distance (0.1236) and the 3D IOU (0.0772) for
all pairs of 3D models in the training datasets. These num-
bers represent the accuracy for picking a random 3D model.
For both metrics, the mesh similarity of our retrieved 3D
model is around 10 times better compared to picking a ran-
dom 3D model. Additionally, we significantly outperform
the state-of-the-art by up to 50% relative considering dHAU.

Second, we perform retrieval from previously unseen 3D
models from ShapeNet [9] (unseen 3D models). Since the
correct 3D model is not in the database in this case, the
achievable performance is limited. Thus, the reported num-
bers are slightly worse compared to retrieval from previ-
ously seen 3D models. Still, the performance is much bet-
ter compared to picking a random 3D model. In fact, for
some categories, e.g., Stanford cars, our approach retrieves
more accurate 3D models from an unseen database than the
state-of-the-art from a database seen during training.

4.2. Qualitative Results

The quantitative performance of our approach is also re-
flected in our qualitative results. First, Fig. 5 shows exam-
ples of our predicted location fields. We upscale and pad
the predicted location fields to match the input image reso-
lution. The overall 3D shape is recovered well in the loca-
tion fields, but fine-grained details like the side mirrors of
the car are missed.

Next, Fig. 4 shows qualitative results for 3D model re-
trieval from ShapeNet. Considering the top ten ranked 3D
models, we observe that the retrieved models have a consis-
tent and accurate overall 3D shape and geometry.

Finally, Fig. 6 presents examples for 3D model retrieval
from both seen and unseen databases. In addition, we show
that location fields provide all relevant information to also
compute the 3D pose of objects. For this purpose, we sam-
ple 2D-3D correspondences from the location fields and
solve a PnP problem during inference. The projections onto
the image show that both our retrieved 3D models and our
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Figure 6: Qualitative results for 3D pose estimation and 3D
model retrieval from both seen and unseen databases. We
project the retrieved 3D model onto the image using a 3D
pose computed from the predicted location field by solving
a PnP problem. In fact, location fields provide all relevant
information to jointly address both tasks.

computed 3D poses are highly accurate.

4.3. Ablation Study

To understand which aspects of our approach are crucial
for performance, we conduct an ablation study. For this pur-
pose, we perform experiments on Pix3D, which is the most
challenging dataset, because it provides multiple categories
and has the largest variation in object scale and pose. We re-
port the mean performance across all categories in Table 2.

If we train our approach without synthetic data, i.e., train
our Descriptor CNN purely on predicted location fields, the
performance decreases significantly. Since training data is
limited, we do not see location fields from many different
3D poses during training in this scenario.

Next, if we predict, render, and process location fields at
half of our proposed resolution (28×28×3) the performance
also drops significantly. In this case, fine-grained structures,
e.g., thin legs of a chair (see Fig. 5), cannot be recovered

Method AccTop-1 dHAU dIOU

Ours w/o synthetic data 55.0% 0.0219 0.7156
Ours half-res LFs 58.7% 0.0204 0.7370
Ours w/o (T)CL [20, 62] 59.9% 0.0175 0.7621
Ours w/o Mapping [43] 60.0% 0.0174 0.7630
Ours multi-view 60.9% 0.0173 0.7686
Ours 60.7% 0.0171 0.7663

Table 2: Ablation study showing that exploiting synthetic
data in the form of rendered location fields and employ-
ing location fields with sufficient resolution to capture thin
structures are important aspects for increasing performance.

in the location fields due to the limited spatial resolution.
Optimizing a pure softmax loss without our proposed com-
bination of Center loss [62] and Triplet-Center loss [20] re-
sults in a small performance decrease. This shows that our
proposed Descriptor loss (see Eq. (3)) indeed learns more
discriminative embeddings than classification alone.

Training without Feature Mapping [43] only slightly de-
creases performance. This is in part due to the fact that we
also address the domain gap by aggressively augmenting
and degenerating rendered location fields during training of
our Descriptor CNN to simulate predicted location fields.

Finally, if we do not use our learned center descriptors
but multi-view descriptors for matching, the performance
almost remains the same. In this case, we match against
100 descriptors computed from location fields rendered un-
der different 3D poses instead of a single center descrip-
tor for each 3D model. This exhaustive comparison has a
much higher computational complexity than our proposed
approach. In fact, using center descriptors is not only sig-
nificantly faster but also achieves better performance con-
sidering dHAU. This experiment confirms that our approach
indeed learns pose invariant 3D shape descriptors.

5. Conclusion

Learning a common embedding of 3D models and RGB
images for single image 3D model retrieval is difficult due
to limited training data and the domain gap between real and
synthetic data. For this purpose, we map 3D models and
RGB images to a common low-level representation in the
form of location fields from which we compute pose invari-
ant 3D shape descriptors. In this way, we bridge the domain
gap and benefit from training on synthetic data. We evalu-
ate our proposed approach on three challenging real-world
datasets (Pix3D, Comp, and Stanford) and significantly out-
perform the state-of-the-art by up to 20% absolute.
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