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Abstract

A recent dominating trend in tracking called
tracking-by-detection uses on-line classifiers in or-
der to redetect objects over succeeding frames. Al-
though these methods usually deliver excellent re-
sults and run in real-time they also tend to drift in
case of wrong updates during the self-learning pro-
cess. Recent approaches tackled this problem by
formulating tracking-by-detection as either one-shot
semi-supervised learning or multiple instance learn-
ing. Semi-supervised learning allows for incorpo-
rating priors and is more robust in case of occlu-
sions while multiple-instance learning resolves the
uncertainties where to take positive updates dur-
ing tracking. In this work, we propose an on-line
semi-supervised learning algorithm which is able
to combine both of these approaches into a co-
herent framework. This leads to more robust re-
sults than applying both approaches separately. Ad-
ditionally, we introduce a combined loss that si-
multaneously uses labeled and unlabeled samples,
which makes our tracker more adaptive compared
to previous on-line semi-supervised methods. Exper-
imentally, we demonstrate that by using our semi-
supervised multiple-instance approach and utilizing
robust learning methods, we are able to outper-
form state-of-the-art methods on various benchmark
tracking videos.
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and the Austrian Science Fund (FWF) under the doctoral program
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Figure 1. Our proposed algorithm combines the benefits
of multiple instance learning (MIL) and semi-supervised
learning (SSL). Thus in tracking it utilizes robustness and
adaptivity from MILBoost and the regularization behavior
and dependence on a prior for SemiBoost.

1. Introduction

Visual object tracking is one of the biggest chal-
lenges in computer vision. Despite the huge amount
of research spent on this task it is still hard to design
robust tracking systems that can perform similar to
humans. Visual trackers have to cope with all varia-
tions that occur in natural scenes such as shape and
appearance changes, different illuminations as well
as varying poses or partial occlusions. Numerous
tracking methods have been proposed, such as global
template-based trackers, e.g., [1], shape-based meth-
ods [3], probabilistic models using mean-shift [5],
particle filtering [12], local key-point based track-
ers [16], or flow-based trackers [18]. See also [21]
for a more detailed review.

One dominating trend in object tracking is to ap-
ply appearance-based classifiers. Such tracking-by-
detection systems [1] usually train a classifier at the
first frame versus its local background and perform
re-detection in succeeding frames. In order to han-
dle rapid appearance changes, recent works, e.g., [9]



use on-line classifiers that perform self-updating on
the target object. Such on-line classifiers are usu-
ally highly accurate and fast since they only have to
discriminate the object from its current local back-
ground. However, these classifiers perform self-
learning and it is difficult to decide autonomously
where exactly to take the positive and negative up-
dates, respectively. Even if the object is tracked cor-
rectly, the alignment may not be perfect which can
lead to slightly wrong updates of the tracker (a.k.a la-
bel jitter). If these errors accumulate over time, they
can finally lead to drifting of the tracker [14].

Recent approaches try to tackle the drifting prob-
lem by formulating the tracking-by-detection as one-
shot semi-supervised learning. Grabner et al. [10]
proposed an on-line semi-supervised boosting algo-
rithm (Online SemiBoost) and update the learner
with a supervised loss only at the beginning, i.e., the
first frame, and then regularize this learned classifier
in subsequent frames on the unlabeled data by using
an unsupervised loss function. Although this method
has shown to be less error prone to drifting and si-
multaneously more adaptive than a static classifier, it
still cannot reach the performance of a self-learning
classifier in case of a rapid appearance changes [2].
Also highlighting this problem of Online SemiBoost,
recently Babenko et al. [2] formulated the tracking
task as a multiple-instance learning (MIL) problem.
Using MIL, the classifier in principle is still perform-
ing self-learning; however, the allowed positive up-
date area around the current tracker can be increased
and the classifier resolves the ambiguities by itself,
yielding more robust tracking results.

In this work, we propose to combine the ideas
from semi-supervised learning and multiple-instance
learning (see Fig. 1). Our approach inherently com-
bines the benefits of these two learning trends and
hence is more robust than applying them separately.
In order to achieve this goal, we first extend the semi-
supervised boosting approach of SERBoost [17] to
on-line learning case. Based on online SERBoot, we
build our on-line semi-supervised multiple-instance
algorithm which is able to use both labeled and unla-
beled bags. We call our algorithm MIL-SERBoost.

Furthermore, we revisit the on-line semi-
supervised learning formulation for tracking. In
contrast to the previous formulation [10], we
highlight that one cannot directly impose the same
assumptions from off-line semi-supervised learn-
ing tasks to sequential data analyses, in our case
tracking, because the underlying data distribution
is continuously changing and usually non i.i.d. [7].

This explains why, in a tracking scenario, a prior
classifier may become invalid even after a short time
(depending on the sequence). Additionally, in [10]
during tracking the data is only used to regularize
the classifier learned at the first frame rather than
learning new samples with a powerful loss. Thus,
we emphasize that exclusive regularization prevents
the system from being adaptive enough in order to
handle rapid appearance changes.

In the following Sec. 2 we review the on-line
semi-supervised and multiple instance learning and
tracking. Based ont this we outline regularization
algorithms for instance and multiple instance based
learning in Sec. 3. Sec. 4 illustrates the application
of our algorithm to the problem of visual tracking.
In Sec. 5 we cover experiments which compare our
approach to other state of the art tracking algorithms.

2. On-line Boosting

Boosting additively combines several weak clas-
sifiers to a strong one in the form

F (x) =
M∑
i=1

αifi(x), (1)

where αi determines the influence of the ith weak
learner. During learning, boosting keeps a weight
distribution over the training samples. Since, in the
on-line case each training sample is provided only
once to the learner, Oza and Russell [15] proposed to
model the sequential incoming of the samples using
a Poisson distribution and compute the importance w
of a sample by propagating it through the set of weak
classifiers. Later, Grabner et al. [8] introduced se-
lectors in order to allow for on-line feature selection.
On-line boosting is performed on these selectors and
not directly on the hypothesis space.

2.1. Semi-supervised On-line Boosting

Semi-supervised learning [4] deals with using un-
labeled samples in order to improve the performance
of a classifier. Many semi-supervised learning algo-
rithms use the unlabeled samples to regularize a loss
function which is designed for the labeled samples.
Let X to be a set of samples x ∈ RD. Additionally,
let Xl be the labeled samples (x, y) and Xu be the set
of unlabeled samples. The following loss function



form is usually used for semi-supervised algorithms

L(X ) = Ll(Xl) + βLu(Xu) (2)

=
∑

(x,y)∈Xl

ll (yF (x)) + β
∑

x∈Xu

lu(F (x)),

where l(yF (x)) and lu(F (x)) are the loss functions
for labeled and unlabeled samples, respectively. β
steers the importance of the unlabeled data.

We address a binary decision problem with
classes y ∈ {−1,+1}. Thus, yF (x) describes the
margin of the classifier for sample x. F (x) itself is a
large margin classifier yielding confidence-rated pre-
dictions. Minimizing this loss off-line, the learner
has access to labeled and unlabeled samples simulta-
neously. For on-line minimization, especially for the
task of tracking, [10] proposed the Online SemiBoost
(OSB) to pass labeled samples to the supervised loss
only at the first frame. In all subsequent frames, sam-
ples are only passed through the unsupervised loss.
This principle results in a very conservative tracker
thus successfully reducing drifting; however, adapta-
tion to rapid appearance changes of the object is hard
to achieve.

On the other hand, fully supervised methods are
adaptive and thus are superior in learning appearance
changes but tend to drift. However, it has been shown
that drifting can be reduces, if robust loss functions
[11] are applied, or multiple instance learning [2] is
used, because both approaches are capable of han-
dling label noise in their updates. Our algorithm will
combine the benefits of both approaches.

2.2. Multiple Instance Learning

Traditional supervised learning deals with data
samples which are presented to the algorithm in a
pair (x, y). In multiple-instance learning, the data
is presented in form of labeled bags (B, y) where
B = {x1, · · · ,xNB

} is a collection of data instances.
The relation between the label of a bag and the labels
of its instances is ambiguous for the positive bags: if
a bag label is positive y = 1, it is only guaranteed
that there exists at least one instance in the bag be-
longing to the positive class. For the negative bags
y = −1, there is no ambiguity and we know that all
the instances belong to the negative class.

Multiple instance approaches try to resolve the in-
herent ambiguities given in many practical learning
problems. For example, when training an object de-
tector, access might only be available to weakly su-
pervised labels, i.e., only the presence of an object in

an image is known and not its location. In this set-
ting, an image can be represented as a bag containing
all or a subset of its sub-windows. If it is known that
there is a target object in this image, at least one of
these sub-windows should represent the object; how-
ever, it is not known which one exactly. Similarly,
if an image does not contain the target class, all of
its sub-windows can be considered belonging to the
negative class as well. Therefore, multiple instance
settings exactly define the problem of training a vi-
sual object detector from weakly supervised labels.
When dealing with object tracking by using a detec-
tor, multiple instance learning can be used in a simi-
lar way in order to solve the problem of where to take
positive updates [20, 2].

3. Regularization for Instance and
Multiple Instance Learning

Based on the previous discussion, we propose to
combine a robust loss function or multiple instance
learning with a regularization part over unlabeled
data. The general formulation of our algorithm is
equivalent to Eq. (2); however, we introduce an on-
line learning formulation. Moreover, for the applica-
tion of tracking we significantly differ from previous
approaches in the way we apply samples to the al-
gorithm. This will be explained in detail in Sec.4.
In the following, we keep the algorithmic derivations
generic, so that it can be applied to other application
domains than visual tracking.

To achieve on-line learning we adapt the func-
tional gradient descent view of boosting [6]. Accord-
ing to the gradient descent principle in optimization,
at each step of boosting the algorithm is looking for
the mth weak learner fm(x) (chosen from a set F of
weak learners), which if added to the current strong
learner F (x) results in an overall classification im-
provement. This optimization problem is written as

fm(X ) = arg max
f∈F
〈−∇L, f(·)〉 . (3)

In each iteration boosting is specializing on sam-
ples which have been misclassified so far by intro-
ducing a weight w. In the gradient descent frame-
work, the magnitude of the gradient for a given sam-
ple directly relates to its weighting for the next weak
learner. Eq (3) applied with the combination of loss



functions, thus yields

arg min
f∈F

∑
(x,y)∈Xl

∂ll (yFm(x))
∂Fm(x)︸ ︷︷ ︸

ywl

·f(x)

+ β
∑

x∈Xu

∂lu (Fm(x))
∂Fm(x)︸ ︷︷ ︸

ŷwu

·f(x),
(4)

with wl being the weight for a labeled and wu and ŷ
denoting the pseudo weight and label for unlabeled
samples.

In the following sections, we first introduce the
learning mechanism for a single instance and then
extend it to the case of multiple-instances.

3.1. Instance Regularization: SERBoost

For the instance based loss on labeled data any
arbitrary loss function can be used. Due to its robust-
ness, we employ the log-likelihood for the loss over
labeled samples in form of

Ll(Xl) =
∑

(x,y)∈Xl

log
(
1 + e−2yF (x)

)
(5)

=
∑

(x,y)∈Xl

−yF (x) + log
(
eF (x) + e−F (x)

)
.

To incorporate unlabeled samples in the loss func-
tion we will take a similar approach as Saffari et
al. [17] and extend their off-line expectation regu-
larization formulation for on-line boosting. In ex-
pectation regularization the probability P (y|x) for a
sample belonging to one class is compared with a
given prior probability Pp(y|x). The loss function
is extended by a term for unlabeled data, which in-
corporates this prior information. Saffari et al. define
the unlabeled loss as the Kulbach-Leibler-divergence
between prior probability and the current model and
show that the optimization reduces to minimizing the
cross entropy

H(Pp, P ) =
∑

z∈{−1,1}

−Pp(z|x) logP (z|x) (6)

Thus, the loss over unlabeled samples results in

Lu(Xu) =
∑

x∈Xu

H(Pp, P̂ ) (7)

=
∑

x∈Xu

−yp(x)F (x) + log
(
eF (x) + e−F (x)

)
.

Here, yp(x) = 2Pp(y = 1|x) − 1 ∈ [−1, 1] is the
prior soft label. For the prior probability Pp(y =
1|x) any available prior information can be used.

Note that the formulation of Eq. (7) is the logit
loss of Eq (5) in case the prior soft label yp(x) is
casted to a hard label ∈ {−1, 1}. As a result, labeled
and unlabeled loss are coherent.

3.1.1 Online Learning

In order to use gradient boost, we need to compute
the negative gradients aij with respect to the current
classifier of the logit loss function:

ai(z) =
∂ zF (xi)− log

(
eF (xi) + e−F (xi)

)
∂F (xi)

= z − tanh(F (xi)), (8)

where z is either the hard label y for labeled samples,
or the soft prior label yp(xi) for unlabeled samples.
Employing the negative gradients the overall objec-
tive to optimize becomes

arg max
f∈F

∑
(x,y)∈Xl

ai(y) + β
∑

x∈Xu

ai(yp(x)). (9)

The weight wi for a given sample xi is defined as

∀ (xi, yi) ∈ Xl : (10)
wi = |ai(yi)| = |yi − tanh(F (xi))| ,

and for unlabeled samples, the weights and pseudo-
labels are

∀ (xi) ∈ Xu : (11)
wi = β |ai(yp(xi))| = β |yp(xi)− tanh(F (xi))|
yi = I (βyp(xi) > tanh(F (xi)))

3.2. Bag Regularization: MIL-SERBoost

Based on the on-line SERBoost algorithm,
we now proceed to introduce our on-line semi-
supervised multiple instance learning model.

Let XBl = {(Bl
1, y1), . . . , (Bl

Nl
, yNl

)} and XBu =
{Bu

1 , . . . ,Bu
Nu
} denote the set of labeled and unla-

beled bags, where B = {x1, . . . ,xNB
},∀x ∈ RD is

a bag containing NB samples and y ∈ Y = {0, 1}.
Note that in tracking we will train the classifier

in an on-line manner and provide one positive and
one negative bag per frame; however, the following
derivations are kept general and the algorithm is by
no means limited to tracking, but applicable in any
other machine learning task.



MILBoost [20, 13] tries to minimize the negative
log-likelihood as

Ll(XBl ) = −
Nl∑
i=1

∑
z∈Y

I(z = yi) log(P (y = z|Bl
i)),

(12)
where P (y|Bi) is the estimated posterior by the
model. In order to incorporate also unlabeled bags,
we take the same approach as for unlabeled instances
in Sec. 3.1 and define the loss over the unlabeled bags
as the deviation of the model from the prior. We im-
pose the prior conditional probability in the form of
Pp(y|B), which is calculated via the posterior model
for bags. The objective is to minimize the negative
log-likelihood over both the labeled and unlabeled
bags. The cross entropy between the prior and the
model is again derived using the Kullback-Leibler
(KL) divergence between these two distributions as

Lu(XBu ) = −
Nu∑
i=1

∑
z∈Y

Pp(z|Bu
i ) log(P (z|Bu

i )).

(13)
Using the logistic regression as the probabilistic

model of boosting [6], we apply the model posterior
for an instance as

P (y = 1|x) =
eF (x)

eF (x) + e−F (x)
. (14)

To model the probability of a bag being positive
given the probabilities of its instances, we follow the
approach of Lin et al. [13] who define the posterior
for a bag by the geometric mean function as

P (y = 1|Bi) = 1−
[NBi∏

j=1

(1− P (y = 1|xij))
]1/NBi

.

(15)
This is suited better than the original Noisy OR def-
inition introduced by [20], where the posterior prob-
ability converges towards 1 for a larger number of
samples independent of their instance prior probabil-
ity. The prior probability for a bag Pp(y|Bi) is com-
puted the same way as the posterior from instance
probabilities, where any prior instance information
can be used in the algorithm.

3.2.1 Online Learning

In order to use gradient boost [6], we need to com-
pute the negative derivatives aij of the log-likelihood

of the bags with respect to the response of the classi-
fier to their instances:

aij(z) =
∂ log(P (y = z|Bi))

∂F (xij)
(16)

For the geometric mean model explained above the
gradients result in

aij(z) =
2
NBi

z − P (y = 1|Bi)
P (y = 1|Bi)

P (y = 1|xij).

(17)

Using the gradients, the optimization over combined
labeled and unlabeled loss is written as

arg max
f∈F

∑
Bl

i∈XBl

∑
z∈Y

I(yi = z)
NBi∑
j=1

aij(z)f(xij) +

β
∑
Bu

i ∈XBu

∑
z∈Y

Pp(y = z|Bi)
NBi∑
j=1

aij(z)f(xij).

(18)

Derived from the above formulation, following
weights for labeled samples and weights and pseudo
labels for unlabeled samples are defined:

∀ (Bi, yi) ∈ XBl ,∀xij ∈ Bi : wij = |aij(yi)| (19)

∀Bi ∈ XBu ,∀xij ∈ Bi : (20)

wij =β
∣∣∣∑
z∈Y

Pp(z|Bu
i )aij(z)

∣∣∣
yij =I

(
β
∑
z∈Y

Pp(z|Bu
i )aij(z) > 0

)

4. MIL-SERBoost in Tracking
For the purpose of visual tracking we propose to

combine both, supervised and unsupervised boosting
by a convex combination

L(X ) = λLl(Xl) + (1− λ)Lu(Xu) (21)

Thereby, we can cover the whole range from fully
supervised to fully unsupervised learning with an ap-
propriate choice of λ. The fundamental difference to
On-line SemiBoost is that the supervised loss is kept
over all frames. In doing so we combine the benefits
of robust loss functions and semi-supervised learning
by allowing the unsupervised regularization term to
amplify or weaken the supervised decision.



We provide a bag as both labeled and unlabeld
(XB = XBl = XBu ) to the algorithm. The weight
for a given sample then is calculated as the sum over
both gradients, resulting in a reduction of Eq. (19)
and Eq. (20) to

∀ (Bi, yi) ∈ XB,∀xij ∈ Bi : (22)

wij =
∣∣∣λaij(yi) + (1− λ)

∑
z∈Y

Pp(z|Bu
i )aij(z)

∣∣∣
yij = I

(
λaij(yi) + (1− λ)

∑
z∈Y

Pp(z|Bu
i )aij(z) > 0

)
.

Eq.(22) nicely illustrates the effect of the regulariza-
tion term. In case it coincides with the given super-
visory decision, it enforces learning the sample with
the given label by increasing its weight. Contrary, the
regularizer has the ability to down weight the sam-
ple influence and also can provide a label switch, de-
pending on the choice of the regularization parame-
ter λ. The algorithmic work-flow, as it is applied for
tracking, is illustrated in Alg. 1.

Algorithm 1 MIL-SERBoost for Tracking
Require: Initial object location
Require: Classifier F (x) and prior classifier Fp(x)

1: Train prior classifier Fp(x) and classifier F (x)
in supervised manner on first frame

2: while next frame exists do
3: Load next frame
4: Detect object in frame:

position = arg maxF (x) s.t. F (x) > 0
5: if object was detected then
6: Generate bags Bi containing samples xij

7: for all (Bi, yi) ∈ XB do
8: Evaluate prior instance probabilities

Pp(yij = 1|xij) using Fp(x) and Eq. 14
9: Calculate the prior bag probability

Pp(yi = 1|Bi) based on instance prob-
abilities via Eq. 15

10: Calculate instance weights wij and
pseudo labels yij with Eq. 22

11: Update the classifier F (x) with all sam-
ples xij and their related weights and la-
bels (wij , yij)

12: end for
13: end if
14: end while

For sampling the bags, we follow a simple strat-
egy: we use the detected location of the object as a

center point and sample bags which are very close to
the center forming the positive bags or do not overlap
considerably with the target object which provides
the negative bags. This way, we could make sure that
the multiple instance conditions are satisfied for the
sampled bags.

The regularization performance strongly depends
on the accuracy of provided prior information. For
tracking we utilize the prior classifier trained on the
very first frame; during tracking the prior is not up-
dated. SemiBoost works better if an adaptive prior is
provided [19], such that the classifier is not kept too
tight to the initial prior. Contrary, we do not require
an adaptive prior as we explicitly encode the adaptiv-
ity in our algorithm via the self learning part.

In case no prior information is available, that
is bag instances can not be classified and Pp(y =
1|x) = 0.5, the prior bag probability also encodes
maximum entropy with Pp(y = 1|Bu) = 0.5. The
weight for instances in an unlabeled bag thus evalu-
ates to 0 according to Eq. 20, ensuring that unlabeled
data does not have any influence in the learning pro-
cess.

5. Experiments
In tracking-by-detection appearance changes and

(partly) occlusions constitute the main two problems
where algorithms fail. Thus, we want to evaluate our
algorithms for both situations. In case of appearance
changes an algorithm mostly lead by a supervised
loss is outperforming an unlabeled approach, sim-
ply because it guarantees enough adaptivity to object
changes. On the other hand in case of occlusions the
presence of a prior via regularization will give better
results. We want to underline this fact by applying
our algorithm with various settings of λ.

For evaluation we chose several public available
benchmark sequences and we use simple Haar fea-
tures to allow for a comparison to other state-of-the-
art algorithms, namely MILBoost [2], On-line Semi-
Boost [10] and On-line AdaBoost [15]; for these al-
gorithms tracking results are provided by the authors.
In addition we use the Overlap-Criterion of the VOC
Challenge1, which computes the overlap score as

(roiT ∩ roiGT )/(roiT ∪ roiGT ), (23)

where roiT is the tracker detection window and
roiGT the ground truth. We chose this kind of mea-
surement, because it better illustrates the detection

1http://www.pascal-network.org/challenges/VOC/voc2009



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

λ

av
g.

 o
ve

rla
p

 

 

sylv
tiger1
tiger2
faceocc1
faceocc2
girl
david
coke11

Figure 2. Tracking performance as average detection win-
dow and ground truth overlap in dependence of the regu-
larization parameter λ.

accuracy compared to raw pixel based distance mea-
surements.

Since the regularization term is depending on a
prior, λ expresses a trade-off between an adaptive
algorithm able to follow appearance changes, and
a more conservative approach where the regularizer
ties the classifier to its prior. For an appropriate
choice of λ, thus one also has to take into considera-
tion the application domain of the tracker and weight
between desired adaptive or conservative behavior.

If one knows the characteristics of the problem,
λ can be chosen appropriately beforehand; however,
if this is not the case a predefined value is required.
Fig. 2 explicitly shows the expected result. As it can
be seen, λ = 0.8 works reasonably well across all
the sequences. Therefore, if no a priori knowledge is
available we suggest to set λ = 0.8. On sequences
david, sylv, and coke which are characterized by fast
motion and rapid appearance changes, and faceocc2
containing object modifications, the algorithm per-
forms best with λ close to one; thus, mostly tracking
and learning in a supervised manner. For sequences
girl and faceocc1, λ equal to a small value yields
best results. This means a setting similar to Semi-
Boost is appropriate, where the regularization term
is the domination part. The remaining sequences
tiger1, and tiger2 are constituted by both appearance
changes and (partly occlusions), thus a configuration,
which allows both labeled and unlabeled loss to in-
fluence the learner is most suitable.

Table 1 reports our tracking results with the above
choice of λ = 0.8 for all sequences. This clearly il-
lustrates that our algorithm provides state-of the art
tracking results compared to other methods. If we

Sequence MILSER MIL OSB OAB

sylv 0.63 0.61 0.46 0.50
david 0.71 0.54 0.31 0.32
faceocc2 0.78 0.65 0.63 0.64
coke11 0.18 0.29 0.12 0.20
tiger1 0.60 0.51 0.17 0.27
tiger2 0.46 0.50 0.08 0.25
faceocc1 0.68 0.63 0.71 0.47
girl 0.64 0.53 0.69 0.38

Table 1. Tracking results on the benchmark sequences mea-
sured as average detection window and ground truth over-
lap over 5 runs per sequence. For all sequences the regu-
larization parameter λ was set to 0.8. Bold and underlined
numbers indicates best and second best performance.

would have chosen λ according to the prior knowl-
edge about the scene, tracking results improve (see
Fig. 2). Fig. 3 shows various images from the track-
ing sequences together with the detection windows
obtained by the different algorithms.

6. Conclusion
In this work, we have introduced a new on-line

semi-supervised multiple-instance learning method
and applied it to the task of visual tracking. Our
method combines the robustness of semi-supervised
updates towards occlusions and the flexibility of mul-
tiple instance learning on where to select positive up-
dates. In order to increase the adaptivity of semi-
supervised boosting, we use a combined loss dur-
ing ongoing tracking which simultaneously performs
both supervised and unsupervised updates. In the ex-
periments, we showed that our approach is as good
as or improves over state-of-the-art methods and on
average performs better than applying MILBoost or
SemiBoost separately. However, we also highlighted
that different tracking application domains can re-
quire different settings for the convex combination of
the loss functions. Hence, in future work we plan to
investigate alternatives for finding more general con-
vex combinations.
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