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Abstract. For face recognition from video streams often cues such as
transcripts, subtitles or on-screen text are available. This information
could be very valuable for improving the recognition performance. How-
ever, frequently this data can not be associated directly with just one of
the visible faces. To overcome this limitations and to exploit valuable in-
formation, we define the task as a multiple instance learning (MIL) prob-
lem. We formulate a robust loss function that describes our problem and
incorporates ambiguous and unreliable information sources and optimize
it using Gradient Boosting. A new definition of the posterior probability
of a bag, based on the Lp-norm, improves the ability to deal with vary-
ing bag sizes over existing formulations. The benefits of the approach are
demonstrated for face recognition in videos on a publicly available bench-
mark dataset. In fact, we show that exploring new information sources
can drastically improve the classification results. Additionally, we show
its competitive performance on standard machine learning datasets.

1 Introduction

TV and video-sharing websites constantly provide large amounts of digital video
data. This data could be an extremely valuable and important source of infor-
mation, that today remains mostly unexplored. In fact, since most of the video
data is only indexed by some meta-data and not by its content, it is inaccessi-
ble to goal-oriented search. Manual annotation is laborious or even infeasible at
large scale, thus, to allow for a more efficient search and retrieval, methods for
automatic interpretation of the visual content are needed.

In this paper, we address the problem of fully automated identification of
people in videos, where we have to carry out the following steps: First, detecting
people’s faces and tracking them throughout a scene. Second, automatically
extracting as much information as possible about the persons’ identities from
associated information sources, such as the audio track (speech recognition),
subtitles, the transcript, on-screen text, or electronic program guide (EPG) data.
Third, using the gathered data to learn to re-identify them in different contexts,
only based on their visual appearance.

This problem was recently tackled by several authors [3, 4, 7, 8, 17, 18]. Ev-
eringham et al. [7, 8] label exemplars by visual speaker detection. The name of
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(a) Buffy, Dawn, Joice (b) Willow, Buffy

Fig. 1. Face recognition in videos: Often valuable information cannot be assigned
unambiguously to exactly one person. For instance we know from the video transcript
that a character is present in a scene, but the corresponding face is unknown.

the speaker is obtained by automatically aligning the timing information of the
subtitles with the naming information from the transcript. However, due to the
nearest neighbor classification label noise is propagated. Thus, the method can-
not recover from labeling errors. The work of Sivic et al. [18] replaces the nearest
neighbor framework by multiple kernel classification. The base kernels operate
on the min-min distance between HOG blocks. Therefore, the optimized combi-
nation coefficients describe the relative importance of the individual blocks for
classification. Nevertheless, it is not possible to integrate cues providing informa-
tion that can not be assigned unambiguously to one single instance. Ramanan
et al. [17] use a multitude of inference cues to obtain face clusters. Different
cues apply to different time scales. However, the system requires manual user
interaction to label an initial set of face clusters.

Thus, these methods require either manual labeling or cannot make use of
information that applies to multiple instances. However, this is a reasonable
scenario when learning from videos and associated sources. For instance, as il-
lustrated in Figure 1, we know from textual cues that a specific character should
be present in one scene of a movie. But we do not know to which of the cur-
rently visible faces this information corresponds. The goal of this paper is to
make use of information which cannot be disambiguated. Additionally, we have
to ensure robustness, i.e., since the information extraction procedure is not com-
pletely reliable, we have to inherently deal with noisy and uncertain labels. We
meet these requirements by formulating the task as a Multiple Instance Learning
(MIL) problem.

In particular, for that purpose we adopt Gradient Boosting. Compared to
other methods Gradient Boosting has the advantage that any loss function that
fits the task can be used, as long as it is differentiable, thus providing a very
general optimization framework. In our case we build on the Logit-loss function –
to ensure the required robustness – and further incorporate the MIL constraints.
The approach is similar to the one of Viola et al. [19], however, their formulation
implicitly assumes that all bags in the training data are more or less of the same
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size and essentially not too big. To overcome this limitation, we define a new
formulation of the posterior probability of a bag, approximating more directly
the original definition of MIL, which is better suited for our task. Additionally,
we generalize the framework such that arbitrary learning algorithms can be used
to form the weak hypotheses.

In the following, we first introduce our new Gradient Boosting based MIL al-
gorithm and then give an experimental evaluation on both, standard benchmark
datasets as well as on a publicly available face recognition dataset.

2 MIL - Boosting

In a supervised learning scenario the training data is given in the form of a set
D = {(x1, y1), . . . , (xN , yN )}, where xi ∈ Rd is a sample and yi ∈ Y = {−1,+1}
its corresponding binary label. However, in practice, it is often hard or even
impossible to assign a label to all samples. But it is rather easy to specify a
group of data samples for which it can be ensured that at least one instance
carries the label, which leads to Multiple Instance Learning (MIL) [6]. In MIL
the data is provided in form of labeled bags Dmil =

{
(Bl1, y1), . . . , (BlN , yN )

}
,

where Bi = {xi1, . . . ,xiNBi
}, xij ∈ Rd, is a bag containing NBi

samples and
yi ∈ Y its binary label. A bag is defined to be positive if at least one instance
in the bag is positive, whereas accordingly for a negative bag all instances have
to be negative. Building on these ideas, in the following, we will derive a new
formulation for MIL which is based on Gradient Boosting.

2.1 Gradient Boosting

In general, the goal of Boosting is to estimate a strong classifier F (x) as a linear
combination of weak classifiers ft(x) such that the the expected classification
error is minimized:

F (x) =

T∑
t=1

αtft(x) . (1)

In particular, Gradient Boosting aims to find a strong classifier F ∗(x) by
solving the following optimization problem:

F ∗(x) = arg min
F (x)

L(D;F (x)) , (2)

where L(D;F (x)) is a loss function measuring the performance of the classifier
by giving penalties for misclassified training examples.

Gradient Boosting iteratively estimates the function F ∗(x) by greedily con-
structing base functions ft(x) (weak learners) based on the preceding
f1(x), . . . , ft−1(x). This is accomplished by taking the derivative of the loss func-
tion with respect to the current strong classifier’s output for each training sample
and constructing the new ft(x) such as to produce outputs that approximate
the inverse direction of this gradient (i.e., reduce the residuals):
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ft(x) = arg max
f(x)

〈
−
{
∂L(D;F )

∂F (x1)
, . . . ,

∂L(D;F )

∂F (xN )

}
, {f(x1), . . . , f(xN )}

〉
(3)

= arg max
f(x)

−
N∑
i=1

∂L(D;F )

∂F (xi)
f(xi) . (4)

Finally, when the new ft(x) is found, the best weight αt is determined by a
line search.

2.2 Loss Functions

The main advantage of Gradient Boosting over other Boosting variants is the
flexibility of choosing a loss function that suites the task to be solved. Several dif-
ferent losses have been proposed in the literature (Exponential [10], Logit [11],
Savage [16]), mainly differing in the way how misclassified samples are pun-
ished, mainly influencing the robustness of the method against label noise. Since
the Logit loss has shown to be a considerable trade-off between robustness and
performance we build our algorithm on it. Thus, in the following we derive a
Gradient Boosting variant using a Logit loss, which can then easily be extended
by incorporating the Multiple Instance Learning constraints in Section 2.3.

The Logit loss of a classifier F (x) over a dataset D is defined as

L(D;F (x)) =

N∑
i=1

log
(

1 + e−yiF (xi)
)

= −
N∑
i=1

log

(
1

1 + e−yiF (xi)

)
. (5)

Thus, taking the logistic regression of the strong classifier’s output F (x), let

P (y=z|xi) =
1

1 + e−zF (xi)
(6)

be the predicted probability that an instance x is assigned the label z ∈ Y.
Then, we can interpret Eq. (5) as the cross entropy of the labels and the instance
probabilities reported by the classifier:

L(D;F (x)) = −
N∑
i=1

∑
z∈Y

[z=yi] log (P (y=z|xi)) , (7)

where [·] is the Iverson bracket.
With this loss the optimization for the weak learners in Eq. (4) becomes

ft(x) = arg max
f(x)

N∑
i=1

∑
z∈Y

[z=yi]
∂ logP (y=z|xi)

∂F (xi)
f(xi) . (8)
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Thus, we are looking for a new ft(x) whose output approximates the derivative
of the log of the instance probabilities, which we denote as

ai(z) =
∂ logP (y=z|xi)

∂F (xi)
. (9)

Generally, existing learning algorithms are not designed to solve Eq. (8).
However, we can define a weight wi for each training sample as

∀xi ∈ D : wi = |ai(yi)| . (10)

Thus, we are very flexible and can use any learning algorithm that can han-
dle training data with (importance-)weighted samples to construct a new weak
learner approximating the gradient.

2.3 Solving MIL with Gradient Boosting

In order to solve the MIL problem we define a new loss function over the bags

L(Dmil;F (x)) = −
N∑
i=1

∑
z∈Y

[z=yi] log(P (y=z|Bi)) , (11)

where P (y=1|Bi) is the bag posterior. Following the definition of MIL, the bag
posterior is defined over the probabilities of its instances as

P (y=1|Bi) = max
j
P (y=1|xij) . (12)

However, this measure is not differentiable, thus, approximations have to be
used. For instance, Viola et al. [19] proposed to use noisy-or [15] as the bag
posterior model:

PNOR(y=1|Bi) = 1−
NBi∏
j=1

(1− P (y=1|xij)) . (13)

The main disadvantage of the noisy-or formulation is that the size of the bag
(number of instances) substantially influences the outcome. For example, if all
instances in a bag have a very low probability, it is still assigned a high posterior
probability if the number of instances is large. This is especially unfavorable if
the size of the bags varies strongly within the training data, as it is the case in
our task.

Therefore, we propose to use a more direct approximation to the max oper-
ation in Eq. (12), by making use of the Lp-norm:

PLp(y=1|Bi) =

NBi∑
j=1

P (y=1|xij)
p

1/p

. (14)
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For large values of p this well approximates the max operation and as p → ∞
even converges to it. Thus, according to Eq. (8), the optimization for generating
the next weak learner is given by

ft(x) = arg max
f(x)

N∑
i=1

∑
z∈Y

[z=yi]

NBi∑
j=1

∂ logP (y=z|Bi)
∂F (xij)

f(xij) . (15)

Again, we can derive the weights for each instance by

∀(Bi, yi) ∈ Dmil,∀xij ∈ Bi : wij = |aij(yi)| , (16)

where, in contrast to Eq. (9), the aij(z) are now defined on bag level:

aij(z) =
∂ logP (y=z|Bi)

∂F (xij)
. (17)

In our case, the derivation of Eq. (14) is given by

a
Lp

ij (z) =
ẑ − P (y=1|Bi)
1− P (y=1|Bi)

(1− P (y=1|xij))
P (y=1|xij)

p∑NBi

k=1 P (y=1|xik)
p
, (18)

where ẑ = (z + 1)/2. The bigger we choose p the better the approximation. As
p→∞, we get

ãL∞
ij (z) = (ẑ − P (y=1|Bi))

[
P (y=1|xij) = max

k
P (y=1|xik)

]
/NBi,max , (19)

where NBi,max = |{j|P (y = 1|xij) = maxk P (y = 1|xik)}| is the number of in-

stances in bag Bi having the highest probability. Note that ãL∞
ij is not necessarily

the analytical derivative of PL∞ , since the series of PLp
converges pointwise, but

not uniform. Nevertheless, we use it since it gives the best approximation for the
weights wij and it is easy to compute.

3 Benchmark Datasets

Before showing results for the actual task, i.e., face recognition, we would like
to give a broad quantitative comparison to other methods. In particular, we
evaluate the proposed MILBoost using the PLp bag posterior model on the well
known and frequently used CBIR machine learning database [1] with its three
multiple instance datasets Tiger, Fox and Elephant as well as on the two Musk
datasets [6]. Here, as well as in the other experiments, the weak learners used
are probabilistic decision stumps, which test one feature of a sample against a
threshold and report a probability of begin positive, estimated from the training
data, on either side. The mean areas under the ROC curves over 10 individual
10-fold cross validation runs are reported in Table 1.1

1 Note that for mi-SVM and MI-SVM there are three different versions depending on
the kernel (linear, poly, rbf) and we report the best one for each class.
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On Musk, MILBoost is in the range of state-of-the-art algorithms, although it
does not reach the performance of certain specialized methods. However, MIL-
Boost with the noisy-or bag posterior model, to the best of our knowledge,
delivers the best results reported so far for the Tiger and Elephant classes of
the CBIR dataset. Our PLp

bag posterior model also produces very good results
on those two classes and considerably outperforms noisy-or on the difficult Fox
dataset. Note also, that its theoretical advantage of being able to handle variably
sized bags does not apply for these datasets, since the bags are of equal size.

Table 1. Results of various MIL algorithms on the standard MIL datasets CBIR and
Musk1&2. MILBoost outperforms all other methods on CBIR, with MILBoost Lp pro-
ducing the best overall performance. The best performance for each dataset is marked
in bold, second best in italics.

Tiger Elephant Fox Musk1 Musk2

sbMIL [2] 82.95 88.58 69.78 91.78 87.40

NSK [13] 79.07 82.94 64.01 85.61 90.78

MI-SVM [1] 84.00 81.40 59.40 81.50 86.30

mi-SVM [1] 78.90 82.20 58.20 87.40 83.60

MI-CRF [5] 78.90 82.20 58.20 77.90 84.30

PPMM [20] 80.20 82.00 60.30 95.60 81.20

MICA [12] 82.00 82.50 62.00 84.40 90.50

ALP-SVM [14] 86.00 83.50 66.00 86.30 86.20

MILBoost n-or 91.70 93.43 65.72 81.98 81.92

MILBoost Lp 89.79 91.82 71.80 81.98 81.87

4 Face Recognition from Videos

In the following we demonstrate our method for face recognition from associated
information sources on the publicly available part of the Buffy dataset proposed
by Everingham et al. [7]2. It consists of 27504 individual frontal face detections
and additionally provides face descriptions and face tracks. Faces are described
by normalized pixel patches extracted at salient facial feature points, which are
localized by a Pictorial Structures model [9]. Within a shot face detections (in
individual frames) are grouped into face tracks by motion information. Hence,
the task is to assign the correct cast name to each of the 516 face tracks. The
cast list of the ground truth annotation consists of 11 named entities, the class
other and false positive of the detection process. For each cast member we train
a one-vs.-all classifier.

To automatically obtain training labels, we exploit information sources closely
associated to the video, namely transcript and subtitles, both containing the di-
alogs. The transcript additionally provides naming information and embraces
scenes with a textual description of what is happening. From the transcript we

2 The more recent “Buffy” dataset [18] is not publicly available.
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extract the coarse scene structure. Further, to augment the transcript with the
timing information it is aligned with the subtitles by dynamic time warping.
Thus, we now know who is speaking when but neither if the speaker is visible
or to which face the current utterance belongs.

We use these cues to compose training bags. A bag consists of one or more
face tracks and an associated label. First, we form speaker bags. To judge if a
person is speaking we observe the optical flow [21] around the mouth region.
Tracks identified as speaking are assigned the label of the current speaker from
the augmented transcript. Second, we define scene bags that contain all face
tracks present in a scene. The idea is to decide if a certain character is likely
to appear in a particular scene or not, dependent on the number of spoken text
chunks. To finally test the labeling performance, each face track forms a singleton
bag. Testing is done standalone based on pure face appearance and does not need
additional information.

Compliant with previous work we measure the performance in a refusal to
predict style. By taking the difference of the leading two classifier scores a confi-
dence is obtained. Further, we rank and threshold the confidences. In that sense,
recall means the percentage of face tracks which have a higher confidence than
the current threshold and thus are labeled. Precision means the ratio of correctly
labeled samples. We first report the performances of the different models for the
bag posterior probabilities on this task. The comparison is shown in Table 2,
where it can be seen that, as expected, PLp

outperforms PNOR over most levels
of recall, especially for higher recall values. Thus, for the succeeding experiments
we just use the PLp

bag posterior.

Table 2. Performance comparison of the different models for the posterior probability
of a bag. PLp outperforms PNOR over most levels of recall.

Recall 50% 60% 70% 80% 90% 100%

PLp 91,5% 90,9% 88,7% 86,3% 81,8% 77,7%

PNOR 91,5% 90,6% 86,5% 83,9% 78,5% 73,8%

Next, in Figure 2 we compare our method with previous work [7, 8]. Ever-
ingham et al. proposed to classify each track based on the min-min distance to
the tracks labeled by the speaker detection. The min-min distance df (Fi, Fj)
between two face tracks Fi and Fj is defined as:

df (Fi, Fj) = min
fi∈Fi

min
fj∈Fj

‖fi − fj‖ , (20)

where fi ∈ Fi and fj ∈ Fj are face descriptions. This method is denoted as
NN. For comparison, we also include the original curve from [7]. Please note
that this method makes use of additional clothing descriptors and a different
speaker detection, not provided with the published dataset. As reference we also
state the performance of labeling all face tracks with the cast name appearing
most frequently in the transcript (Prior on Buffy). Further, also the performance
of using the aligned subtitles to propose a name is reported. With the speaker
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Fig. 2. Buffy dataset: (a) MIL-Lp clearly outperforms the baseline (NN) over all levels
of recall. Subtitles describe further baseline methods, see text for details. (b) The
associated confusion matrix.

detection we can label 33.4% of the tracks with a precison of 89.0%. Please note
that the baseline method provides no means for ranking the tracks detected as
speaking. Therefore, the curve is constant for the first levels of recall. Due to the
nearest neighbor classification the baseline method has no real chance to recover
from labeling errors. Label noise propagates directly into the classification. If
the method is required to label all face tracks a precision of 60.1% is reached.
MIL clearly outperforms the baseline method over all levels of recall. At 100%
recall the precision is 77.7%. This is an improvement of 17.6% over the baseline.
Indeed, the method even delivers a higher precision than the speaker detection
up to a recall level of 65%. It labels nearly twice as many face tracks with an
accuracy of 89%. This shows clearly the ability of MIL to recover from labeling
errors.

5 Conclusion

In this work we presented the task of face recognition in weakly labeled videos
as Multiple Instance Learning problem. We formulated the MIL concept in a
probabilistic loss function and optimized it in a Gradient Boosting framework.
The new formulation of the posterior probabilities of the bags using the Lp-norm
allows us to better deal with bags of varying size, as the comparison with noisy-
or confirmed. The evaluation on standard machine learning data shows excellent
results for the learning algorithm. Further, the task of face recognition in videos
verified that it is able to benefit from ambiguous and even noisy data. This can
be attributed to the design of the loss function, based on Logit. It gives penalties
for misclassifying training samples, but does not exaggerate the influence of very
wrong classifications to avoid over-fitting to potentially noisy labels.
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