
Optimizing 1-Nearest Prototype Classifiers

Paul Wohlhart, Martin Köstinger, Michael Donoser, Peter M. Roth, Horst Bischof
Institute for Computer Vision and Graphics, Graz University of Technology, Austria

{wohlhart,koestinger,donoser,pmroth,bischof}@icg.tugraz.at

Abstract

The development of complex, powerful classifiers and
their constant improvement have contributed much to the
progress in many fields of computer vision. However, the
trend towards large scale datasets revived the interest in
simpler classifiers to reduce runtime. Simple nearest neigh-
bor classifiers have several beneficial properties, such as
low complexity and inherent multi-class handling, however,
they have a runtime linear in the size of the database. Re-
cent related work represents data samples by assigning
them to a set of prototypes that partition the input feature
space and afterwards applies linear classifiers on top of
this representation to approximate decision boundaries lo-
cally linear. In this paper, we go a step beyond these ap-
proaches and purely focus on 1-nearest prototype classifi-
cation, where we propose a novel algorithm for deriving op-
timal prototypes in a discriminative manner from the train-
ing samples. Our method is implicitly multi-class capable,
parameter free, avoids noise overfitting and, since during
testing only comparisons to the derived prototypes are re-
quired, highly efficient. Experiments demonstrate that we
are able to outperform related locally linear methods, while
even getting close to the results of more complex classifiers.

1. Introduction
Over the last decade we have seen an impressive progress

in important fields of computer vision like image clas-
sification and object detection, which is mainly a result
of developments in supervised machine learning and the
steadily growing amount of available training data. Large-
scale datasets for effectively training classifiers have al-
ready proven to be quite beneficial in several contexts. For
example, the seminal work on using random forest classi-
fiers on single depth images for estimating human poses
(Microsoft KinectTM) [15] heavily exploits a huge set of
synthetically generated human pose depth images during
training. Also, the recent advances on the PASCAL visual
object recognition challenge can largely be attributed to the
steady increase in training database sizes [19].

Since powerful classifiers such as non-linear kernel Sup-
port Vector Machines (SVMs) have shown excellent perfor-
mance in diverse computer vision applications it seems to
be a natural choice to directly apply them to the available
large-scale datasets. Unfortunately, such non-linear kernel
classifiers are in general computationally too expensive for
applications in large-scale settings. For this reason, explicit
feature mappings have been proposed that approximate spe-
cific kernels in a linear manner. For example in [11] an
approximation of the popular intersection kernel was de-
scribed. This approach was then generalized to the set of
homogeneous, additive kernels (including the intersection
and chi-squared kernel) in [16]. Nevertheless, not all ker-
nels can be approximated in such a manner. Furthermore,
optimal classification decision boundaries do not necessar-
ily exhibit the structure as defined by a kernel.

On the contrary, linear classifiers are fast enough to be
applicable in large-scale scenarios, especially due to recent
developments in efficiently solving the corresponding opti-
mization problem. For example, in [14] a stochastic gra-
dient descent approach for solving the optimization prob-
lem of linear SVMs was introduced, where the total run-
time does not directly depend on the size of the training set.
The approach also extends to non-linear kernels by solely
working on the primal, nevertheless, in these cases runtime
scales linearly with training set size.

Unfortunately, a global, linear model is seldom power-
ful enough to separate the data. For this reason, locally
linear classifiers have been attracting a lot of attention re-
cently. The core idea of these methods is to define the op-
timal decision boundary by locally linear approximations
that are defined on prototypes. These prototypes (or anchor
points) reside in the same space as the input data points and
the classifier is then trained and evaluated in the context of
a local neighborhood around them. A recent example for
such a classifier is the Locally Linear SVM (LL-SVM) pro-
posed in [9], where the non-linear decision boundary is ap-
proximated with many linear SVMs. Data points are soft-
assigned to anchor points identified by k-means and SVM
parameters are jointly learned in a common optimization
problem. This can be solved by stochastic gradient descent,

with the same convergence guarantees as for standard, lin-
ear SVMs. In a related work a multi-class classifier denoted
as Parametric Nearest Neighbor (PNN) and its ensemble ex-
tension (EPNN) was proposed [18]. The core idea is to em-
bed data points into a new feature space, again defined by
soft assignments to prototypes, and to learn a linear max-
margin classifier on this new representation. An iterative
method is introduced, that alternately optimizes the proto-
types and then the classifier parameters. Interestingly, rea-
sonable performance is only obtained when the optimiza-
tion is not run until convergence and an ensemble of such
base classifiers is formed.

The necessity for large-scale classification has in gen-
eral led to a comeback of non-parametric classifiers like
the nearest neighbor algorithm. Nearest neighbor classi-
fiers have several interesting properties: (a) they allow im-
plicit multi-class decisions and naturally handle even a huge
number of classes, (b) they, in general, avoid overfitting,
which is important to obtain reasonable classification ac-
curacy and (c) they do not require any training effort. For
example, in [1] it was shown that for Bag-of-words based
image classification, simple adaptations in the visual word
quantization and in the image-to-image distance calculation
are sufficient to achieve state-of-the-art results using a sim-
ple nearest neighbor method as subsequent classifier.

Nearest neighbor classification especially shows promis-
ing performance in combination with metric learning (e.g.,
[17]), where the assignment to the nearest neighbors is
based on a Mahalanobis distance metric instead of the com-
mon Euclidean distance. In general, such methods aim at
improving the nearest neighbor classification, e.g., by en-
suring that all k-nearest neighbors belong to the same class,
whereas examples from differing classes should be sepa-
rated by a large margin. In such a way, these methods are
a counterpart to max-margin classifiers like SVMs, where
nearest neighbor assignments replace the weighted sum of
(kernelized) distances to support vectors.

An interesting way to further reduce the complexity of
nearest neighbor classifiers is to constrain the analysis to
selected prototypes, instead of considering all training data
samples during testing. Obviously, performance is heav-
ily depending on a reasonable selection of the prototypes.
Finding optimal prototypes from labeled data has a long his-
tory, where methods are in general referred to as Learning
Vector Quantization (LVQ). This field was initiated by the
seminal work of [8], where a heuristic was used to move
prototypes close to training samples of the same class and
away from other classes. The method was later adapted
in [13], where the problem was formulated as an optimiza-
tion problem maximizing the likelihood ratio between the
probability of correct classification and the total probabil-
ity in a Gaussian Mixture Model (each prototype is repre-
sented as a Gaussian). In [3] a supervised vector quantiza-

tion based on max-margin principles was introduced and it
is demonstrated that the original LVQ [8] represents a spe-
cific instance of the proposed framework. Remarkably, the
authors demonstrate that prototype based classification is
even able to outperform nearest neighbor classification us-
ing all training data due to improved generalization proper-
ties caused by a reduction of over-fitting to noise.

In this paper, we address large-scale classification by a
prototype based nearest neighbor approach. We aim to go
beyond the most related methods of [9, 18], where local
codings based on prototypes are used in a subsequently ap-
plied classifier, by completely focusing on the most simple
variant: a 1-nearest neighbor (NN) algorithm. Instead of
considering all N training samples in the 1-NN algorithm
as done in [8, 13, 3], we aim at discriminatively deriving a
small, optimal set of P prototypes with P � N and base
our classification decision completely on the single label of
the nearest neighbor within this prototype set.

To reach this goal, we present a differentiable probabilis-
tic relaxation of 1-NN classification, based on soft assign-
ments of samples to prototypes, that can be optimized us-
ing gradient descent. It has one parameter controlling the
softness of the assignment. Letting this parameter go to in-
finity leads to pure 1-NN classification. Thus, in contrast
to related methods, we can provide discriminative proto-
types directly optimized for subsequent pure 1-NN classi-
fication, by gradually decreasing the softness of the assign-
ment while optimizing the prototypes.

Our method exhibits the same advantages as standard
prototype based nearest neighbor classification: (a) It is pa-
rameter free, (b) it is implicitly able to handle large numbers
of classes, (c) it avoids over-fitting to noise and generalizes
well to previously unseen samples as also demonstrated in
the experiments, and (d) it has very low computational costs
during testing, since only distances to the P prototypes have
to be evaluated (with possible further improvements using
fast nearest neighbor assignment methods like KD-trees).
In thorough experiments, we demonstrate that our discrim-
inatively learned prototypes consistently outperform the k-
means baseline, even with very low numbers of prototypes.
Furthermore, we show that already a very small number of
prototypes is sufficient to obtain reasonable classification
accuracy on several datasets. Our method naturally allows
to integrate learned Mahalanobis metrics like [17]. How-
ever, we show that by learning the prototypes in the pro-
posed discriminative manner, learning Mahalanobis metrics
becomes less important.

The outline of the paper is as follows. We first show
in Section 2, how to relax the 1-nearest neighbor classifi-
cation to a soft-max variant, which then allows to find the
prototypes using gradient descent by minimizing the empir-
ical risk of misclassification over the entire training dataset.
We derive formulations for the exponential and the hinge

loss, and discuss possible influences on the results. Sec-
tion 3 gives illustrative results on toy examples, as well as
a thorough comparison to state-of-the-art on three standard
classification datasets.

2. Method
Given a training set T with labeled samples (xi, yi),

where xi ∈ Rd and yi ∈ {−1, 1}, the goal is to define
a classifier f(x) = y that correctly classifies test sam-
ples from the same distribution. As discussed before, to
reduce the model complexity and the test time, our pro-
posed classifier is a prototype based 1-nearest neighbor al-
gorithm. We aim at deriving discriminative, labeled pro-
totypes (pj , θj) ∈ P, pj ∈ Rd, θj ∈ {−1, 1}, that are
optimized for simple 1-nearest neighbor classification:

f(x) = θk, where k = arg min
j
||x− pj || . (1)

To get an optimal classifier, the prototypes pj must be
arranged such as to minimize the empirical risk of misclas-
sification. Thus, we formulate the optimization of the pro-
totypes as a gradient descent on a loss function over the
training examples. Since the original formulation of 1-NN
shown in Eq. (1) is not differentiable, we relax the hard as-
signment of samples to prototypes to a soft-max formula-
tion over sample similarities (i.e., soft-min over distances).
The following sections describe the setup of the relaxed
classifier.

2.1. Classifier

Given the set of optimized prototypes, we define the clas-
sifier as the weighted sum of the prototypes’ labels:

f(x) =

|P|∑
j=1

θjwj(x) . (2)

The weights are defined by a soft-max over the similari-
ties between input sample x and prototypes pj :

wj(x) =
s(x, pj)

γ∑|P|
k=1 s(x, pk)

γ
, (3)

where s(x1, x2) is the similarity of samples x1 and x2,
and γ controls the degree of softness in the assignment,
which will be discussed in Sec. 2.2. The weights for all
prototypes for one training sample sum up to 1, i.e., ∀x :∑|P|
j=1 wj(x) = 1, resulting in a probabilistic output for the

overall classifier.
The similarity of two samples is defined as the negative

exponential of the distance between the samples:

s(x1, x2) = exp(−d?(x1, x2)) , (4)

where d? is a distance and typically chosen to be the squared
Euclidean distance:

deuc(x1, x2) = ||x1 − x2||2 . (5)

Inspired by the recent developments in metric learning,
we also consider learned Mahalanobis distance metrics M
to define the distances between samples:

dmetric(x1, x2) = (x1 − x2)
T
M(x1 − x2) . (6)

In practice, we do not use dmetric directly, but decompose
M into M = LTL and project the input features x onto L
by x̂i = Lxi. In this way, we can again use the Euclidean
distance to measure distances in the transformed space.

2.2. Choosing γγγ

Notice, if γ is set to infinity (or a very high value in prac-
tice) when calculating the weights in Eq. (3), every sample
gets assigned a weight of 1 only for its closest prototype.
Thus, in the soft-max classifier shown in Eq. (2) the sample
is directly assigned the label of its closest prototype, exactly
as in the original 1-NN formulation. With lower values of
γ more weight is given to the next closest prototypes and
more distant interactions are established, until for γ = 0 all
locality vanishes and the result of a classification is just the
prior distribution of the training labels. This indicates that
the choice of γ essentially influences the results.

We would like to emphasize that the soft-max classifier
defined in the previous section is only used as a surrogate
for our finally applied classifier. The discriminatively de-
rived prototypes are then supposed to be used in 1-NN clas-
sification, as in Eq. (1). If we were sacrificing the benefit
of the simple 1-NN classification and looking for an opti-
mal soft-max classifier as defined in Eq. (2), we would also
need to optimize for γ.

However, for our goal of defining an effective 1-NN clas-
sifier, we consider an iterative approach, where we start with
a low value for γ. In this way, we allow more than one pro-
totype to have influence on a sample, and thus vice versa,
let each sample have influence on more than one prototype.
For the current γ-value, we derive optimal prototypes using
a gradient descent approach as outlined in the next section.
Then, in each iteration, we gradually increase γ and again
optimize the prototypes, until virtually all samples are only
influenced by a single prototype, arriving at pure 1-NN clas-
sification. In such a way, we can avoid local minima result-
ing from overfitting.

In practice, we initialize γ such that the difference be-
tween the highest and the second highest prototype weight
is less than 0.5 for at least 80% of the training samples. We
then increase γ until for every training sample there is sig-
nificant weight for only a single prototype (i.e., the sum over

all other weights drops below a very low threshold), but cal-
culation of the weights is still numerically stable. As inter-
mediate steps we interpolate 10 values between the lowest
and the highest value on a logarithmic scale.

2.3. Empirical loss over training data

In order to optimize the prototypes with gradient descent,
we need to design a derivable loss function, measuring the
quality of the output of the current probabilistic classifier
setup. Given the definition of the classifier, the loss over all
training samples is defined by

L(T ,∆?) =

|T |∑
i=1

∆?(f(xi), yi) , (7)

where ∆? is a function measuring the loss of the classifi-
cation outcome. In particular, we apply two types of loss
functions, namely the exponential loss

∆exp(f(xi), yi) = exp (−yif(xi)) (8)

and the hinge loss

∆hinge(f(xi), yi) = max(0, δ − yif(xi)) , (9)

which is more robust to outliers, where with δ the margin
can be adjusted. Due to the probabilistic formulation of our
classifier, an output of more than 0.5 for the correct class
means that no other class can have a larger value and δ can
be adjusted to preserve a margin but not to overfit. A hinge
loss formulation was also used in [18].

2.4. Derivatives w.r.t. prototypes

In order to perform the gradient descent, we need the
derivatives w.r.t. the prototype vectors. Since we have dif-
ferent choices at some parts of the formulation, we show the
partial derivative for each component individually in Fig-
ure 1.

2.5. Multiclass

For notational convenience we have only discussed bi-
nary classification up to this point. In the case of multi-
class classification tasks with C classes we adopt a lifted
formulation and extend training and prototype labels to vec-
tors yi, θj ∈ {−1, 1}C (i.e., yi = (yi,1, . . . , yi,C)), where
yi,ci = 1 for a sample xi of class ci and all other entries
are −1. The overall classifier then takes the max over the
predictions for each class

F (x) = arg max
c

fc(x) , (19)

where fc(x) =
∑|P|
j=1 θj,cwj(x).

Total Loss

∂L(T ,∆?)

∂pl
=

|T |∑
i=1

∂∆?(f(xi), yi)

∂pl
(10)

Loss Functions

∂∆exp(f(xi), yi)

∂pl
= −yi exp(−yif(xi))

∂f(xi)

∂pl
(11)

∂∆hinge(f(xi), yi)

∂pl
=

{
−yi ∂f(xi)

∂pl
if yif(xi) < δ

0 otherwise
(12)

Classifier

∂f(xi)

∂pl
=

|P|∑
j=1

θj
∂wj(xi)

∂pl
(13)

Weights

∂wj(xi)

∂pl
=
γwj(xi)

s(xi, pj)

∂s(xi, pj)

∂pl
− (14)

− γwj(xi)

s(xi, pl)
wl(xi)

∂s(xi, pl)

∂pl
(15)

Similarities

∂s(xi, pj)

∂pl
= −s(xi, pj)

∂d?(xi, pj)

∂pl
(16)

Distances

∂deuc(xi, pj)

∂pl
=

{
−2(xi − pl) if l = j

0 else
(17)

Using the Euclidean distance d? = deuc, the derivation of
the classifier w.r.t. the prototypes thus reduces to

∂f(xi)

∂pl
= 2γwl(xi)(xi − pl) (θl − f(xi)) . (18)

Figure 1. Partial derivatives for each individual part of the classifi-
cation loss w.r.t prototype locations, as needed for the optimization
with gradient descent.

The multi-class loss is then defined as the sum over the
losses for each individual class:

L(T ,∆?) =

C∑
c=1

Lc(T ,∆?) , (20)

where Lc(T ,∆?) =
∑|T |
i=1 ∆?(fc(xi), yi,c).

We also considered a formulation that optimizes the mar-
gin between the classification of the target class and the out-

put for the most confident non-target class for each sample,
instead of the output for all classes:

L(T ,∆?) =

|T |∑
i=1

∆?(fci(xi), yi,ci)+max
cj 6=ci

∆?(fcj (xi), yi,cj) .

(21)
Such a formulation was chosen in [18]. However, although
this formulation yields meaningful results on toy examples,
it consistently produced considerably worse result than the
formulation in Eq. (20) on real world data, which is why we
excluded it from further considerations.

3. Experiments
We first outline characteristics of our proposed method

for selecting optimal prototypes for 1-NN classification on
two toy examples in Section 3.1. Then, Section 3.2 pro-
vides a thorough quantitative comparison of our algorithm
to related work on real world computer vision datasets.

In all experiments, we initialize our method using proto-
types defined by applying k-means clustering for each class
individually. We also experimented with taking a random
subset of the training data as initial prototypes. This usu-
ally leads to similar results, but is more susceptible to local
minima, especially if modes of the distribution do not get
a nearby, initial prototype. In contrast, k-means initializa-
tion ensures a certain coverage of the training sample distri-
bution. Starting from the k-means initialization, we apply
our iterative prototype updating as described in the previ-
ous section using the non-linear conjugate gradient descent
method (ncg) from the Poblano Toolbox [4]. Our final clas-
sifier is then defined by using the obtained prototypes in a
1-NN assignment strategy, as defined in Eq. (1).

3.1. Illustrative toy examples

We illustrate how prototypes evolve during our optimiza-
tion for two 2D toy examples, namely a dataset consisting of
three classes with multimodal distributions and a dataset of
10 classes with regular structure. Figures 2 and 3 show pro-
totypes and the consequently emerging decision surfaces for
1-nearest neighbor classification using either the exponen-
tial or the hinge loss during our iterative prototype update
method. Results are shown starting from k-means cluster-
ing and updating until convergence (Fig. 2(a)-2(e) and 3(a)-
3(e)). Additionally, we illustrate classification performance
on train and test data during optimization (Fig. 2(f)-(g) and
3(f)-(g)), where the x-axis represents the value of γ used to
optimize the prototypes in the current iteration of the algo-
rithm, the y-axis represents values of γ used in the soft-max
over similarities, and the height of the mesh reflects the cor-
responding classification accuracy.

Note that the decision surfaces become much smoother
during prototype evolution and that overfitting, prevalent for

the initial k-means clustering, is drastically reduced. The
hinge loss smoothes the decision boundary more than the
exponential loss, where for higher values of γ the deci-
sion boundaries tend to fit more around single samples that
are scattered into areas that are more densely populated by
samples from differing classes. Note also the very differ-
ent configuration of the finally obtained prototypes for the
two different loss functions. Generally, with the hinge loss
the prototypes tend to be grouped together to more generic
locations, whereas with the exponential loss prototypes dis-
tribute more to also capture instances in low density areas.
Whether this is beneficial depends on the distribution and
especially separability of the data. The difference is also
reflected in the performance plots, which show steadily in-
creased training accuracy for increasing γ values in both
cases, but a slight breakdown in the test accuracy for the
exponential loss. However, the performance is still better
compared to the k-means initialization.

3.2. Image classification

We evaluate our method on three widely used classifica-
tion datasets, each providing sufficient training samples per
class, such that a reduction to a small set of discriminative
prototypes really pays off.

The first database is USPS [7], which contains 7291
training and 2007 test gray-scale images of the digits ’0’
to ’9’, stored with a resolution of 16× 16 pixels. Addition-
ally, we test on the LETTER database [6], which contains
16000 training and 4000 testing images of the letters ’A’ to
’Z’. Each of them is represented by a 16 dimensional fea-
ture vector. Finally, we also evaluate on MNIST [10]. It
contains 60000 training and 10000 test gray-scale images
of the digits ’0’ to ’9’ with a resolution of 28 × 28 pixels.
For MNIST we took the publicly available data from [12]
and LETTER and USPS are taken from [9].

We list classification errors on these three datasets for all
variants of our method in comparison to related work in Ta-
ble 1. Our proposed Nearest Prototype Classifier (NPC)
with exponential loss is denoted by NPC-e and with hinge
loss NPC-h. We show results for different numbers k of
prototypes per class. For example, a value of k = 15 means
a reduction to 0.25% of the number of available training
samples for MNIST, 2.06% for USPS and 2.4% for LET-
TER. Table 1 further shows results if using a learned global
Mahanalobis metric obtained by applying LMNN [17] in-
stead of standard Euclidean distances. Additionally, the ta-
ble outlines results for the most related state-of-the-art ap-
proaches [9, 18], as well as linear and RBF-kernel SVMs.

Discussion As can be seen in Table 1 our proposed Near-
est Prototype Classifier (NPC) achieves highly competitive
error rates in comparison to related state-of-the-art methods
although solely relying on simple prototype based 1-nearest

(a) init k-means (b) exp loss, iteration 1 (c) exp loss, final (d) hinge loss, iteration 1 (e) hinge loss, final

init 12.89
29.6

68.01
156.25

9.77
17

29.6
51.54

89.74
156.25

0.96

0.98

1

gamma opt
gamma eval init12.89

29.6
68.01

156.25

9.77
17

29.6
51.54

89.74
156.25

0.92

0.94

0.96

0.98

gamma opt
gamma eval

(f) train (left) and test (right) accuracy, exp loss

init 12.89
29.6

68.01
156.25

9.77
17

29.6
51.54

89.74
156.25

0.96

0.98

1

gamma opt
gamma eval init12.89

29.6
68.01

156.25

9.77
17

29.6
51.54

89.74
156.25

0.92

0.94

0.96

0.98

gamma opt
gamma eval

(g) train (left) and test (right) accuracy, hinge loss

Figure 2. Evolution of prototypes during learning on a 2D toy example with 3 classes. Crosses denote samples, circles are prototypes.

(a) init, k-means (b) exp loss, iteration 1 (c) exp loss, final (d) hinge loss, iteration 1 (e) hinge loss, final

init 6.91
19.53

55.24
156.25

4.88
9.77

19.53
39.06

78.13
156.25

0.75

0.8

gamma opt
gamma eval init 6.91

19.53
55.24

156.25

4.88
9.77

19.53
39.06

78.13
156.25

0.7

0.75

0.8

gamma opt
gamma eval

(f) train (left) and test (right) accuracy, exp loss

init 6.91
19.53

55.24
156.25

4.88
9.77

19.53
39.06

78.13
156.25

0.76

0.78

0.8

0.82

gamma opt
gamma eval init 6.91

19.53
55.24

156.25

4.88
9.77

19.53
39.06

78.13
156.25

0.7

0.75

0.8

gamma opt
gamma eval

(g) train (left) and test (right) accuracy, hinge loss

Figure 3. Same as in Figure 2 for a 10 class toy example. Each of the classes if defined by a single Gaussian. However the different
Gaussians overlap significantly, such that samples of individual classes get scattered into the area of the neighboring ones.

k dist method USPS Letter MNIST

all euc 1-nn 5.08 4.35 2.43
lmnn 1-nn 5.03 2.92 2.38

15 euc k-means 7.67 13.75 4.98
NPC-h 6.23 4.77 2.24
NPC-e 5.38 3.13 2.11

lmnn k-means 6.43 7.40 5.08
NPC-h 5.73 4.33 2.55
NPC-e 5.43 3.20 2.22

30 euc k-means 6.88 8.23 4.15
NPC-h 5.78 4.33 2.18
NPC-e 4.98 3.43 1.72

lmnn k-means 5.98 5.25 4.17
NPC-h 6.03 3.25 2.32
NPC-e 5.33 3.00 1.84

50 euc k-means 6.38 6.55 3.50
NPC-h 5.73 4.70 1.89
NPC-e 4.58 3.35 1.57

lmnn k-means 5.68 4.35 3.48
NPC-h 5.33 3.95 2.09
NPC-e 5.28 2.70 1.76

100 euc k-means 5.23 5.83 3.11
NPC-h 5.68 4.37 1.87
NPC-e 4.98 2.85 1.69

lmnn k-means 5.43 3.67 2.99
NPC-h 5.78 2.93 1.80
NPC-e 5.03 2.55 1.61

40 PNN [18] 7.87 6.59 3.13
800 EPNN [18] 4.88 2.90 1.65

LL-SVM [9] 5.78 5.32 1.85
LIBSVM-RBF [2] 4.58 2.12 1.36
Linear SVM [5] 8.32 23.63 8.18

Table 1. Comparison of all variants of our method and related work
on USPS, LETTER and MNIST. All numbers are percentages of
the classification error. The scores of the best setting per database
for our algorithm are marked bold.

neighbor classification. In general, using our learned pro-
totypes consistently outperforms the baseline, where proto-
types are defined by k-means clustering results. In several
cases (e.g. USPS, NPC-e, k=50) our nearest prototype clas-
sifier even outperforms 1-NN classification using all train-
ing data samples, although only a few discriminative proto-
types are considered (e.g., for k = 50 only 7% of the number
of training samples of USPS). This clearly demonstrates the
ability of our method to identify powerful prototypes in a
discriminative manner, while reducing overfitting to noise
and improving generalization properties.

As opposed to the simple 2D toy examples, the exponen-
tial loss generally performs a bit better than the hinge loss.
Apparently, for this kind of data and the relatively low num-

ber of prototypes, it is more important to better fit to all the
data and overfitting is not so much of an issue.

The effect of using the learned distance metric instead of
Euclidean distances on the classification error varies over
the different settings. When using all training samples or
the initial k-means prototypes for the 1-NN classification,
the learned metric performs consistently better. Neverthe-
less, if using our discriminatively learned prototypes, the
plain Euclidean distance shows better performance, espe-
cially when the number of learned prototypes is low.

Compared to state-of-the-art methods our Nearest
Neighbor Classifier (NPC) delivers highly competitive re-
sults. Already with only 15 prototypes, it consistently out-
performs PNN [18], which uses 40 prototypes per class. If
using 50 prototypes, we also improve over the ensemble
version EPNN [18], which uses 800 prototypes (40 per class
× 20 weak classifiers). This might be devoted to the more
discriminative nature of our prototypes. In comparison to
LL-SVM [9], our method also performs better starting from
k = 15 on USPS and LETTER, and k = 30 for MNIST.
LL-SVM relies on only 100 anchor-points in total (not per
class), but afterwards has to re-evaluate a weighted sum
over multiclass SVMs at runtime. Additionally, as shown
in [9], increasing the number of anchor points does not fur-
ther improve the results of LL-SVM.

Using our best setup, NPC even gets close to classi-
fication error rates of significantly more complex models
(in terms of test time operations) such as non-linear ker-
nel SVMs. For example, if using 50 prototypes per class,
Euclidean distances and the exponential loss we reach the
same performance as a multiclass SVM with RBF kernel
on the USPS dataset. On the other two datasets, results are
in close range (using LMNN for the LETTER database).

3.3. Visualization of learned prototypes

Since the input to our classifier is a vector represen-
tation of raw pixel values, it is also possible to visualize
the learned prototypes in comparison to standard k-means
results. Figure 4 visualizes obtained prototypes for the
MNIST dataset, where the discriminatively identified pro-
totypes are sorted per class in descending importance, ana-
lyzing the sum of weights assigned by the training samples.
As can be seen, prototypes obtained by k-means clustering
purely capture generative aspects of different modes of the
training data, while our learning approach adds discrimina-
tive information. For example, around the strokes of the
individual symbols, as well as in the center of the digit “0”,
there must not be other scribbles. Our prototypes reflect this
by featuring negative values in those areas, with the purpose
of increasing the distance to samples of other classes. This
effect is also more pronounced than in [18], most likely be-
cause we let the optimization procedure converge to a min-
imum instead of stopping after a single iteration.

(a) initial prototypes (b) learned discriminative prototypes

Figure 4. Samples of some of the prototypes for MNIST (a) ini-
tialized by k-means and (b) learned with our algorithm. Intensity
levels are scaled such that 0 is grey, lighter pixels are positive and
darker negative.

4. Conclusion

Prototype based 1-nearest-neighbor (NN) classification
is one of the simplest and fastest supervised machine learn-
ing methods. In this paper we showed that by a probabilistic
relaxation of the 1-NN classification into a soft-max formu-
lation, we are able to derive optimal prototypes by gradient
descent in a discriminative manner. Since during testing we
only have to evaluate distances to the few prototypes ob-
tained, our proposed method is highly efficient, where a fur-
ther speedup would be possible using approximated nearest
neighbor methods like KD-trees. We further demonstrated
in the experiments that based on our properly learned set
of discriminative prototypes, we can achieve state-of-the-
art results on challenging datasets, even getting close to the
performance of significantly more complex classifiers like
non-linear kernel SVMs.

Additionally, we have noticed that, when starting with a
setting considering more long range interactions, prototypes
tend to group together at generic locations. This motivates
further research on how to start with a rather high number
of prototypes and select the best ones afterwards. Addition-
ally, it would be interesting to build an anytime algorithm,
by ranking prototypes by importance, such that during test-
ing the distance calculation could begin at the most impor-
tant ones and stop after a time budget is used up, always
giving the best possible classification up to that point.

Acknowledgement. This work was supported by the Austrian Sci-
ence Foundation (FWF) project Advanced Learning for Tracking
and Detection in Medical Workflow Analysis (I535-N23), the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement n◦ 601139 (CultAR) and by the Austrian
Research Promotion Agency (FFG) project FACTS (832045).

References
[1] O. Boiman, E. Shechtman, and M. Irani. In defense

of Nearest-Neighbor based image classification. In Proc.
CVPR, 2008.

[2] C.-C. Chang and C.-J. Lin. LIBSVM: A library for sup-
port vector machines. ACM Trans. on Intelligent Systems
and Technology, 2:27:1–27:27, 2011.

[3] K. Crammer, R. Gilad-bachrach, A. Navot, and N. Tishby.
Margin analysis of the LVQ algorithm. In Advances NIPS,
2002.

[4] D. M. Dunlavy, T. G. Kolda, and E. Acar. Poblano v1.0:
A matlab toolbox for gradient-based optimization. Techni-
cal Report SAND2010-1422, Sandia National Laboratories,
Albuquerque, NM and Livermore, CA, Mar. 2010.

[5] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. LIBLINEAR: A library for large linear classification.
JMLR, 9:1871–1874, 2008.

[6] P. W. Frey and D. J. Slate. Letter recognition using holland-
style adaptive classifiers. Machine Learning, 6(2):161–182,
1991.

[7] J. Hull. A database for handwritten text recognition research.
IEEE Trans. on PAMI, 16(5):550–554, May 1994.

[8] T. Kohonen. Self-organization and associative memory.
Springer-Verlag, New York, 1989.

[9] L. Ladicky and P. H. S. Torr. Locally linear support vector
machines. In Proc. ICML, 2011.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, Nov 1998.

[11] S. Maji, A. C. Berg, and J. Malik. Classification using inter-
section kernel support vector machines is efficient. In Proc.
CVPR, 2008.

[12] D. Ramanan and S. Baker. Local distance functions: A tax-
onomy, new algorithms, and an evaluation. IEEE Trans. on
PAMI, 33:794–806, 2011.

[13] S. Seo and K. Obermayer. Soft learning vector quantization.
Neural Computation, 2002.

[14] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-
mal estimated sub-gradient solver for svm. In Proc. ICML,
2007.

[15] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake. Real-time human
pose recognition in parts from single depth images. In Proc.
CVPR, 2011.

[16] A. Vedaldi and A. Zisserman. Efficient additive kernels via
explicit feature maps. IEEE Trans. on PAMI, 34(3), 2011.

[17] K. Weinberger and L. Saul. Distance metric learning for
large margin nearest neighbor classification. JMLR, 10:207–
244, 2009.

[18] Z. Zhang, P. Sturgess, S. Sengupta, N. Crook, and P. H. S.
Torr. Efficient discriminative learning of parametric nearest
neighbor classifiers. In Proc. CVPR, 2012.

[19] X. Zhu, C. Vondrick, D. Ramanan, and C. C. Fowlkes. Do
we need more training data or better models for object detec-
tion? In Proc. BMVC, 2012.

