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Abstract. In this paper, we introduce a formulation for the task of
detecting objects based on the information gathered from a standard
Implicit Shape Model (ISM). We describe a probabilistic approach in a
general random field setting, which enables to effectively detect object
instances and additionally identifies all local patches contributing to the
different instances. We propose a sparse graph structure and define a
semantic label space, specifically tuned to the task of localizing objects.
The design of the graph structure then allows to define a novel infer-
ence process that efficiently returns a good local minimum of our energy
minimization problem. A key benefit of our method is, that we do not
have to fix a range for local neighborhood suppression, as necessary for
instance in related non maximum suppression approaches. Our inference
process implicitly is capable to separate even strongly overlapping ob-
ject instances. Experimental evaluation compares our method to state-
of-the-art in this field on challenging sequences showing competitive and
improved results.

1 Introduction

Localizing instances of arbitrary categories in cluttered scenes is one of the main
challenges in computer vision. In general, most methods learn appearance and
spatial relation models of the categories from labeled training images and use
the obtained models to localize previously unseen instances in test images.

Currently, mainly two different approaches can be distinguished: (a) slid-
ing window based and (b) part based methods. Sliding window based methods
like [1, 2] evaluate powerful classifiers on windows at all possible image locations,
analyzing discriminative local descriptors like the histogram-of-gradients [3]. Al-
though, these approaches have shown to provide excellent results for rectangular
shaped categories, they yield limited performance for deformable objects. Thus,
recently part based models have become more popular. The notion of parts has a
long history in computer vision, starting from the Pictorial Structures model [4],
where each object is represented as an assembly of local parts and flexible spatial
relations between them. While early work in this field manually identified seman-
tically meaningful parts, recent research [5, 6] focused on how to automatically
select discriminative parts from training data.
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Part-based models mainly differ in the way the spatial relations between the
individual parts are defined, ranging from fully connected models, where each
part is connected to all other parts (constellation model [7]), to models without
any spatial relation (bag-of-words model [8]). Thus, they mainly differ concerning
their inference complexity, where a constellation model for example is only able
to handle a few parts and additionally has to significantly reduce the number of
part candidates in each test image.

Recently, tree models have become the most popular spatial model for part-
based recognition due to the highly efficient inference possibilities for tree struc-
tures. Such tree models for example have led to the deformable part model [6],
one of the most successful algorithms on the PASCAL Visual Object Class
(VOC) challenge.

One of the first tree-shaped models for the task of object detection focussed
on a specific sub-type, the star shaped model, where each part is only connected
to a centroid part. The underlying representation was denoted as the Implicit
Shape Model (ISM) [9], which constituted the basis for several extensions in
the following years [10]. The ISM represents objects as a collection of a poten-
tially large number of prototype patches, that in general exhibit a much denser
coverage of the object area.

The ISM requires bounding box annotated training data to learn the model.
The first step is to build a visual codebook, representing prototypical patch
appearances. For each visual word the likelihood of having an object of the
target class at the corresponding location is estimated by counting how often it is
found on the object versus in the background. Additionally, for each occurrence
on a positive training sample, the relative location of the object’s centroid is
stored. This information defines the spatial and the appearance model and is used
to localize instances in previously unseen test images. During testing all local
features are assigned to the most similar visual word. All object features vote
for the object centroid locations and these votes, weighted by their foreground
probability, are finally analyzed for providing detection hypotheses.

Despite the simplicity of this approach, the ISM has become one of the most
popular object detection approaches due to some important properties. First, it
has shown to yield excellent performance, mainly explained by the fact that a
large number of local features contribute to each hypothesis. Second, it implic-
itly handles occlusions using a highly local and part based approach. Third, it
has the possibility to combine parts from the whole range of positive training
images and thus enables detection of object instance configurations never seen
during training. Finally, inference is quite efficient since all features indepen-
dently vote for the centroid. Variants of the ISM mainly differ in the way the
visual vocabulary is built and how a local feature in an image is assigned to a
visual word.

The final step of an ISM is to infer object location hypotheses from the pro-
vided centroid voting information. In this field mainly two dominant approaches
emerged. The first approach, as proposed in [9], is based on applying mean shift
over the voting space to estimate the probability density for the correct object lo-
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cation. Afterwards, a Minimum Description Length (MDL) criterion is analyzed
aiming at resolving ambiguities between neighboring hypotheses. The second ap-
proach is to accumulate the weighted centroid votes in a Hough voting manner
(Generalized Hough Voting), where afterwards local maxima are identified by
some type of non-maximum suppression, that discards the less confident of every
sufficiently overlapping detection pair [5]. Although this summing of probabili-
ties does not have a sound probabilistic interpretation, this simple accumulation
process works quite well in practice.

All these methods have in common that they iteratively detect instances
and they cannot enforce that patches are only assigned to a single object. Thus
they all show quite limited performance if objects-to-be-detected are significantly
overlapping. This was also pointed out in [11], where a probabilistic formulation
of the object detection task based on the generalized Hough transformation was
presented. This approach can be seen as a principled non-maximum suppression
procedure, where the theoretical foundations for an improved analysis of the
generalized Hough space were introduced. The algorithm has shown to especially
improve results if detections overlap, as it frequently happens, e.g., in human
detection tasks.

In this work, we propose a novel random field based probabilistic formula-
tion of the object detection task, based on the aforementioned ISM concept. Our
method is most closely related to the work presented in [11], but, in contrast,
we introduce a novel graph structure and adapt the semantics of the considered
labels. This allows us to formulate our problem as a Markovian random field
(MRF), which is one of the most popular models for structured inference. Con-
sidering object detection as application, we are able to define a novel semantic
label space and a quite sparse graph structure. This structure enables a novel,
efficient inference algorithm to search for a strong, local minimum of the random
field energy function. In such a way, we find a common, global solution, where
patches can be reassigned during the inference process. The final result of our
method is a set of detection hypotheses, and for each detection the corresponding
local patches that have voted for it. The proposed approach has several impor-
tant properties: (a) we provide a joint, global solution for all object locations and
individual pixel assignments, (b) we do not have to fix a range for local neighbor-
hood suppression, (c) we maintain the results of standard NMS approaches in
non-overlapping cases, while (d) implicitly separating even strongly overlapping
object instances yielding (e) significantly improved detection scores.

2 A Random Field for object detection

The goal of this work is to provide a framework for object detection based on
an Implicit Shape Model (ISM). Thus, as starting point, we assume that we
are given a codebook consisting of several visual words, and that we can assign
local features of a test image (e.g., a dense set of patches) to the individual
visual words. Additionally, each visual word stores a set of training samples
(patches) that were assigned to it. These patches carry a label indicating if they
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Fig. 1. Constructing a random field for object detection: The graph consists of a set
of nodes positioned at patches extracted at each pixel in the image (the patch plane)
and a coarser grid of nodes defining possible locations of detection centroids (detection
plane). Each patch node is connected to the detection nodes it could be part of, where
offset vectors stored in the implicit shape model define the connections’ likelihood. Our
novel inference process jointly solves the problems of detecting all objects and uniquely
assigning contributing patch nodes to them.

appeared somewhere in the background (negative training set) or somewhere
on a positive training sample. Those from positive training samples additionally
store a relative offset vector to the corresponding object centroid. Given this
information, our Implicit Shape Model is able to provide pixel-wise probabilities
p(y|xi) for having a part of an object of category y at location i and a list of
relative offset vectors to the object centroid.

The overall goal of our method is to fuse the provided information of the ISM
in a probabilistically meaningful way, which jointly decides where in a test image
instances of the learned category are depicted and which local features are part
of the individual detections. Our method is based on a random field formulation.
We first introduce the underlying graph structure in Sec. 2.1. An important part
is our novel definition of a semantic label space tuned to the specific task of
localizing objects based on an ISM, which is described in Sec. 2.2. Finally, we
define our random field energy minimization problem in Sec. 2.3.

2.1 Two-layer graph structure

The core idea of this work is to take the probabilistic formulation of [11], and
reformulate it to better fit the special case of object detection with Implicit Shape
Models. One of the key insights of [11] was the following: an element in the ISM
can vote for multiple objects at different positions in the image, because it was
seen in training images on different locations relative to the object centroid. In
one particular input image, however, each of the pixels is only part of exactly one
object. Thus, when solving the detection task we ultimately have to decide for
each patch to which detection it belongs (or implicitly do so). Contrary to the
generic formulation in [11], we make use of the fact that in an ISM an element
cannot vote for every detection hypothesis, but only for those that are reachable
with an offset vector. The offset vectors define a fixed set of detection nodes a
patch can interact with, relative to its position.

We thus define a two-layer graph structure, as illustrated in Fig. 1. The Graph
G = (V, E) is defined by a set of nodes V and edges E connecting the nodes. The
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set of nodes V consists of patch nodes P at an image layer and detection nodes
D at a detection layer (i.e., V = P ∪ D). The patch nodes P = {p0, . . . , pwh}
form a grid spanning the whole input image, with one node per extracted, local
feature for the ISM. In our case, this is the dense grid of pixels of the input
image, i.e., w, h are width and height of the image. The set of detection nodes
D = {d0, . . . , duv} defines a coarser grid of size u×v, where each dj specifies the
center of a potential object detection.

Each patch node pi is connected by an edge epi,dj
∈ E to every node dj that

defines a detection that pi could potentially be part of. This means, if the pixel
coordinates of patch pi, which we will denote as c(pi), lie within a hypothetical
detection bounding box centered at c(dj), then there is an edge epi,dj

connecting
them. This is illustrated in Fig. 1 for one exemplary patch node.

Note that in this graph there are no connections between detection nodes.
We initially intended to add such relations to implement local neighborhood
suppression, but found that this is unnecessary in our framework. Since patch
nodes are not allowed to contribute to more than one detection in the inference
process, stronger detections pull away evidence from nearby detections automat-
ically. Thus, our method does not require to fix a range for local neighborhood
suppression as necessary in non maximum suppression methods, but implicitly
is capable to separate even strongly overlapping object instances.

Using the graph G, we define the random field, by associating a random
variable with each node (which we also denote as pi and dj for simpler notation).
Each random variable can be assigned one of the labels of the label set L =
{lbg, lfg, l0, . . . , ln}. We will denote the label currently assigned to node v as
lv and the set of assignments to all patch and detection nodes as lp and ld
respectively.

2.2 Defining the label set

The semantics of assigning one of the labels to a node, which is the essential
characteristic of our formulation, is defined in the following way. Assigning the
background label lbg to a detection node (i.e., dj = lbg) means that there is no
detection at this position. Likewise, a configuration having dj = lfg specifies that
there is an object centered at c(dj). For a patch node pi = lbg signifies that at
the center of the patch c(pi) there is no object, but background. This does not
imply that none of the detection nodes connected to pi can be set to lfg, since
the bounding box of a detection might well contain some background pixels.

The crucial point of our framework is the meaning of the labels l0, . . . , ln.
Assigning one of these labels to a patch node indicates that this patch is part of a
detection centered on a specific detection node, specified as follows. As shown in
Fig. 2, the detection node with the closest pixel coordinates to the patch (printed
in dark blue) defines the origin of a coordinate system of relative offsets in the
detection grid. From the training data, we can determine the maximal range of
the offset vectors, stored with the codebook entries. This range defines a fixed
rectangular area of detection nodes that a patch could potentially vote for with
its offset vectors. Within this area we reserve a separate label for each detection
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Fig. 2. A patch pi centered at pixel c(pi) is connected to all detections it could poten-
tially be part of. The relative position on the grid defines the semantics of the labels
for this patch. E.g., assigning label l2 to the patch would mean that it is part of (votes
for) a detection centered at the detection node (white) at position (1,-2) relative to its
closest detection node (dark blue).

node. Assigning this label to the patch means that it is part of the corresponding
detection. For an example, see Fig. 2. Note that the set of labels is the same
for all patch nodes. However, the semantic meaning of label assignments is spa-
tially varying, since the label implicitly defines an assignment to different object
hypotheses depending on the location of the patch. For notational convenience,
we will denote the label that specifies that the patch at pi is part of the object
centered on detection node dj as l̂i,j .

2.3 Energy function

Given an input image I and the graph structure as defined in Section 2.1, the
probability of an assignment of labels to all nodes, i.e., a total configuration of
the random field, can be written as

p(lp, ld|I) =
∏
pi∈P

p(lpi
|I)

∏
dj∈D

p(ldj
|I)

∏
epi,dj∈E

p(lpi
, ldj
|I) . (1)

Taking the log of Eq. (1) leads to the formulation of the energy function to be
minimized:

E(lp, ld) =
∑
pi∈P

ψpi(lpi) +
∑
dj∈D

ψdj (ldj ) +
∑
epi,dj

ψi,j(lpi , ldj ) , (2)

where ψpi
(lpi

) = − log(p(lpi
|I)) is the unary cost of assigning the label lpi

to
node pi, ψdj (ldj ) is the equivalent for detection node dj and ψi,j(lpi , ldj ) is the
resulting pairwise cost. With these definitions, finding the objects in the image
amounts to finding the assignment of labels to all nodes that minimizes Eq. (2).

Definition of Unary Potentials. Starting with the first term in Eq. (1), p(lpi |I)
represents the probability of assigning the label lpi to node pi, given the image
data. Let xi be the appearance of the local feature extracted around c(pi). By
making the same independence assumption as in [11], namely that the probabil-
ity of a label on a patch only depends on its appearance xi, we can define the
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posterior probability of the labeling of a patch node by p(lpi
|I) = p(lpi

|xi). This
probability can be derived from the statistics collected in the ISM as follows.

In order to get an estimate of how likely a detection at a certain position
is, given one patch, we have to sum up the offset vectors that point from the
patch to that detection. Since, as in [5], we want to allow the patch to move
slightly around its original offset position, all voting vectors are aggregated by
a Gaussian centered at the detection.

This summing up of evidence for an object center around a detection node
also has a different interpretation. In order to achieve the tolerance for small
shifts of the patch, we could also resample the training set and insert additional
offset vectors pointing to positions around the original centroid location, giving
the same effect as the smoothing with a Gaussian. Unfortunately, this smooth-
ing or resampling introduces additional virtual samples that change the ratio
of positive to negative samples in the ISM statistics. Thus, it is not possible to
directly take the summed up voting weights at each detection node as proba-
bilities for the labels. Correcting for this bias would be a tedious task since the
amount of virtually introduced samples depends on the density of the detection
grid and the distribution of offset vectors. Additionally, the statistics stored with
the codebook are not completely reliable, as for instance an entry with no single
negative training patch would indicate zero probability for a patch with this
appearance to appear somewhere in the background. This almost certainly does
not reflect truth but is an artifact of insufficient training data.

Barinova et al. [11] bypass these problems, by setting the probability for as-
signing background to a patch node to a constant chosen on a validation set. We
take a different approach, trying to make more use of the inexact but nonetheless
valuable information stored with the codebook entries. We take the probability
of being foreground (pfgpi

) estimated from the original ratio of training samples
stored in the ISM and estimate p(pi = lbg|xi) by taking it as input to the shifted
sigmoidal function:

p(pi = lbg|xi) = 1− pfgmax

1 + exp(−α(pfgpi
− β))

. (3)

All parameters of this function can be estimated once on a validation set and
are kept fixed at pfgmax = 0.95, α = 10, β = 0.4. This procedure of limiting
the foreground probability to a maximum value of pfgmax can also be seen as
combining the estimated distribution with a uniform Dirichlet prior. The proba-
bilities for the labels l0, . . . , ln are then defined by taking the evidence gathered
above for each detection node and scaling it such that the maximum reaches
1− p(pi = lbg|xi).

The second term of Eq. (1), p(ldj
|I), encodes the probability for a label on a

detection node. This can be used to express a prior probability for a detection.
However, in practice we do not make assumptions about the distribution or
frequency of detections and thus set p(dj = lbg) = p(dj = lfg) = 0.5. Detection
nodes can thus be seen as auxiliary variables, collecting the information of its
connected patch nodes via the pairwise relations. All other labels l0, . . . , ln are
invalid for detection nodes, so their probability is set to 0.
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Fig. 3. A simple 2D example: each patch node connects to three detection nodes. The
table on the left shows all unary (first row) and binary costs for all possible labeling
combinations for one patch node pi and its associated detection nodes. Example shown
on the right: Let pi = l2 (i.e., patch pi votes for detection d3) and the detection
nodes are set to d1 = lbg, d2 = lbg, d3 = lfg; the total cost of the configuration is
ψpi(l2) + ψi,1(l2, lbg) + ψi,2(l2, lbg) + ψi,3(l2, lfg) = ψpi,l2 + 0 + 0 + 0.

Definition of Pairwise Potentials. The pairwise costs ψi,j(lpi
, ldj

) reflect the
semantics of the labels for the relationship between patch nodes and detection
nodes. Fig. 3 shows a simple example with one exemplary patch node connected
to three detection nodes. The tables on the left list the costs for all different
kinds of label configurations for one patch and its neighboring detection nodes.
The first row contains the unary cost for assigning each label to the patch node
ψpi

(lpi
), as defined above. The three separate tables below show the pairwise

costs for combinations of label assignments to the patch and each detection
node. Each has one row for the costs of assigning lbg and lfg to the detection
node respectively. The blue frames mark the column with the costs for assigning
label l̂i,j to the patch, which means that the patch pi is part of the corresponding
detection dj .

If detection and patch are both assigned to background, this is a valid com-
bination and the cost is 0. The same is true if a detection dj = lbg and the patch

is set to anything else but l̂i,j , or dj = lfg and pi = l̂i,j (i.e., the detection is
switched on and the patch is part of it). A patch being part of a detection at an

inactive detection node (i.e., pi = l̂i,j ∧ dj = lbg) is an invalid configuration re-
sulting in a cost of ψptBG, which we can set to∞ (or in practical implementations
to a very high cost). Conversely, a patch assigned to background pi = lbg, in the
range of an active detection dj = lfg, adds a fixed cost ψbgInDet, derived from the
probability that a pixel inside a detection rectangle might be background, which
can be estimated from the training data. This expresses the fact that objects
in the training and test data do not completely fill the bounding box they are
annotated with. This parameter also controls how much of an object must be
visible (not occluded) for a valid detection. Finally, from the point of view of
the detection, there is no difference if the patch is assigned to background or to
any other detection close by, so ψptE = ψbgInDet.
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3 Inference

Since our defined pairwise costs fulfill the conditions of regularity [12], we could,
e.g., apply standard graphcut-based inference methods such as alpha expansion
or alpha/beta swap [13] to solve the labeling problem. However, generic solving
algorithms fail for our particular graph structure and definition of potentials.
The main problem is that trying to change a single node, or even all nodes, to
exactly one new label can almost never result in a lower energy.

For example, as can be seen from Fig. 3, if all nodes are assigned the back-
ground label lbg, switching a patch node to any different label will result in
adding the very high cost ψptBG at one binary relation. Switching a single de-
tection node to lfg will not change the unary cost for this node but increase the
total energy of each pairwise edge that connects this detection node to any patch
node by the cost ψbgInDet. Thus, setting every node to lbg results in a strong local
minimum of the energy and thus, inference approaches like alpha-expansion that
only consider changing nodes to a single, new label per iteration, immediately
fail.

For this reason, we propose an inference approach tuned to our specific graph
structure and label semantics. The core idea is a novel move making strategy,
which is described in detail in Section 3.1. The corresponding inference process
is outlined in Section 3.2, while Section 3.3 discusses the overall characteristics
of our inference approach.

3.1 Moves

We propose to use a different kind of move, specialized for our problem setup,
that changes the labels of several nodes simultaneously. The central observation,
that was also already pointed out in [11], is that given a labeling of the detec-
tion nodes, the optimal label for each patch can be determined independently,
since the graph is bipartite. Careful inspection of our setup reveals that we can
efficiently compute the new optimal assignment for each patch node when a sin-
gle detection node changes its label in O(1), if we know the previously optimal
assignment and cost. This allows us to construct an efficient inference algorithm
that is described in the following paragraphs.

The prerequisite of a starting point with known optimal assignments of the
patch nodes and total costs is easily fulfilled by setting all detection nodes to lbg.
The optimal label for each patch is then also lbg, because any other label would
add ψptBG to the total cost. The total energy of this configuration amounts to
the sum of unary costs for lbg of all detection and patch nodes (all pairwise costs
are 0). The sum of costs for each label at each patch node, that we will need later
in the process, is its unary cost plus, for each label other than lbg, one binary
cost of ψptBG.

Then, we consecutively turn on one detection dj after the other, and find
the optimal configuration of patch node labels for the new situation, to discover
which one lowers the total energy most. To compute the total energy of a new
configuration we need to keep track of the change of energy ∆E for each node
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that changes its label during the process, and affected edges. The change in unary
cost for the detection node is −ψdj

(lbg) + ψdj
(lfg). Since none of the connected

patch nodes can have pointed to dj before (since it was background), all pairwise
relations switch from 0 cost to ψbgInDet or ψptE (which are equal).

Now we have to check for each patch node pi connected to the currently
tested detection node dj , for the new best label. The optimal label for a patch
node depends on the patch’s unary cost for the label, plus the pairwise to all
detection nodes it is connected to. To find the label with lowest energy in a
brute force manner, we would have to go over all labels and for each of them
sum up the binary costs of all the edges of the patch. Despite our sparse graph
structure in which a patch is not connected to all detection nodes, this would
require O(|L|2). But, in fact, for every label the only change in energy is in the
pairwise connection between the patch and the changed detection dj , so we can
update them incrementally. Additionally, we do not even have to go over all
labels to find the new best, since we know that the label currently assigned to
pi was the best one before the current move and looking at Fig. 3 we see that
only switching to l̂i,j can possibly result in a decrease of the energy. So the only
possibility we have to check is, if the total cost of the patch’s old label is now
bigger than the cost for l̂i,j . We keep track of the total change of costs for the
better of those two possibilities. This is an O(1) operation for each patch.

3.2 Overall inference process

Thus, in total, calculating the change in energy for switching on a single detec-
tion hypothesis and finding the optimal configuration of patch labels is a fast
operation. Therefore, we can afford to test every single detection hypothesis and
take the best one, without having to rely on a heuristic to propose potentially
good hypotheses. After the new best detection hypothesis is found, we switch
the corresponding detection node dj to lfg and each patch node, for which this

results in a better energy, to l̂i,j , to associate it with the new detection, and up-
date the costs for each label. This is only done once per newly found detection
and only for the patches connected to the new detection. The whole process is
repeated until no move lowers the total energy.

3.3 Discussion

Note that the decision of finally taking the most probable detection in each
iteration is greedy. However, the greedy decision is based on the evaluation of
every single possible move that switches on one detection node and finds the
new optimal configuration of all patch nodes. Even after the move is taken, the
patch nodes that were switched to the new detection in this iteration, are not
fixed to this decision, but can switch to a different detection found later, if this
again decreases the total energy.

Additionally, the order of configurations checked by the algorithm assures
fast convergence to a good minimum of the energy by making use of domain
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knowledge. For instance, in a generic solver it would be hard to exploit the fact
that switching on lots of detection nodes at once is very unlikely to give a low
energy, or encode the knowledge which set of labels to apply to the corresponding
patch nodes.

As a final remark we would like to point out that after the first iteration
not all possible remaining hypotheses have to be checked again to find the next
best detection. The total benefit (reduction of cost) for each hypothesis can only
become smaller with the new detection from the last iteration now switched on
and adding pairwise costs to every patch node not pointing towards it. Thus,
we do not have to check those hypotheses that already did not have a negative
∆E in the last run. Since even for a crowded scene the number of objects is way
lower than the number of detection nodes, this again dramatically reduces the
search space.

4 Experiments

To create the codebook for the ISM, we use Random Forests, trained as pro-
posed in [5]. The smoothing kernel’s sigma is set to σ = 3.0 to allow for small
shifts of the patches, with respect to the object center. Derived from this, we
set the resolution of the detection grid to 8 × 8. A coarser grid would miss de-
tections, because the patches can only vote for detection sites within the range
of the Gaussian. A denser grid would linearly increase computation time with
the number of detection nodes. The only parameter left to set is ψbgInDet. Ba-
sically, it defines how much of an object must be visible in order to create a
positive detection. Since we want to detect highly overlapping instances, we set
it quite low, to a value of 0.4. Conversely this implies a high probability of about
e−0.4 ≈ 67% of a patch to be background within a valid detection.

To get multi-scale detection results, we first process each scale individually,
but afterwards, according to our localization principle, ensure that also over
scales each patch only votes for a single detection. From the final configurations
of the random fields per scale, we obtain all detections and the corresponding
set of patches assigned to them, which defines a pixel-wise voting mask per
detection (see Fig. 5). We collect these masks over all scales and resize them to
a reference frame. Then we sort all detections by their confidences and, starting
with the most confident, accept only detections that do not overlap (considering
the voting masks) with those already taken. Thus, we again ensure that also over
scales each patch is only assigned to a single detection. Thereby, we effectively
suppress lower scoring redetections in nearby scales and obtain a unified solution
for multi-scale analysis.

Similar to [5], we report rectangles of mean aspect ratio (estimated from the
training data) centered at each active detection node. The confidence of each
reported detection is set to the absolute value of the decrease in energy that was
recorded during testing the corresponding detection node.
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4.1 Datasets

The choice of evaluation datasets is motivated by several factors. First we want
to have a direct comparison to the most closely related approach [11]. The pub-
licly available implementation comes with its own set of random forests, trained
for detection of side views of pedestrians. Thus, we also focus on this task, al-
though our method is not specifically tailored towards it and potentially handles
arbitrary object categories.

Another aspect is the resolution of the objects in the images. Part based
approaches, like ISMs, can only capitalize on their strengths if the objects are
depicted at a resolution where the parts are distinguishable. Thus we require the
smallest category instances to have at least about 100 pixels in height.

Since for non overlapping object instances our proposed method reaches the
same decisions as standard NMS (as was tested and assured in evaluations on
single scale datasets like UIUC cars), we are especially interested in testing the
capability of our algorithm to resolve detections of strongly overlapping objects.
Thus, we evaluate it on the TUD crossing and TUD campus sequences [14], also
used in [11], where both datasets require the ability to locally decide for each
patch to which detection it belongs in a reasonable manner. Additionally, we
evaluate all approaches on the PETS 2009 dataset, also featuring close to side
views of a large number of pedestrians with heavy overlaps.

The TUD campus and TUD crossing datasets contain two sequences of im-
ages showing pedestrians in street side scenarios. In TUD campus there are 71
images of highly overlapping persons walking along a side walk. This sequence
especially features large changes in scale, as well as strong occlusions. The TUD
crossing sequence contains 201 images of a relatively crowded scene, showing
profile views of pedestrians crossing a street. We use the extended ground truth
from [15].

The PETS 2009 Benchmark Data [16] includes several datasets of which
we take View001 of sequence S1.L1 to further evaluate the performance of our
method. This sequence shows several groups of people walking closely and thus
heavily occluding each other. In total the groundtruth annotation contains 4348
persons.

As training data for all experiments we use the training set of the TUD-
pedestrian dataset, consisting of 400 images of mostly side views of pedestrians.

4.2 Results

We directly compare our results to the two most related approaches: the Hough
Forests using standard non maximum suppression [5] and the probabilistic frame-
work of Barinova et al. [11]. Detections are considered as valid analyzing the
standard PASCAL-VOC overlap criterion, with the threshold set to 50%. For
both methods compared, we used the publicly available source codes and associ-
ated configuration files as published by the respective authors. For training the
Hough Forests we used exactly the same data as for our method.
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Fig. 4. Precision/Recall curves on (a) TUD campus, (b) TUD crossing and (c) PETS
2009 S1.L1 sequence for all three methods.

Fig. 5. Sample detections on the TUD crossing sequence (top row) and PETS 2009
(bottom row). For each detection the uniquely assigned patches are plotted in a differ-
ent color. Note how closely walking pedestrians, overlapping each other, are correctly
separated.

Fig. 4 shows precision-recall curves for all three methods on all three databases.
As can be seen, our method significantly improves over [5] and also outper-
forms [11] on all three datasets, gaining about 10% recall, at precision levels
above 90%. Fig. 5 additionally visualizes detection results and all local patches
that were assigned to each detected instance by our inference process in different
colors. Note how even strongly overlapping persons are correctly separated from
each other.

5 Conclusion

In this work, we have proposed a new formulation for the task of detecting
objects based on the information gathered in an Implicit Shape Model. We for-
mulated the dual problem of detecting a set of object hypotheses and assigning
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local patches to the detections in a random field manner using a significantly
sparser graph structure than in related approaches. Furthermore, the specific
graph structure allowed to define a novel, fast inference algorithm to solve our
defined energy minimization problem. Our method does not require to fix a
range for local neighborhood suppression as it is necessary in related methods,
but implicitly is capable to separate even strongly overlapping object instances.
Experiments demonstrated that we are able to accurately detect object hypothe-
ses and their local support patches on challenging data sets achieving competitive
or even improved results in comparison to state-of-the-art in this field.
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