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Abstract

Incremental subspace methods have proven to enable efficient training
if large amounts of training data have to be processed or if not all data is
available in advance. In this paper we focus on incremental LDA learning
which provides good classification results while it assures a compact data
representation. In contrast to existing incremental LDA methods we addi-
tionally consider reconstructive information when incrementally building the
LDA subspace. Hence, we get a more flexible representation that is capable
to adapt to new data. Moreover, this allows to add new instances to existing
classes as well as to add new classes. The experimental results show that
the proposed approach outperforms other incremental LDA methods even
approaching classification results obtained by batch learning.

1 Introduction

When discussing object classifiers one faces two main philosophies, generative and dis-
criminative classifiers. Whereas generative models try to find an efficient representation
of the data, discriminant classifiers are particularly designed for classification tasks. Com-
pared to generative methods this allows to train more specific classifiers resulting in higher
recognition rates. In fact, several studies (e.g., [1, 13]) have shown that discriminative
classifiers outperform generative models (if enough training data is available).

But discriminative classifiers have several drawbacks, e.g., a huge amount of training
data is necessary, they are not robust (neither during learning nor during evaluation), or
they can not take advantage of unlabeled data. Hence, there was a considerable interest
to bring both philosophies together (e.g., [2, 7, 9–12]). Most of these approaches are
based on two-stages (e.g., [7, 9, 10]). In the first stage a generative model (probabilistic
constellation model [7], clustering algorithm [9], probabilistic PCA [10]) is estimated
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and in the second stage a discriminant classifier (SVM on Fisher Scores [7], multi-layer
perceptron [9], negative samples [10]) is built from the generative model.

In the field of subspace methods this combination is mainly addressed by classifier
fusion of a generative model (mostly PCA) and a discriminative model (e.g., LDA) which
improves the recognition results (e.g., [11, 12]). Similarly, the combination of PCA and
LDA was addressed by Fidler et al. [2]. They constructed a new basis that contains all
discriminative information but in addition also contains sufficient reconstructive informa-
tion to enable a robust classification. Due to its reconstructive properties we will further
refer PCA to as a reconstructive model.

But none of these approaches consider the benefits of combining generative and dis-
criminative methods for incremental learning which is desirable for two main reasons.
First, if not all data is given in advance (e.g., when processing a video stream) a batch
method can not be applied. Second, incremental learning requires less memory and has
lower computational costs. In the following we will focus on incremental LDA learning.
Existing incremental LDA methods, e.g., [6, 15, 18] are based on directly updating the
between class scatter matrix and the within class scatter matrix. That is, they consider
mostly discriminative information focusing on specific features that best discriminate the
data seen so far. To illustrate that using both, discriminative and reconstructive informa-
tion, is beneficial consider the following example. Given an LDA classifier trained from a
small number of samples to separate three classes. As can be seen in Figure 1 thisinitial
classifierseparates the classes well in the projected LDA space. This subspace repre-
sentation is then updated with new instances in two different ways, using discriminative
information only and using discriminative as well as reconstructive information. From
Figure 1 it can be seen that for the first case (LDA) the representation gets more and more
dispersed since the classifier is biased by the starting model and can not adapt to the new
information. Conversely, if discriminative and reconstructive information is used (PCA &
LDA) the representation remains compact and still separates the three clusters well.

Figure 1: Incremental discriminative subspace learning: using only discriminative infor-
mation the incrementally estimated model is biased by the first samples and the represen-
tation get dispersed (LDA); using reconstructive and discriminative information a more
generic model is estimated which yields well separable clusters (PCA & LDA).



The main contribution of this paper is an incremental discriminative subspace learning
algorithm that combines reconstructive and discriminative information during training. In
particular, we use Linear Discriminant Analysis (LDA) [3] as discriminative model and
Principal Component Analysis (PCA) [8] as reconstructive model. For LDA learning it is
common to apply PCA as a preprocessing step for dimensionality reduction or to handle
singularity problems (e.g., [1, 17]). Conversely, our approach implicitly combines both
models. Since every update increases the size of the representation the updated subspace
has to be truncated. Usually the least significant (reconstructive) directions are skipped
but this may result in a loss of discriminative information. To avoid this we propose a
more sophisticated truncation step. By applying an appropriate constructed orthogonal
projection the updated subspace is projected onto another subspace of desired size. Thus,
preserving the reconstructive as well as the discriminative information. Moreover, this
update procedure allows to incrementally update the current representation by adding
new instances to existing classes as well as by adding new classes.

The outline of the paper is as follows: In Section 2 we deduce the combined recon-
structive/discriminative subspace projection and show how it can be applied for incremen-
tal learning. Next, in Section 3 we demonstrate the advantages of our approach compared
to other incremental methods on small as well as large data sets and for different kinds of
updates. Finally, we give a conclusion and an outlook in Section 4.

2 Incremental Updating by Subspace Combination

2.1 Subspace Methods

The goal of subspace methods is to find a projection that transforms the training data
(images) such that new unknown images can be efficiently classified. For batch methods
it is assumed that all training data is given in advance. Formally, givenn imagesx j ∈ IRm

represented as vectors which are organized in a matrixX = [x1, . . .xn] ∈ IRm×n. Let µ ∈
IRm be the mean image and letc be the total number of classes. In the following we take
a closer look at the subspace methods that are relevant for our approach.

Principal Component Analysis[8] is an unsupervised method that estimates a low
dimensional representation of the data that minimizes the squared reconstruction error.
Therefore, the dataX is projected onto a lower-dimensional subspace by

A = UT (X−µ11×n) , (1)

where the projection matrixU is built from the eigenvectors of the covariance matrix of
X and1m×n denotes anm×n matrix of ones. Usually onlyk, k� n� m, columns are
needed to reconstructX to a desired accuracy:

X ≈ UkAk + µ11×n , (2)

whereUk = [u1, . . . ,uk] ∈ IRm×k is the truncated reconstructive basis and the rows of
Ak = [aT

1 , . . . ,aT
n ]T ∈ IRk×n are the image representations in the truncated subspace.

Linear Discriminant Analysis[3], in contrast, is a supervised method that also in-
tegrates the class label information of the training samples. It seeks for(c− 1) hy-
perplanes that are capable to separate the given data. This is realized by a projection



W = [w1, . . . ,w(c−1)]∈ IRm×(c−1) that minimizes the intra-class scatter while it maximizes
the inter-class scatter. Hence, a test samplex is projected onto the subspace by

g(x) = WT(x−µ) . (3)

The class labell is then assigned according to the result of a nearest neighbor classifi-
cation. Therefore, the Euclidean distancesd of the projected sampleg(x) and the class
centersνi are compared:

l = min
i=1,...,c

d(g(x),νi) . (4)

2.2 Incremental LDA Learning

Incremental subspace methods allow to directly add new images to an already built lower-
dimensional representation. Thus, the original images can be discarded directly after they
have been processed. To avoid that thus discriminative information is lost in the following
we will deduce an incremental update scheme for LDA that is based on the ideas of aug-
mented subspaces [2] that were originally indented for robust classification (ILDAaPCA).
Therefore, we first create an augmented PCA subspace by augmenting thek dimensional
reconstructive subspace with additionalc−1 vectors containing discriminative informa-
tion. Those supplementary vectors are constructed from vectors that would be discarded
when truncating the subspace tok-dimensions. In this way, the full discriminative in-
formation is maintained. Second, we build the actual LDA representation from the thus
obtained augmented subspace.

Assuming that a subspace representation was already built fromn images the current
augmented PCA subspace is given by theaPCAvectorsU(n) ∈ IRm×(k+c−1), the aPCA
coefficientsA(n) ∈ IR(k+c−1)×n, and the mean vectorµ(n) ∈ IRm×1; the current augmented
LDA representation is given by the vectorsV(n) ∈ IR(k+c−1)×(c−1) and the class centers

ν
(n)
i ∈ IR(c−1)×1. To update the subspace representation with a new imagex(n+1) first the

augmented subspace is updated using an incremental PCA method (IPCA) [16] which is
outlined in Algorithm 1.

Second, the actual LDA step is carried out on the extended representation (Algo-
rithm 2, step 1) giving the updated augmented LDA spaceV and the corresponding class

centersν(n+1)
i . Here,U andV represent those subspaces that correctly describe the up-

dated information. That is,g(x) projects onto a subspace describing the old data as well as
the new input image. But as a consequence the dimension of the subspace representation
is increased:U ∈ IRm×(k+c), A ∈ IR(k+c)×(n+1), V ∈ IR(k+c)×(c−1).

Finally, in order to retain a pre-specified size we have to truncate the subspaces. To
avoid that discriminative information is lost we project these matrices onto another sub-
space having the desired size while preserving the full discriminative information. There-
fore, we want to keep the firstk vectors of the subspaces unchanged. This is achieved
by splitting the LDA vectors into sub-matricesVk ∈ IRk×(c−1) andVc ∈ IRc×(c−1) (Al-
gorithm 2, step 2). The orthogonalized matrixṼc (Algorithm 2, step 3) has exactly the
desired properties (preserving the discriminative information).



Algorithm 1 : IPCA on Augmented Basis

Input: Current augmented principal subspace: aPCA vectorsU(n), aPCA coefficients
A(n) and mean vectorµ(n); new input imagex(n+1)

Output: New augmented principal subspace: aPCA vectorsU, aPCA coefficientsA and
mean vectorµ(n+1)

1: Projectx(n+1) onto current subspace:a = U(n)>(x(n+1)−µ(n))
2: Reconstruct:y = U(n)a+ µ(n)

3: Compute residual vector:r = x(n+1)−y

4: Append new basis vectorr : U′ =
[

U(n) r
‖r‖

]
5: Determine coefficients in new basis:A′ =

[
A(n) a

0 ‖r‖

]
6: Perform PCA onA′ obtaining mean valueµ ′′ and eigenvectorsU′′

7: Project coefficient vectors to new basis:A = U′′>(A′−µ ′′11×(n+1))
8: Rotate subspaceU′ for U′′: U = U′U′′

9: Update mean:µ(n+1) = µ(n) +U′µ ′′

Hence, we can construct a projection matrixM ∈ IR(k+c)×(k+c−1) containing an iden-
tity matrix I ∈ IRk×k, the matrixṼc ∈ IRc×(c−1), and the zero matrices0c ∈ IRc×k and
0k ∈ IRk×(c−1) (see Algorithm 2, step 4). Finally, the current subspaces are projected
onto M and we obtainU(n+1) ∈ IRm×(k+c−1), A(n+1) ∈ IR(k+c−1)×(n+1), and V(n+1) ∈
IR(k+c−1)×(c−1) (Algorithm 2, step 5).

Algorithm 2 : LDA on Updated Augmented Basis
Input: Updated augmented principal subspace: aPCA vectorsU, aPCA coefficientsA
Output: New subspaces of pre-specified size: aPCA vectorsU(n+1), aPCA coefficients

A(n+1); LDA vectorsV(n+1) and class centersν(n+1)
i

1: Perform LDA onA obtaining LDA vectorsV and class centersν(n+1)
i

2: Split V =
[

Vk

Vc

]
3: OrthogonalizeVc: Ṽc = Vc(VT

c Vc)−1/2

4: Build projection matrixM : M =
[

I k 0k

0c Ṽc

]
5: ProjectU, A andV: U(n+1) = UM , A(n+1) = M>A, V(n+1) = M>V

The main point is that by this truncation step the projectiong(x) does not change:

g(n+1)(x) =
(

U(n+1)V(n+1)
)>

(x−µ(n+1)) =

=
(
UMM >V

)> (x−µ(n+1)) =
= (UV)> (x−µ(n+1)) = g(x) .

(5)

Thus, while still retaining the dimensions of the subspaces no discriminative informa-
tion is lost.



3 Experimental Results

To show the benefits of the proposed incremental discriminative subspace method we
performed two experiments that are also relevant for practical applications: adding new
instances to existing classes (e.g., adding a new view of an already known object) and
adding new classes (e.g., adding a new person to an authentication system). We com-
pared the recognition results of the proposedILDAaPCA method to the batch method
(batchLDA) and two different incremental LDA approaches (ILDAonK and ILDAonL).
batchLDAbuilds a new model from scratch in each update step using the same number
of images as the incremental algorithms.ILDAonK updates a PCA basis truncated to the
sizek̂ = k+ c−1 (to enable a comparison of subspaces of the same size1) and then dis-
cards the spare eigenvector in each update step. Thus, only reconstructive information
is used. Conversely,ILDAonL updates the(c−1)-dimensional LDA basis directly; only
discriminative information is used.

All experiments were performed on three datasets different in size, design, and topic.
Color images were converted to gray scale and every second image of each class was used
for training and the remaining ones for testing:

1. Thepre-cropped Sheffield Face Database[5] (denoted as SFD) consists of 20 per-
sons with at least 19 images of each individual covering poses from profile to frontal
views (e.g., see Figure 2(a)). To have identical class sizes we used exactly 19 im-
ages per individual.

2. The Columbia Image Database Library[14] (COIL-100) consists of 100 objects
with 72 colored images of views from 0 to 360 degrees in 5 degree steps (e.g., see
Figure 2(b)).

3. The Amsterdam Library Of ImagesALOI [4] is a color image collection of 1000
small objects, where we used theObject Viewpoint Collection(in their quarter res-
olution) which is similar to COIL-100. In contrast to COIL-100, where the objects
are cropped to fill the full image in ALOI the images contain the objects in their
original size as well as some background (e.g., see Figure 2(c)). For calculation
purposes (to be able to compare our results tobatchLDA) we used only the first 100
objects (denoted as ALOI-100).

Adding new instances: For the first experiment we assumed that all classes are present
in the starting model. We took two images of each class, having 40 images in total for
SFD and 200 images in total for ALOI-100 and COIL-100. Subsequently, in each iteration
one additional training image is attached to all classes. ForbatchLDAthe model was built
from scratch with growing instance number for each class. Figure 3 shows the recognition
results for SFD (Figure 3(a)) and ALOI-100 (Figure 3(b)) after each update step. This
demonstrates that new images bring additional knowledge into the model improving the
current representations resulting in an better performance of the classifier. Even though
there are only minor differences between the compared methods for small datasets, our
method can handle large data sets considerably better than the other incremental methods.

1The parameterk was chosen such that it encompasses 80% of the energy (defined as a fraction of the total
variance) of the starting model unchanged during the entire experiment.
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Figure 2: Sample images of one class from (a) SFD, (b) COIL-100, and (c) ALOI.

Moreover, the recognition rates of the proposed method are approaching those obtained
by the batch method.
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Figure 3: Recognition rates when adding new class instances: (a) SFD and (b) ALOI-100.

In addition, we demonstrate the importance of the proposed subspace truncation step
(Algorithm 2, steps 2–5). Therefore, we compared the recognition rate on the Coil-100
database for our approach (see Figure 4(a)) and for an incremental method (denoted as
ILDAaPCAonK) that starts with an augmented basis but simply truncates the last eigen-
vector in each update step. In Figure 4(b) it can be seen that the results are similar to
ILDAonK showing the loss of important discriminative information.

Adding new classes: For the second experiment we assumed that only two classes (of
full training size) are known in advance. Thus, initially we had a training base of size 18
for SFD and of size 72 for COIL-100 and ALOI-100. Subsequently, we added full classes.
batchLDAwas calculated in each step with full training size of actually known classes.
Since the LDA subspace size depends on the number of classes it has to grow for each
added class.ILDAaPCAhandles this automatically; for the other methods we skipped the
truncation step for the first image of each new class. For evaluation only test images from
already known classes were used. The obtained recognition rates for SFD and ALOI-100
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Figure 4: Update of the Coil-100 aPCA subspace: (a)U(n+1) = UM ; (b) U(n+1) = Uk+c−1.

are shown in Figure 5(a) and Figure 5(b), respectively. It can be seen that due to the
increasing complexity of the task (larger number of classes) the recognition rate drops
for all methods even forbatchLDA. But ILDAaPCAoutperforms the other incremental
methods.
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Figure 5: Recognition rates when adding new classes: (a) SFD and (b) ALOI-100.

Since for batch learning all training images are given and the basis vectors are not
truncated the full information is available. Thus, it finds the most suitable hyperplanes
andbatchLDAalways yields the best recognition rates. Updating the low-dimensional
discriminative representations directly (ILDAonL) is not capable to adopt to a new task
since it focuses only on initial given discriminative features. Conversely, by updating only
the reconstructive representation (ILDAonK) too much discriminative information is lost.
But the combination of both which is realized byILDAaPCA is well suited for the task
of incremental learning. Hence, the classification results are close to those of the batch
method whileILDAonL andILDAonK yield inferior classification results.

Time and Memory: As shown previously the recognition rate of the proposed incre-
mental update scheme is comparable to batch learning. Thus, we can estimate an appro-
priate subspace even if not all images are given in advance. But incremental methods are
more efficient which is shown in the following.



First, we compare the computational costs ofbatchLDAandILDAaPCA. Figure 6(a)
shows the computation time2 needed for the update fromn to n+1 images (evaluated for
COIL-100). SinceILDAaPCAencompasses a model of fixed size only the representation
matrix is growing. Thus, the computational costs for the updates are small. On the other
hand, forbatchLDAthe representation has to be built from scratch for each additional
image. Thus, the computation time is obviously increasing with each additional image.

Regarding memory requirementsILDAaPCAhas to store onlyU,A,V, andµ while
batchLDAneeds to store the full data matrixX. Figure 6(b) illustrates the allocated mem-
ory in MB. It can be seen, that the memory requirements forILDAaPCAare only slightly
increasing since only the size of the lower-dimensional representations is growing. For
batchLDAconsiderable more memory is allocated if new images are added. As a result
for larger data sets batch computation is not possible while the incremental update always
is applicable.
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Figure 6: Requirements for adding images: (a) time and (b) memory.

4 Conclusion

We proposed a method capable to incrementally update an existing LDA subspace. This
is achieved by additionally incorporating reconstructive information to the discriminative
model. The reconstructive property ensures an adequate representation of the training
images and allows the discriminative information to focus on new features whenever
it is necessary. Hence, our method is capable to add new instances of already known
classes as well as adding unknown classes. The experiments have shown that our method
outperforms other tested incremental subspace methods that keep only discriminative or
reconstructive information. Thus, these methods are not able to adapt to new data, espe-
cially when processing large datasets. Furthermore, our method yields similar results as
the batch approach but it is more efficient considering the computational costs and mem-
ory requirements. Further work will include the evaluation of the recognition rate if the
influence of the reconstructive basis is growing with the number of represented classes.
In addition, since the reconstructive representation also allows detection of outliers the
proposed method can easily be extended in a robust way.

2These results were obtained on a PC with a 2xDual-Core Intel Xeon 5160, 3.0 GHz CPU and 16GB RAM.
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