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Abstract. Tracking is usually interpreted as finding an object in sin-
gle consecutive frames. Regularization is done by enforcing temporal
smoothness of appearance, shape and motion. We propose a tracker,
by interpreting the task of tracking as segmentation of a volume in 3D.
Inherently temporal and spatial regularization is unified in a single reg-
ularization term. Segmentation is done by a variational approach using
anisotropic weighted Total Variation (TV) regularization. The proposed
convex energy is solved globally optimal by a fast primal-dual algorithm.
Any image feature can be used in the segmentation cue of the proposed
Mumford-Shah like data term. As a proof of concept we show experi-
ments using a simple color-based appearance model. As demonstrated in
the experiments, our tracking approach is able to handle large variations
in shape and size, as well as partial and complete occlusions.

1 Introduction

Although frequently tackled over the last decades, robust visual object track-
ing is still a vital topic in computer vision. The need for handling variations of
the objects appearance, changes in shape and occlusions makes it a challeng-
ing task. Additionally, robust tracking algorithms should be able to deal with
cluttered and varying background and illumination variations. We formulate the
tracking problem as globally optimal segmentation of an object in the spatial-
temporal volume. Under the assumption that an object undergoes only small
geometric and appearance changes between two consecutive frames, the object
is represented as a connected volume containing similar content. Applying the
segmentation on a volume instead of single frames, enhances robustness in the
case of partial occlusions and similar background. Furthermore, no explicit shape
model has to be learned in advance. Instead spatial and temporal consistency is
enforced by a single regularization term.

1.1 Related Work

Numerous different approaches have been applied to the visual tracking prob-
lem. For a detailed review we refer to [1]. Superior results have been achieved
by patch-based [2] or simple kernel-based methods such as [3]. Avidan [3]
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considered tracking as a binary classification problem on the pixel level. An en-
semble of weak classifier is trained on-line to distinguish between object and
current background, while a subsequent mean-shift procedure [4] obtains the
exact object localization. Grabner et al. [2] proposed on-line AdaBoost for fea-
ture selection, where the object representation is trained on-line with respect
to the current background. Although those methods have shown their robust
tracking behavior in several applications, they lack an explicit representation of
the objects shape, due to their representation by a simple rectangular or ellipti-
cal region. Under the assumption of affine object transformation interest point
based trackers, like the work of Ozuysal et al. [5], perform excellent with fast
runtimes. The drawback of such approaches is the enormous amount of needed
pre-calculated training samples, and the limitation that no update is done during
tracking. Shape-based [6] or contour based [7] tracking methods deliver addi-
tional information about the object state or enhance the tracking performance
on cluttered background. While Donoser and Bischof [6] used MSER [8] segmen-
tation results for tracking, Isard and Blake [7] applied the CONDENSATION
algorithm on edge information. Therefore feature extraction or segmentation
were independent from the tracking framework. In contrast, especially level-set
methods support the unified approach of tracking and segmentation in one sys-
tem [9], [10], [11], [12], [13]. [10] modeled object appearance using color and
texture information while a shape prior is given by level sets. [11] incorpo-
rated Active Shape Model based on incremental PCA, which allowed the online
adoption of the shape models. [9] extended the mean-shift procedure by [4], by
applying fixed asymmetric kernels to estimate translation, scale and rotation.
For a more detailed review on the use of level set segmentation we refer to [12].
Recently, Bibby et al. [13] proposed an approach, where they used pixel-wise
posterior instead of likelihoods in a narrow band level set framework for robust
visual tracking. The use of pixel-wise posterior led to sharper extrema of the cost
function, while the GPU based narrow band level set implementation achieved
real-time performance. All of the above approaches work on single frames. In
[14], Mansouri et al. proposed a joint space-time segmentation algorithm based
on level sets. The main idea of interpreting tracking as segmentation in a spatial-
temporal volume is closely related to the approach presented in this paper. In
contrary to our approach level set methods are used, that can easily get stuck
in local minima.

A lot of work has been done on image segmentation. For contour-based image
segmentation the Geodesic Active Contour (GAC) model [15] has received much
attention. In the following we will shortly review some energy minimization based
approaches. Graph cuts are currently widely used for computer vision applica-
tions. Boykov et al. [16], [17] used a minimum cut algorithm to solve a graph
based segmentation energy. Other graph based segmentation approaches were
proposed by Grady with the random walker algorithm [18], which was extended
in [19]. In [20], a TV based energy was used for segmentation of moving objects.
While graph cuts allow simple and fast implementations, it is well-known that
the quality of the segmentation depends on the connectivity of the underlying
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graph, and can cause systematic metrication errors [21]. Furthermore memory
consumption is usually very high. Continuous maximal flows were presented by
Appleton et al. [22]. In [23], Zach et al. extended continuous maximal flows to
the anisotropic setting.

Variational approaches try to obtain a segmentation based on a continuous
energy formulation. Therefore the weighted Total Variation (TV) as used by
Bresson et al. [24], [25], Leung and Osher [26] and Unger et al. [27], [28], has
become quite popular. Continuous formulations do not suffer from metrication
errors, and have become reasonable fast by implementing them on the GPU [28].
Another well known variational segmentation framework is the Mumford-Shah
image segmentation model [29]. Bresson et. al. [30] showed how non-local im-
age information can be incorporated into a variational segmentation framework.
In [31], Werlberger et al. showed how shape prior information can be incorpo-
rated using a Mumford-Shah like data term.

2 Tracking as Segmentation in a Spatial-Temporal
Volume

In the following we will provide some details on the concept of interpreting track-
ing as the segmentation of a 3D volume similar to [14]. A color image I is defined
in the 2D image domain Ω as I : Ω → IR3. The 2D frames of a video sequence
can be viewed as a volume by interpreting the temporal domain T as the third
dimension. Thus the volume is defined as V : (Ω×T )→ IR3. This makes it pos-
sible to incorporate spatial and temporal regularization in an unified framework.
If we assume a high enough sampling rate, adjoining frames will contain similar
content. The 2D objects of a single frame I correspond to cuts of planes with the
3D object defined in the volume V . Inherently this approach extends the forward
propagation of information through time by additional backward propagation.
Objects that are represented as disjoint regions in a single frame, correspond to
a single volume, and are therefore tracked robustly. This concept is illustrated
with an artificial example in Figure 1. Our tracking approach is compared to an
MSER tracker [6], that cannot handle multiple disjoint regions. The volumetric
approach does not suffer from such a shortcoming, as the regions are connected
in the volume.

3 Algorithm

3.1 The Segmentation Model

We propose to use the following variational minimization problem for the task
of image segmentation:

min
u

{
Ep =

∫
Ω×T

(gx|∇xu|+ gt|∇tu|) dxdt+ λ

∫
Ω×T

fu dxdt

}
. (1)
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Fig. 1. Tracking of an artificial object. The first row depicts frames of the input video
with frame numbers at the top. The second row shows the segmentation result using
the volumetric approach. The third row shows the result of an MSER tracker imple-
mentation [6].

The first term is a regularization term using anisotropic TV. The segmentation
is represented by u : (Ω × T ) → [0, 1]. A binary labeling into foreground F
(u = 1) and background B (u = 0) would force u ∈ {0, 1}. As this would make
the energy non-convex, we can make use of convex relaxation [32]. For the g-
weighted TV, Bresson already showed [33] that by letting u vary continuously,
the regularization term becomes convex. To obtain a binary segmentation, any
levelset of u can be selected using thresholding [23]. The segmentation cue f :
(Ω × T ) → IR gives hints whether the pixel belongs to the foreground or the
background. The gradient operators in the regularization term are defined as

|∇xu| =

√(
∂u
∂x

)2
+
(
∂u
∂y

)2

in the spatial domain Ω, and |∇tu| =
∣∣∂u
∂z

∣∣ in the

temporal domain T . Edge information is incorporated by gx : (Ω×T )→ IR and
gt : (Ω × T ) → IR that subsequently represent edges in the current frame and
edges from one to the next frame. The edge potential gx is computed as gx =
exp

(
−a |∇xV |b

)
. Likewise one can compute gt = exp

(
−a |∇tV |b

)
. The edge

detection function maps strong edges to low values. Consequently discontinuities
in u that correspond to the image region, are likely to be located at low values of
gx and gt during the minimization process. This ensures that the segmentation
boundary snaps to strong edges in the image.

The Mumford-Shah [29] like data term was already used in [31] for shape
prior segmentation. For the segmentation cue f we distinguish the following
cases: If f = 0 the data term is eliminated and segmentation is done solely
based on edges. If f > 0 the segmentation cue gives a background hint. The
bigger the value of f , the more likely it will be classified as background. In a
similar manner f < 0 gives foreground hints. We use color features as described
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in Section 4.2 to compute f . Of course any other features or information can be
incorporated through the segmentation cue.

The usage of an anisotropic weighted TV norm for regularization has the
advantage that discontinuities in the spatial domain V and in the time domain T
are separated. This allows a more accurate segmentation of small and fast moving
objects. To illustrate this, Figure 2 shows a comparison of the regularization
term as used in (1), and the standard weighted TV as used in [33] and [28].
Therefore we simply replaced the regularization term by

∫
Ω×T g|∇u| dxdt with

g = exp
(
−a |∇V |b

)
. It shows that the anisotropic regularization delivers finer

details during fast moving parts of the video.

84 308 311

Fig. 2. Comparison of anisotropic TV and standard TV regularization. The first row
shows frames of the original video where the left player is tracked. In the second row
the anisotropic regularization term shows a better segmentation of fast moving details
than the standard weighted TV regularization in the third row.

3.2 Solving the Minimization Problem

In the following we derive an adaption of the primal-dual algorithm of Zhu et al.
[34]. To solve the energy defined in (1), we use duality by introducing the dual
variable p : Ω × T → IR3. The dual variable can be separated into a spatial and
a temporal component p = (px, pt)

T . Thus we get the following constrainted
primal-dual formulation of the segmentation model:

min
u

{
sup

p

{
Epd = −

∫
Ω×T

u∇ · p dxdt+ λ

∫
Ω×T

fu dxdt

}}
(2)

s.t. |px(x, t)| ≤ gx(x, t), |pt(x, t)| ≤ gt(x, t) . (3)
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The dependence on ∇u in the primal energy Ep (x, t, u,∇u) is removed in the
primal dual energy Epd (x, t, u,p), but the problem is now an optimization prob-
lem in two variables. This energy can be solved using alternating minimization
with respect to u and maximization with respect to p.

When updating the primal variable u (primal update) we derive (2) according
to u and arrive at the following Euler-Lagrange equation:

−∇ · p + λf = 0 . (4)

Performing a gradient descent update scheme this leads to

un+1 = Π[0,1]

(
un − τp (−∇ · p + λf)

)
, (5)

with τp denoting the timestep. The projection Π towards the binary set [0, 1]
can be done with a simple thresholding step.

In a second step we have to update the dual variable p (dual update). De-
riving (2) according to p one gets the following Euler-Lagrange equation:

∇u = 0 (6)

with the additional constraints on px and pt as defined in (3). This results into
a gradient ascent method with a trailed re-projection to restrict the length of p:

pn+1 = ΠC

(
pn + τd∇u

)
(7)

Here the convex set C =
{

q = (qx, qt)
T : |qx| ≤ gx, |qt| ≤ gt

}
denotes a cylinder

centered at the origin with the radius gx and height gt. The re-projection onto
C can be formulated as

ΠC

(
q
)

=

(
qx

max
{

1, |qx|
gx

} ,max {−gt,min {qt, gt}}

)T
(8)

Primal (5) and dual (7) updates are iterated until convergence. As u is a
continuous variable, and the energy in (1) is not strictly convex, u may not be
a binary image. Any level set of u can be selected as a binary segmentation by
applying a threshold θ ∈ [0, 1]. We left θ = 0.5 throughout this paper. An upper
boundary for the timesteps can be stated as τdτp ≤ 1

6 . In conjunction with [34],
an iterative timesteps schema was chosen as:

τd(n) = 0.3 + 0.02n , (9)

τp(n) =
1

τd(n)

(
1
6
− 5

15 + n

)
, (10)

where n is the current iteration.
As a convergence criterion the primal-dual gap is taken into account [34].

The primal energy Ep was already defined in (1). For the dual energy Ed we
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have to reformulate the primal-dual energy (2). For a fixed p, the minimization
problem of u can be determined as:

u(x, t) =
{

1 for −∇ · p(x, t) + λf(x, t) < 0
0 else (11)

Thus the dual energy can be written as

Ed =
∫
Ω×T

min {−∇ · p + λf, 0} dxdt . (12)

As the optimization scheme consists of a minimization and a maximization
problem, Ep presents an upper boundary of the true minimizer of the energy,
and Ed presents a lower boundary. The primal-dual gap is defined as

G (u,p) = Ep (u)− Ed (p) . (13)

An automatic convergence criterion can be defined based on the normalized
primal-dual gap, as

λ

∣∣∣∣G (u,p)
Ep (u)

∣∣∣∣ < ζ , (14)

with ζ the convergence threshold. It showed throughout the experiments, that
ζ = 0.06 is a good choice for the convergence threshold.

4 Implementation

4.1 The Segmentation Framework

Due to limitations in computer hardware such as memory, the size of volumes
that can be computed at once is limited. Although modern computing hardware
can handle volumes with several thousand frames, the necessity of working on
the complete sequence at once restricts tracking to offline data. Multiple similar
objects, or disjoint regions belonging to the same object (e.g. by occlusions)
make additional information necessary. When attempting a general framework
with objects of arbitrary size and shape, this becomes a difficult task.

To tackle these problems, we propose to use an incremental approach. Only n
frames are segmented at once. The algorithm is initialized on the first n frames,
e.g. by drawing a rectangle around the desired object. See Section 4.2 for details
of the feature based segmentation approach. If multiple objects are segmented,
the user can select the desired object manually. After convergence of the segmen-
tation algorithm (Section 3.2) foreground and background models are updated.
Next, the oldest m < n frames are discarded, and m new frames are added to
the volume V . To speed up the tracking process we compute the segmentation
only on small areas around the current object. To prevent the algorithm from
segmenting similar nearby objects, only regions that overlap with the segmen-
tation mask of the last step are selected. In case of occlusions the volumetric
representation of an object might be separated into several disjoint regions. Our
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overlap constraint causes the tracker to discard the new region. To handle oc-
clusions in general we therefore use the following strategy: We keep track of the
average region size. If the segmentation gets smaller than a certain percentage
of this average region size, the object is assumed to be occluded. In case of an
occlusion the region we are working on starts to grow slowly, and no updates of
the foreground and background model are done. If a region is segmented that is
big enough to be considered as the object, tracking is continued on this region.
Any slice k ∈ [1, n] of the volume V can be selected as the tracking result. The
number of frames the tracker looks into the future is defined by n− k. Thus the
smaller k and the bigger n, the more robust disjoint regions are tracked.

Implementation of the tracker was done mainly on the GPU using the CUDA
framework [35]. The volume depth was fixed for all experiments to n = 8, while
slice k = 4 was used for the segmentation result.

4.2 Color Tracking

Object appearance is represented in RGB color space using a foreground his-
togram HF : IR3 → [0, 1], and a background histogram HB : IR3 → [0, 1]. Fol-
lowing the ideas presented in [13], we are using the pixel-wise posterior instead
of modeling the color appearance using the likelihood like e.g. [36]. We define
M = MF ,MB as the model parameter that is either foreground F or back-
ground B. From the initialization, we obtain the foreground and background
likelihoods P (HF |MF ) and P (HB |MB). Applying Bayesian rule we can esti-
mate the posterior P (MF |HF ) of a pixel being foreground in the context of the
actual background given by P (HB |MB) and a region-prior P (Mj) with j ∈ F,B
by:

P (MF |HF ) =
P (HF |MF )P (MF )∑
j=F,B P (Hj |Mj)P (Mj)

(15)

We keep track of foreground and background models by updating them online
using an adaption rate α with likelihoods estimated from the current frame
Pnew(Hj |Mj) as:

P (Hj |Mj) = (1− α)Pold(Hj |Mj) + αPnew(Hj |Mj) with j ∈ F,B (16)

In contrast to [13] we do not apply marginalization. Instead we simply set
the segmentation cue f(x, t) = 0.5− P (MF |HF (V ((x, t)))).

5 Experimental Results

The videos presented in this Section and the software binaries are available online
at http://www.gpu4vision.org.

In Figure 3, a white cat is successfully tracked and segmented. The first row
shows the input video with different overlays. The rectangle is indicating the
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current working region. The blue color of the rectangle indicates that the tracker
is working normally. If the object is believed to be occluded in some slice, the
rectangle becomes orange. The current object is indicated by an orange overlay.
If parts of the image get segmented, but do not belong to the object, these
areas are indicated in red. Note that some regions are segmented that do not
belong to the object, but most of the incorrect regions are removed. The second
row shows the segmentation cue f where the value −0.5 is mapped to black and
indicates foreground, the value 0.5 is mapped to white and indicates background.
Frame 409 shows a segment where a cross-fade occurs. The tracker detects the
loss of the object, starts growing the search region and begins to search for the
object. Frame 418 shows that the object was found correctly. Also note that the
algorithm always correctly tracks the object despite large scale changes, as our
tracking approach makes no restrictions on the region size.

216 403 409 418 589

Fig. 3. Tracking example of a cat. The first row depicts the tracked object with the
current segmentation and the working region as overlays to the original input image.
In the second row the segmentation cue f is depicted in the range [−0.5, 0.5].

The second example presented here shows the tracking of a fish in an aquar-
ium. In the top row of Figure 4, the input video is shown, while the bottom
row shows the extracted fish. Note that although several partially and complete
occlusions occur, the tracker does not loose the object throughout the video.
In case of partial occlusions the fish is still correctly segmented, as can be seen
in frames 438 and 487. Also note that large shape changes do cause tracking
failures, as we make no assumption on shape. In Figure 5, the video is displayed
as a volume. The region corresponding to the fish is rendered using iso-surface
rendering based on the segmentation mask as obtained by the tracker.

Naturally a color based tracker without any restrictions on shape and scale
has its limitations. In Figure 6 a player in a volleyball game is tracked. In the
beginning the tracker starts very promising by separating skin tones from the
very similar sand. Around frame 337 the skin tones of other players appear in
the working region, and are learned as background. As one can see in frame 377
the tracker looses the legs and arms, but still tracks the very characteristic green
shirt. In frame 551 the player gets occluded by his team member, with a very
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64 158 168 200

298 438 487 940

Fig. 4. Tracking sequence of a fish in an aquarium, showing the ability of the tracker
to handle large changes in shape, and various kinds of occlusions. The first row depicts
the input video and the second row the extracted object.

similar appearance. As no additional high level information is available, both
players are tracked.

In Figure 7, another video sequence is shown where the tracker fails. We
tried to track the skin of the person. Due to the many occlusions the volume
corresponding to skin is separated into several disjoint regions, causing problems
for the tracker. Though the tracker can recover several times, the object is per-
manently lost in frame 276. Other reasons for the failure in this video is the bad
discrimination of foreground and background by using solely color.

Experimental results showed that a simple color tracker benefits form inter-
preting tracking as segmentation in 3D. The tracker successfully handled large
variations in scale and shape. The examples show, that the tracker can deal with
partial occlusions. Due to the incremental approach also long complete occlu-
sions do not oppose any problem to the tracker. Figure 6 shows an improtant
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Fig. 5. A schematic 3D rendering of the fish tracking sequence from Figure 4. The
tracking result is rendered in yellow.

270 320 337 377

419 551 592 1344

Fig. 6. Tracking of volleyball sequence, where tracker fails due to highly similar object
and colors in the background. The first row shows the input video and the bottom row
shows the extracted player.

characteristic of the tracker to adapt foreground and background models to the
most characteristic color values. This has the advantage of making the track-
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8 55 73

104 207 276

Fig. 7. Video example where tracking and segmentation fail, due to too many occlu-
sions, and bad discrimination of the color histograms.

ing of the object more robust, but also decreases segmentation performance.
It also showed that multiple objects with similar appearance cannot be kept
apart if occlusions occur. Here clearly high level information could help, e.g. in
the volleyball example restrictions on the region size could be made, and shape
information would definitely improve results.

6 Conclusion and Future Work

We presented a tracking approach that tracks objects by segmenting them in
a spatial-temporal volume. By using the segmentation result a pixel wise clas-
sification into foreground and background is achieved. The volumetric tracker
presented in this paper, shows promising results for the examples provided in
Section 5. An incremental tracking approach was presented and implemented,
that works only on a small volume at a time, eliminating memory problems and
allowing tracking of videos of arbitrary length. Due to the segmentation in a 3D
volume, information is also propagated back through time if the regions are con-
nected in 3D, showing improvements for tracking disjoint regions. As we make
no assumptions on shape or scale even large variations cause no problems to the
tracker. The tracker is able to handle partial as well as complete occlusions. It
was shown that a pure color based foreground and background description is
sometimes not sufficient, and leaves room for further improvement.

Future work will focus on more robust modeling of foreground and back-
ground regions. Texture features or patches would certainly improve segmenta-
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tion and tracking results. Furthermore more complex appearance models with
spatial modeling could improve the tracker significantly. Moreover we will focus
on a more efficient implementation to achieve near realtime performance.
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