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Abstract. The Active Appearance Model (AAM) is a widely used ap-
proach for model based vision showing excellent results. But one major
drawback is that the method is not robust against occlusions. Thus, if
parts of the image are occluded the method converges to local minima
and the obtained results are unreliable. To overcome this problem we pro-
pose a robust AAM fitting strategy. The main idea is to apply a robust
PCA model to reconstruct the missing feature information and to use
the thus obtained image as input for the standard AAM fitting process.
Since existing methods for robust PCA reconstruction are computation-
ally too expensive for real-time processing we applied a more efficient
method: Fast-Robust PCA (FR-PCA). In fact, by using our FR-PCA
the computational effort is drastically reduced. Moreover, more accurate
reconstructions are obtained. In the experiments, we evaluated both, the
FR-PCA model on the publicly available ALOI database and the whole
robust AAM fitting chain on facial images. The results clearly show the
benefits of our approach in terms of accuracy and speed when processing
disturbed data (i.e., images containing occlusions).

1 Introduction

Generative model-based approaches for feature localization have received a lot
of attention over the last decade. Their key advantage is to use a priori knowl-
edge from a training stage for restricting the model while searching for a model
instance in an image. Two specific instances of model-based approaches, the Ac-
tive Appearance Model (AAM) [1] and the closely related 3D Morphable Model
(3DMM) [2], have proven to show excellent results in locating image features in
applications such as face detection and tracking [3], face and facial expression
recognition [4], or medical image segmentation [5, 6].

Despite its large success, the AAM model has one main limitation; it is not
robust against occlusions. Thus, if important features are missing, the AAM
fitting algorithm tends to get stuck in local minima. This especially credits for



human faces since the large variability in the image data such as certain kinds
of glasses, makeups, or beards can not totally be captured in the training stage.
Similar difficulties also arise in other areas of model-based approaches (e.g., in
the medical domain [6]).

In the recent years some research was dedicated to generative model-based
approaches in the presence of occlusions by investigating robust fitting strategies.
In the original AAM approach [1] fitting is treated as a least squares optimiza-
tion problem, which is, of course, very sensitive to outliers due to its quadratic
error measure (L2 norm). To overcome this problem, the work of [7] extended
the standard fitting method (a) by learning the usual gray-value differences en-
countered during training and (b) by ignoring gray-value differences exceeding
a threshold derived from these values during fitting. But the main drawback of
this method is that the required threshold depends on the training conditions,
which makes it improper for real-life situations. In contrast, in [8] a RANSAC
procedure is used for the initialization of the AAM fitting in order to get rid
of occlusions due to differing poses. However, since the AAM fitting remains
unchanged this approach has still problems with appearance outliers.

Another direction of research was dedicated to replacing the least-squares
error measure by a robust error measure in the fitting stage [9]. Later this ap-
proach was further refined by comparing several robust error measures [10]. The
same strategy is also used in [11] and was adapted to a statistical framework
in [12]. But the latter approach is limited in several ways: (a) a scale parameter
is required, which is hard to determine in general, (b) the framework around the
inverse compositional algorithm is specifically tailored to tracking, and (c) the
face models are built from the tracked person, which limits its generic applica-
bility.

In the context of medical image analysis a robust AAM fitting approach was
presented in [6]. In their method, which is based on the standard AAM fitting
algorithm, gross disturbances (i.e., outliers) in the input image are avoided by
ignoring misleading coefficient updates in the fitting stage. For that purpose,
inlier and outlier coefficients are identified by a Mean Shift based analysis of
the residual’s modes. Then, an optimal sub-set of modes is selected and only
those pixels covered by the selected mode combination are used for actual resid-
ual calculation. The Robust AAM Matching (RAAM) approach shows excellent
results on a number of medical data sets. However, the mode selection is compu-
tationally very complex. Thus, this method is impractical for real-time or near
real-time applications.

To overcome these drawbacks we introduce a new efficient robust AAM fit-
ting scheme. In contrast to existing methods the robustness (against occluded
features) is not directly included in the fitting step but is detached. In fact, we
propose to run a robust pre-processing step first to generate undisturbed input
data and then to apply a standard AAM fitting. Since the robust step, which
is usually computationally intensive, has to be performed only once (and not
iteratively in the fitting process), the computational cost can be reduced.



In particular, the main idea is to robustly replace the missing feature infor-
mation from a reliable model. Thus, our work is somehow motivated by [13] and
[14], where beards and eye-glasses, which are typical problems when applying an
AAM approach, are removed. In [14] a PCA model was built from facial images
that do not contain any eye-glasses. Then, in the removal step the original input
images are reconstructed and the regions with the largest reconstruction errors
are identified. These pixels are iteratively replaced by the reconstruction. But
this approach can only be applied if the absolute number of missing pixels is
quite small. In contrast, in [13] two models are computed in parallel, one for
bearded faces and one for non-bearded faces. Then, in the removal step for a
bearded face the detected beard region is reconstructed from the non-bearded
space.

Since both methods are restricted to special types of occlusion or limited
by a pre-defined error level, they can not be applied for general tasks. Thus,
in our approach we apply a robust PCA model (e.g., [15–17]) to cope with
occlusions in the original input data. For that purpose, in the learning stage a
reliable model is estimated from undisturbed data (i.e., without any occlusions),
which is then applied to robustly reconstruct unreliable values from the disturbed
data. However, a drawback of these methods is their computational complexity
(i.e., iterative algorithms, multiple hypotheses, etc.), which hinders practical
applicability. Thus, we developed a more efficient robust PCA method [18] that
overcomes this limitation.

Even though the proposed robust AAM fitting is quite general, our main
interest is to apply it to facial images. Thus, this application is evaluated in
the experiments in detail. However, we also note that it is necessary that the
image patch, where the robust PCA is applied has to be roughly aligned with
the feature under consideration. In the case of our face localization this can be
ensured by using a rough face and facial component detection algorithm inspired
by the Viola-Jones algorithm [19]. Moreover, the applied PCA model can handle
a wide variability in facial images.

This paper is structured as follows. In Section 2 we introduce and discuss our
Fast-Robust PCA (FR-PCA) approach [18]. In addition, we performed experi-
ments on the publicly available ALOI database, which show that our approach
outperforms existing robust methods in terms of speed and accuracy. Next, in
Section 3, we introduce our robust AAM fitting algorithm that is based on the
robust PCA scheme. To demonstrate its benefits, we also present experimental
results using facial images. Finally, we discuss our findings and conclude our
work in Section 4.

2 Fast-Robust PCA

If a PCA space U = [u1, . . . ,ul−1] is estimated from l samples, an unknown
sample x = [x1, . . . , xm], m > l, can usually be reconstructed to a sufficient
degree of accuracy by p, p < l, eigenvectors:



x̃ = Upa + x̄ =
p∑

j=1

ajuj + x̄ , (1)

where x̄ is the sample mean and a = [a1, . . . , ap] are the PCA coefficients ob-
tained by projecting x onto the subspace Up.

If the sample x contains outliers, e.g., occluded pixels, (1) would not yield
a reliable reconstruction; a robust method is required (e.g., [15–17]). But since
these methods are computationally very expensive (i.e., they are based on itera-
tive algorithms) they are often not applicable in practice. Thus, in the following
we introduce a more efficient robust PCA approach [18].

2.1 Fast-Robust Training

The training procedure, which is sub-divided into two major parts, is illustrated
in Figure 1. First, a standard PCA subspace is generated from all training im-
ages. Second, in addition, a large number of smaller subspaces (sub-subspaces)
is estimated from small sets of randomly selected data points (sub-sampling).
Since occlusions are often considered to be spatially coherent the sub-sampling is
done in a smart way. Hence, in addition to the random sampling over the whole
image region, the random sampling is also restricted to image slices (vertical,
horizontal, quadrant).
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Fig. 1. FR-PCA training. Generation of the subspace and the smaller sub-subspaces
derived by randomly sub-sampling the input images.



2.2 Fast-Robust Reconstruction

Given a new unseen test sample x, the robust reconstruction is performed in two
stages. In the first stage (gross outlier detection), the outliers are detected based
on the sub-subspace reconstruction errors. In the second stage (refinement),
using the thus estimated inliers a robust reconstruction x̃ of the whole image is
generated.

Assuming that in the training stage N sub-subspaces were estimated as de-
scribed in Section 2.1, first, in the gross outlier detection, N sub-samplings sn

are generated according to the corresponding sub-subspace. In addition, we de-
fine the set of “inliers” r = s1 ∪ . . . ∪ sN . This set of points is illustrated in
Figure 2(a) (green points). Next, for each sub-sampling sn a reconstruction s̃n

is estimated by (1), which allows to estimate the (pixel-wise) error-maps

en = |sn − s̃n| , (2)

the mean reconstruction errors ēn for each of the N sub-samplings, and the mean
reconstruction error ē over all sub-samplings.

Based on these errors we can detect the outliers by local and global threshold-
ing. For that purpose, the sub-samplings sn are ranked by their mean error ēn.
The local thresholds (one for each sub-sampling) are then defined by θn = ēnwn,
where the weight wn is estimated from the sub-sampling’s rank to remove less
outliers from first ranked sub-samplings. The global threshold θ is set to the
mean error ē. Then, all points sn,i for which

en,i > θn or en,i > θ (3)

are discarded from the sub-samplings sn obtaining s̃n. Finally, we re-define the
set of “inliers” by

r = s̃1 ∪ . . . ∪ s̃q , (4)

where s̃1, . . . , s̃q indicate the first ranked q sub-samplings such that |r| ≤ k and
k is the pre-defined maximum number of points. The thus obtained “inliers” are
shown in Figure 2(b).

The gross outlier detection procedure allows to remove most outliers (i.e., oc-
cluded pixels), thus the obtained set r contains almost only inliers. To further im-
prove the final result in the refinement step, the final robust reconstruction is es-
timated similar to [17]. In particular, starting from the point set r = [r1, . . . , rk],
k > p, obtained from the gross outlier detection, an overdetermined system of
equations is iteratively solved. That is, the following least square optimization
problem

E(r) =
k∑

i=1

xri
−

p∑
j=1

ajuj,ri

2

(5)

has to be solved obtaining the coefficients a. Hence, the reconstruction x̃ can be
estimated and those points with the largest reconstruction error are discarded



from r (selected by a reduction factor α). These steps are iterated until a pre-
defined number of remaining pixels is reached. Thus, finally, an outlier-free sub-
set is obtained, which is illustrated in Figure 2(c), and the robust reconstruction
x̃ can be estimated.

(a) (b) (c)

Fig. 2. Data point selection process. (a) Data points sampled by all sub-subspaces. (b)
Remaining data points after applying the sub-subspace procedure. (c) Resulting data
points after the iterative refinement process for the calculation of the PCA coefficients.

Such a robust reconstruction result obtained by the proposed approach com-
pared to a non-robust method is shown in Figure 3. One can clearly see that
the robust method considerably outperforms the standard PCA. Note, that the
blur visible in the reconstruction of the FR-PCA is the consequence of taking
into account only a limited number of eigenvectors.

(a) (b) (c)

Fig. 3. Demonstration of the insensitivity of the robust PCA to occlusions. (a) Oc-
cluded image, (b) reconstruction using standard PCA, and (c) reconstruction using
the FR-PCA.

In general, the robust estimation of the coefficients is computationally very
efficient and thus very fast. In the gross outlier detection procedure only sim-
ple matrix operations (standard PCA) have to be performed, which are very
fast; even if hundreds of sub-subspace reconstructions have to be executed. The
computationally more expensive part is the refinement step, where an overde-
termined linear system of equations has to be solved iteratively. Since very few
refinement iterations have to be performed due to the preceding gross outlier
detection, the total runtime is kept low.



2.3 Experimental Results

To show the benefits of the proposed Fast-Robust PCA method (FR-PCA) we
compare it to the standard PCA (PCA) and the robust PCA approach of [17] (R-
PCA). We chose the latter one, because of its proven accuracy and applicability.
Our refinement process is similar to theirs.

In particular, the experiments are evaluated on the ”Amsterdam Library
of Object Images (ALOI)” database [20]. The ALOI database consists of 1000
different objects. Over hundred images of each object are recorded under different
viewing angles, illumination angles and illumination colors, yielding a total of
110,250 images. For our experiments we arbitrarily choose 20 categories (018,
032, 043, 074, 090, 093, 125, 127, 138, 151, 156, 174, 200, 299, 354, 368, 376, 809,
911, 926), where an illustrative subset of objects is shown in Figure 4.

Fig. 4. Illustrative examples of objects used in the experiments.

In our experimental setup, each object is represented in a separate subspace
and a set of 1000 sub-subspaces, where each sub-subspace contains 1% of data
points of the whole image. The variance retained for the sub-subspaces is 95%
and 98% for the whole subspace, which is also used for the standard PCA and
the R-PCA. Unless otherwise noted, all experiments are performed with the
parameter settings given in Table 1.

Table 1. Settings for the FR-PCA (a) and the R-PCA (b) for the experiments.

(a)

FR‐PCA R‐PCA

Number of initial points k  130p Number of initial hypotheses H 30
Reduction factor α 0.9 Number of initial points k 48p

Reduction factor α 0.85
K2 0.01

Compatibility threshold 100

(b)

FR‐PCA R‐PCA

Number of initial points k  130p Number of initial hypotheses H 30
Reduction factor α 0.9 Number of initial points k 48p

Reduction factor α 0.85
K2 0.01

Compatibility threshold 100



A 5-fold cross-validation is performed for each object category, resulting in
80% training- and 20% test data, corresponding to 21 test images per iteration.
The experiments are accomplished for several levels of spatially coherent occlu-
sions. To sum up, 2100 reconstructions are executed for every level of occlusion.
Quantitative results for the root-mean-squared (RMS) reconstruction-error per
pixel are given in Table 2. In addition, in Figure 5 we show box-plots of the RMS
reconstruction-error per pixel for different levels of occlusions.
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Fig. 5. Box-plots for different levels of occlusions for the RMS reconstruction-error per
pixel. PCA without occlusion is shown in every plot for the comparison of the robust
methods to the best feasible reconstruction result.

Starting from 0% occlusion, all subspace methods exhibit nearly the same
RMS reconstruction-error. Increasing the portion of occlusion, the standard PCA
shows large errors whereas the robust methods are still comparable to the PCA
without occlusion (best feasible case). The FR-PCA presents the best perfor-
mance of the robust methods over all occlusion levels.

Finally, we evaluate the runtime1 for the applied different PCA reconstruc-
tion methods, which are summarized in Table 3. It can be seen that compared
to R-PCA using FR-PCA speeds up the robust reconstruction by a factor of 18!
If more eigenvectors are used or if the size of the images increases, the speed-up
factor gets even larger. This drastic speed-up can be explained by the fact that
the refinement process is started from a set of data points mainly consisting of

1 The runtimes are measured in MATLAB using an Intel Xeon processor running at
3GHz. The resolution of the images is 192x144 pixels.



Table 2. Comparison of the reconstruction errors of the standard PCA, the R-PCA
and the FR-PCA. (a) RMS reconstruction-error per pixel given by mean and standard
deviation. (b) RMS reconstruction-error per pixel given by robust statistics: median,
upper- and lower quartile. Those results correspond to the box-plots in Figure 5.

(a)

Occlusion

  mean std mean std mean std mean std mean std mean std

PCA 9.96 5.88 21.30 7.24 34.60 11.41 47.72 14.37 70.91 19.06 91.64 19.78
R‐PCA 11.32 6.92 11.39 7.03 11.98 8.02 20.40 19.90 59.73 32.54 87.83 26.07

FR‐PCA 10.99 6.42 11.50 6.69 11.59 6.71 11.66 6.88 26.48 23.57 73.20 27.79

70%
Error per Pixel

0% 10% 20% 30% 50%

(b)

Occlusion

  median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75 median Q.25 Q.75

PCA 9.58 5.77 14.02 21.29 16.56 26.01 34.67 27.71 42.17 47.24 38.22 57.42 70.45 57.03 84.54 89.49 77.55 106.15
R‐PCA 10.54 6.39 15.81 10.63 6.50 15.76 10.95 6.60 16.16 13.83 7.96 23.13 62.76 32.47 82.98 87.80 70.64 104.99

FR‐PCA 10.46 6.57 15.15 10.97 6.96 15.88 11.01 7.01 16.06 10.98 7.08 16.10 17.25 9.75 36.33 75.04 56.84 92.61

Error per Pixel
0% 10% 20% 30% 50% 70%

inliers. In contrast, in [17] several point sets (hypotheses) have to be created.
The iterative procedure has to run for every set resulting in a poor runtime
performance. To decrease the runtime, the number of hypotheses or the num-
ber of initial points has to be reduced, which decreases reconstruction accuracy
significantly. However, the runtime of our approach only depends slightly on the
number of starting points, thus having nearly constant execution times. The run-
time of both algorithms depends on the number of eigenvectors used and their
length. Increasing one of those values, the gap between the runtime for both
methods is even getting larger.

Table 3. Runtime comparison. Compared to R-PCA, FR-PCA speeds-up the compu-
tation by a factor of 18.

Occlusion 0% 10% 20% 30% 50% 70%

PCA 0.006 0.007 0.007 0.007 0.008 0.009

R‐PCA 6.333 6.172 5.435 4.945 3.193 2.580
FR‐PCA 0.429 0.338 0.329 0.334 0.297 0.307

Mean Runtime [s]

3 Robust AAM Fitting

The Active Appearance Model (AAM) [1] is a widely used and successful method
for model based vision. But one of the major drawbacks is its non-robustness to
occlusions in the input image. Thus, we propose a robust AAM fitting scheme.
In particular, we run a robust pre-processing step based on our FR-PCA (see
Section 2) to generate undisturbed input data and then apply a standard AAM
fitting. Since the robust step, which is usually computationally intensive, has to



be performed only once (and not iteratively in the fitting process), the compu-
tational cost can be reduced.

3.1 Active Appearance Model

The AAM [1] is a combination of a parametric model able to generate synthetic
images and an efficient fitting algorithm to fit the model to unseen input images.

The model describes the variation in shape and texture of a training set
representing an object. By applying PCA to the shape, texture, and the combi-
nation of shape and texture, the modes of variation are calculated. By keeping
solely a certain percentage of the eigenvalue energy spectrum the model can be
represented very compactly.

The AAM model fitting is performed in an analysis-by-synthesis manner,
i.e., the parameters of the model are optimized to generate a synthetic image
that is as similar as possible to the unseen input image. The optimization of the
model parameters is accomplished in a gradient descent optimization scheme.
The cost function is defined as the L2 norm of the intensity differences (between
the estimated model and the given input image). To efficiently approximate the
Jacobian of the cost function, a learned regression model is used that describes
the relationship between parameter updates and texture residual images accord-
ing to [1]. A local minimum of the cost function corresponds to a model fitting
solution, which is not necessarily the global optimal solution. That is, the model
fitting is very prone to get stuck in a local minimum because of the very high
dimensional parameter space. To overcome this problem, multi-resolution tech-
niques have to be incorporated and the fitting requires a coarse initialization.

3.2 Robust Fitting

Since the parameter updates for the fitting process are estimated from the tex-
ture’s residual, the standard AAM is not robust against occlusions. To overcome
this limitation, we propose to use our FR-PCA, introduced in Section 2, as a
pre-processing step to remove disturbances in the input image and to perform
the AAM fitting on the thus obtained reconstruction. Occlusions can not only
be of artificial spatially coherent nature, which were taken for the quantitative
evaluation of the FR-PCA, but also in case of facial images, beards or glasses.
Those disturbances of facial images influence the quality of the fitting process
of AAMs. Thus, for the pre-processing step we trained the FR-PCA using facial
images which do not exhibit any disturbances, i.e., no beards and no glasses.

Figure 6, which was taken from the Caltech Faces data set [21], demonstrates
the whole processing chain for robust AAM fitting under occlusion. Figure 6(b)
shows the initialization of the AAM on the occluded input image. The rough
initialization of the AAM is done using a Viola-Jones face detection approach
[19], several AdaBoost-based classifiers for locating eyes and mouth, and a face
candidate validation scheme to robustly locate the rough face position [22].

Figure 6(c) demonstrates the converged fit of the AAM on the occluded
image which failed totally. In contrast, using the FR-PCA as a pre-processing



step results in the converged fit exhibited in Figure 6(d). In Figure 6(e), the shape
from the fitting process on the reconstructed image is overlayed on the original
input image. It can be clearly seen that the AAM can not handle occlusions
directly whereas the fit on the reconstructed image is well defined.

(a) (b) (c) (d) (e)

Fig. 6. Handling of occlusions for AAM fitting. (a) Test image. (b) Initialization of
the AAM on the occluded image. (c) Direct AAM fit on the occluded image. (d) AAM
fit on the reconstructed image. (e) Shape from (d) overlayed on the test image. Image
taken from Caltech Faces data set [21].

3.3 Experimental Results

We trained a hierarchical AAM for facial images on three resolution levels (60x80,
120x160, 240x320). Our training set consists of 427 manually annotated face
images taken from the Caltech face database [21] and our own collection. Taking
also the mirrored versions of those images doubles the amount of training data.
For model building we keep 90% of the eigenvalue energy spectrum for the lower
two levels and 95% for the highest level to represent our compact model.

Table 4. Point-to-Point error. Comparing the direct fit of the AAM on the test image
to the AAM fit utilizing the FR-PCA pre-processing (point errors are measured on
240x320 facial images).

Occlusion
  mean std mean std mean std mean std mean std

AAM 4.05 5.77 12.06 11.25 15.19 12.78 18.76 14.89 18.86 13.94
AAM + FR‐PCA 5.47 4.97 5.93 5.41 6.06 5.27 9.31 8.75 11.33 9.25

Point‐Point Error
0% 10% 20% 30% 40%

As described in Section 3.2, we use the FR-PCA as a pre-processing step and
perform the AAM fitting on the reconstructed images. Hence, we trained the FR-
PCA (Section 2.1) using facial images which do not exhibit any disturbances,
i.e., no beards and no glasses. The variance retained for the whole subspace and
for the sub-subspaces is 95%.



A 5-fold cross validation is performed using the manually annotated images,
resulting in 80% training- and 20% test data per iteration. For each level of
occlusion, 210 AAM fits are executed. Table 4 shows the point-to-point error
(Euclidean distance of converged points to the annotated points) comparing the
direct AAM fit on the occluded image to the AAM fit utilizing the FR-PCA
pre-processing. Starting from 0% occlusion, the error for the AAM + FR-PCA
is slightly larger than the direct fit, because of the unavoidable reconstruction-
blur resulting from the FR-PCA reconstruction. When increasing the size of the
occlusion, the big advantage of the FR-PCA pre-processing can be seen.

Up to now, to have a steerable environment, we used artificial spatially co-
herent occlusions. To show the advantage of FR-PCA pre-processing also on
natural occlusions such as tinted glasses, occlusions caused by wearing a scarf
or by disturbances like beards, Figure 7 depicts some AAM fits on images taken
from the AR face database [23] and from our own database. The FR-PCA pre-
processing step takes around 0.69s per image (150x200) measured in MATLAB
using an Intel Xeon processor running at 3GHz.

Fig. 7. Examples of AAM fits on natural occlusions like tinted glasses, wearing a scarf
or beards. (First row) Test images with AAM initialization. (Second row) Direct AAM
fit on the test images. (Third row) AAM fit utilizing the FR-PCA pre-processing.
Images are taken from the AR face database [23] and our own database (last column).



4 Conclusion

We presented a robust AAM fitting scheme. In contrast to existing approaches
the robustness is not included in the fitting step but is detached in a pre-
processing step. The main idea is to robustly reconstruct unreliable data points
(i.e., occlusions) in the pre-processing step and to use the thus obtained undis-
turbed images as input for a standard AAM fitting. To speed up this robust
pre-processing step, we introduced our Fast-Robust PCA method [18]. The main
idea is to estimate a large number of small PCA sub-subspaces from a sub-set of
points in parallel. By discarding those sub-subspaces with the largest errors the
number of outliers in the input data can be reduced, which drastically decreases
the computational effort for the robust reconstruction. In the experiments, we
showed that our Fast-Robust PCA approach outperforms existing methods in
terms of speed and accuracy. In addition, the whole processing chain (robust
pre-processing and AAM fitting) was demonstrated on facial images in the pres-
ence of artificial and natural occlusion noise. The results show that our robust
approach can handle such situations considerably better than a non-robust ap-
proach. Moreover, due to the very efficient robust pre-processing the proposed
robust AAM fitting method is applicable in practice for real-time applications.
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