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Abstract

Recently, several approaches have been introduced for
incorporating the information from multiple cameras to in-
crease the robustness of tracking. This allows to handle
problems of mutually occluding objects – a reasonable sce-
nario for many tasks such as visual surveillance or sports
analysis. However, these methods often ignore problems
such as inaccurate geometric constraints and violated ge-
ometric assumptions, requiring complex methods to resolve
the resulting errors. In this paper, we introduce a new mul-
tiple camera tracking approach that inherently avoids these
problems. We build on the ideas of generalized Hough vot-
ing and extend it to the multiple camera domain. This offers
the following advantages: we reduce the amount of data
in voting and are robust to projection errors. Moreover,
we show that using additional geometric information can
help to train more specific classifiers drastically improv-
ing the tracking performance. We confirm these findings by
comparing our approach to existing (multi-camera) track-
ing methods.

1. Introduction

Object tracking is an important task in computer vision
and is often one of the first steps for video analysis in
surveillance, sports, or industrial applications. Thus, there
is still a high scientific interest and various successful meth-
ods have been proposed (e.g., [7, 3, 2]). For multiple inter-
acting objects occlusions make tracking very challenging.
This especially applies for person tracking, when a large
number of persons are occluding each other and the posi-
tions of single instances can no longer robustly be identified
(e.g., [6, 8, 12]).

One way to overcome this problem is to take advan-
tage of multiple cameras. Typical approaches for multi-
camera tracking assume overlapping cameras observing the

same 3D scene, exploiting several real-world constraints
like a common geometry. One example for such real-
world constraints for applications like person tracking are
that objects are moving on a common ground-plane (e.g.
[5, 13, 11, 20, 21]). In general, these methods first apply
change detection [13, 20, 21] or a fixed pre-trained classi-
fier [5] to estimate the foreground likelihood of specific pix-
els. Then, this information is fused exploiting the common
ground plane by either estimating a score map [13, 20, 5] or
by estimating axes intersections [21].

These methods, however, ignore several important issues
hampering their applicability. First, detection and segmen-
tation errors in the original views are projected onto the
ground plane and have to be handled in the common view.
Second, in general simple geometric transformations are
only valid for a single ground plane, which results in un-
reliable projections for point not lying on the ground plane.
Third, using a pixel-wise projection ignores imperfect lo-
calization in the different views and (minor) uncertainties
in the homography. Altogether, this results in an inaccurate
localization, making it hard to estimate an adequate back-
projection onto the single view or could cause ghost projec-
tions (i.e., a detection coming from the intersection of two
unreliable projections) as shown in Figure 1(a).

To overcome these limitations, we introduce a new mul-
tiple camera tracking approach, which extends the ideas of
generalized Hough voting [4] and implicitly deals with of-
ten ignored uncertainties in the projection. Thus, the con-
tribution of the paper is twofold. First, we introduce a new
Hough voting scheme which relates all foreground proba-
bilities to a position on the ground plane. In this way the
geometry information is preserved and the voting results
can be fused over multiple cameras implicitly considering
uncertainties in the projection and still preserving the ben-
eficial properties such as robustness to occlusions. Second,
using geometric verification and back-projection between
views allows for adopting online to the scene for improv-



(a) Common approach to multi-camera tracking: based on background
subtraction (i) the foreground pixels are projected to the common ground
plane (ii), which may cause ghost detections and requires complex rea-
soning.

(b) Multi-camera tracking by joint Hough votes: foot-point voting to
the ground plane generates a Hough map of each camera (iii), which are
projected onto a common ground plane (iv) implicitly considering the
geometric uncertainties.

Figure 1. Comparison between common approaches to multi-camera tracking based on background subtraction (a) and our proposed
approach based on joint Hough voting (b) onto a common ground plane.

ing detection for each individual camera view, which further
improves the tracking results over time. On top of the fused
vote map we introduce a particle filtering approach exploit-
ing geometric information to avoid overlapping particles on
a top view map of the common ground plane.

The reminder of the paper is organized as fol-
lows. First, in Section 2 we summarize the main ideas
of related homography-based multi-camera tracking ap-
proaches. Next, in Section 3 we introduce the novel multi-
camera Hough tracking approach. Finally, we show experi-
mental results in Section 4 and summarize and conclude the
paper in Section 5.

2. Homographies and Tracking

In the following, we introduce the notation for homo-
graphies and give an overview of related tracking methods
exploiting geometric information provided via a common
ground-plane.

2.1. Homographies in Multiple Camera Setups

A general multi-camera tracking setup consists of n
overlapping cameras, each of them observing the same 3D
scene. Then each camera view v has its own local image co-
ordinate system {xv, yv}which can be mapped to the world
coordinate system {X,Y,W}, requiring a fully calibrated
setup. For a detailed review on single and multi-camera
tracking we would refer to [20].

For many real-world tracking applications it can be as-
sumed that the objects-of-interest are mainly moving on a
common ground plane. Thus, the mapping of an image
point x from a camera v onto a corresponding world point
X on the ground plane can be realized by a plane to plane

homography:

X = Hvx , (1)

where Hv is a homogeneous 3× 3 matrix. Both, world and
image coordinates, are given as homogeneous 3 × 1 vec-
tors X = (X,Y,W )> and x = (x, y, 1)>, respectively.
The plane to plane homography defines the transformation
up to scale, hence the matrices Hv have only 8 degrees of
freedom. Real word positions can be computed by the nor-
malization X̃ = (X̃, Ỹ ) = (X/W,Y/W )> [17].

2.2. Homography-based Tracking

Since homographies can easily be estimated (e.g., by
extracting SIFT points and running RANSAC), there has
been a considerable interest for applying homography-
based techniques for multi-camera tracking. Fleuret et al.
[13] start with a simplified background subtraction then
generate a generative model describing persons as rectan-
gles. This is used to estimate a joint occupancy for each
frame and for each position on the ground plane. By addi-
tionally using a color and a motion model the trajectories of
multiple persons can be estimated. To avoid that the score
map is polluted by other moving objects, Berclaz et al. [5]
applied a detector instead of a simple background subtrac-
tion.

Khan and Shah [19] first obtain foreground likelihood
maps for each view by applying a mixture of Gaussians
model. These likelihood maps are then projected onto the
ground plane using the given homographies and are accu-
mulated into a synergy map. The synergy map is thresh-
olded yielding the approximate feet positions of the persons,
which are then back-projected onto each view. The actual



tracking is then performed using a look-ahead technique on
the previously estimated foot-point positions in the ground
plane. To make the tracking more robust, they slightly ex-
tended this approach [20] by sweeping over multiple planes
parallel to the ground plane, to handle inaccurate projec-
tions.

Using the ground plane assumption for multi-camera
tracking has two main disadvantages. First, the foot-points
are often not visible due to occlusions and second, in differ-
ent camera views the foot-points are not well defined (e.g.,
frontal vs. side view). Thus, Eshel and Moses [10] [11]
track the heads of persons. Moreover, similar to [20] they
also sweep over different planes to capture persons of dif-
ferent heights. The main drawbacks of these approaches
are that the heads must be visible in all views, that several
planes have to be calibrated in parallel, and that the camera
positions are limited to deep viewing angles.

A different approach to overcome the problem of inac-
curately estimated foreground maps was proposed by Kim
and Davis [21]. Starting with background subtraction they
iteratively run a color segmentation step and estimate an in-
creasingly better foreground map. The thus obtained foot-
point might be inaccurate due to segmentation errors, they
further propose to estimate the intersection of vertical axes
of the estimated blobs to obtain a common localization in
the top view. The actual tracking is then performed on the
top view by applying a particle filter framework.

3. Multi-Camera Hough Tracking
When projecting image points x from perspective im-

ages to world points X onto the ground plane using the
plane-to-plane homography Hv one has always to deal with
uncertainty of these measures [9]. This uncertainty is influ-
enced by two possible error sources, namely the uncertainty
of the homography ΣHv

and the uncertainty of the image
point ΣI resulting from the uncertainty in detection of the
image point x in the image.

Following [17] the uncertainty ΣX of a world coordinate
X, computed by the projection of an image point x using
homography Hv is analytically given by

ΣX = JHv
ΣHv

J>Hv
+ JIΣIJ

>
I , (2)

where

JI = ∂X
∂x = 1

W

[
h>1 −Xh>3
h>2 −Y h>3

]
(3)

and

JHv =
∂X

∂h
=

1

W

[
x> 0 −Xx>

0 x> −Y x>

]
(4)

are the Jacobian matrices, and h>i is the i-th row of Hi. As-
suming that the correspondences for computation of the ho-
mography were accurately chosen, the uncertainty in ΣHv

can be neglected. Thus, the uncertainty ΣX at the ground
plane position simplifies to

ΣX = JIΣIJ
>
I , (5)

where the uncertainties in image coordinates

ΣI =

 σx2 σxy 0
σxy σy2 0
0 0 0

 (6)

are derived from the inaccuracy in the image points.
However, these uncertainties are often ignored by ex-

isting multi-camera approaches (e.g., [13, 20, 21]). In the
following, we introduce a multi-camera tracking approach
building on the idea of generalized Hough voting [14, 23]
that implicitly copes with these problems. We first run a de-
tector and then, given the camera-to-ground plane homogra-
phies, we map the obtained votes onto the common top view
map. This principle is depicted in Figure 1(b). Then, we
introduce a multi-object particle filtering approach, which
uses the prior knowledge that objects cannot occlude each
other on a top view map. The tracking results can then be
used to improve the combined vote maps by a novel view
specific update scheme exploiting the geometric informa-
tion to reduce the voting noise. In the following we will use
the terms top view and ground plane interchangeable.

3.1. Multi-camera Hough Voting

To cope with projection errors we implicitly formulate
the uncertainty in the world points ΣX via Hough voting
maps. In general, Hough Forests [14, 23] learn a mapping
from image features onto a Hough space. Each Hough For-
est F consists of a set of trees T , where each tree T is
constructed based on a set of patches Pi = (Ii, ci,di); Ii
is the appearance of the patch, ci is the class label of the
patch, and di is the offset vector of the patch with respect
to the object’s centroid.

During training, the class label uncertainty U1(P) =
|P|·Entropy(ci) as well as the offset uncertainty U2(P) =∑

i:ci=1 (di − dP)2 are optimized. The class label uncer-
tainty enforces binary tests used as split criteria during the
tree construction to consider the impurity of the class labels
ci, whereas the offset uncertainty enforces to group patches
coming from a local environment. Finally, in a leaf node L
the vote vectors DL = {di} of the object patches and the
foreground probability CL are stored. During testing for
a patch at position y the probability p(E(x)|L(y)) is esti-
mated, whereE(x) indicates whether an object is present at
location x and L(y) is the corresponding leaf node where
the patch sampled at position y ends up. For each tree T
the probability can be estimated as



p(E(x)|L(y)) = p(d(y) = y − x|c(y) = 1, L(y))
·p(c(y) = 1|L(y)).

(7)
The first term can be approximated by a Parzen window
based on the offset vectors and the second term is the pro-
portion of object patches CL in a leaf node L at training
time. The probabilities for each location y within the image
are accumulated into a Hough map V over all trees T within
the Hough forest. The actual detection task is finally per-
formed by mode seeking in the thus obtained Hough map.

This idea can be extended for multiple camera views. In
fact, we can generate a common Hough map, where the sin-
gle view maps are accumulated by projecting them onto a
common plane using the homographies. However, as de-
scribed above such projections are prone to uncertainties
ΣX of a world point X resulting from the uncertainties of
the corresponding image point x. In our case an image point
x is associated with a patch representation Ii(x) and the un-
certainty results from inaccurately estimated endpoints of
the vote vectors DL, where L is the leaf node where Ii(x)
ends up. The uncertainty Eq. (6) could be calculated over
the endpoints of the vote vectors DL within each leaf node.
Alternatively, the uncertainty of the statistical distribution
can also be approximated by Monte-Carlo simulation [17].
For our Hough voting scheme, however, this is already esti-
mated within each of the leaf nodes L by the offset vectors
DL. Thus, we can implicitly handle the uncertainty in the
projection to the common top view map.

The approach described so far builds on voting to the
centroid of an object. Considering our intended applica-
tion, i.e., multi-camera object tracking, the centroid voting
would require a large calibration effort. In fact, depending
on the vote center (and therefore depending on the height of
the person) different homographies would be required. As-
suming that objects are moving on a common ground plane
this large calibration effort can be avoided. Therefore, we
modify the voting scheme: instead of voting for the objects
centroid we propose to vote for the foot-point of the object.
Since we know the plane to plane homography we can es-
timate the extend of the objects at all positions within the
image. This information can be exploited to avoid a large
evaluation effort by using the appropriate scale at different
positions within the image.

Besides the implicitly handled uncertainties the joint
multi-camera Hough voting enables the late fusion of de-
tection information. Thus, all information is kept for track-
ing and we do not have to discard possibly useful informa-
tion at a too early stage. Compared to approaches which
solely rely on background subtracted images (as illustrated
in Figure 1(a)) our detection based approach has further the
advantage that we do not rely on motion and that only the
object-of-interest is considered while other moving objects

are ignored. The advantage of our voting concept is shown
in the experimental section.

3.2. Multi-Camera Tracking

The common top view voting map V, visualized in Fig-
ure 2, can now be used for multi-object tracking. Following
the Hough voting scheme, we retrieve high votes on ground
plane positions where an object-of-interest is localized. Al-
though V does not express probabilities, it can be seen as
a continuous confidence map. In contrast to existing single
view approaches, the proposed ground plane Hough voting
guarantees non-overlapping local maxima for each possible
detection. This is guaranteed by the physical rule, that ob-
jects cannot overlap each other in the top view.

In particular, we use a particle filtering approach [18],
which is widely used for tracking and provides a proba-
bilistic framework for maintaining multiple hypotheses of
the current object state. Particle filtering can be used to es-
timate the state of a system based on noisy measurements
z by using a set of S weighted particles xi

1:k, w
i
1:k. In

our case, given the set of S weighted particles
{
xit, w

i
t

}
,

i = 0, ..., S, at time step t we can estimate the probability
distribution of the hidden target state xt of the tracked object
by xt = [x, y, vx, vy]′, where (x, y) are the center coordi-
nates of the particles rectangle window and (vx, vy) are the
velocities. The velocities are described by a Gaussian distri-
bution with zero mean and motion dependent standard de-
viation, and each particle xit simulates the real hidden state
of the object. Using the dynamic model p(xit|xit−1) and
the observation likelihood p(zit|xit), the posterior distribu-
tion p(xt|zt) is approximated by the finite set of particles
p(xt|z1:t) ≈

∑S
i=1 w

i
tx

i
t.

The weights are updated according to

wi
t ∝ wi

t−1
p(zit | xit)p(xit | xit−1)

q(xit | xit−1, zit)
, (8)

where
∑Np

i=1 w
i
t = 1 and q(xit | xit−1, zit) is the proposal

distribution to draw particles from.
Using an auto-regression model, the transition probabil-

ity p(xt|xt−1) is represented by xt+1 = Axt + vt. Apply-
ing the state transition model p(xit|xit−1) as proposal distri-
bution leads to the bootstrap filter, where the weights are di-
rectly proportional to the observation model p(zit|xit). Thus,
we can define

wi
t = wi

t−1exp

log(
∑
y∈xi

t

Gb(y − xit))

 , (9)

describing the sum of the voting map V within a local neigh-
borhood defined by xit. GB denotes the box filter approxi-
mation of a Gaussian kernel, which allows for the usage of



efficient integral image structures. Note that the sum has
to be normalized between [0, 1]. Although the voting map
cannot be seen as a probabilistic map, the particle filter is
still working by seeking for the strongest local mode. Fi-
nally, the posterior density p(xt|z1:t) is approximated by
the weighted mean over the particle distribution, as given
in Eq. (8). To avoid the degeneracy of the particle set, the
re-sampling of the weights is performed after each frame.
For more details on particle filtering we would refer to [1].

The foot-point voting on the centralized top view map
enables us to exploit the knowledge that objects cannot
overlap each other on the top view (see Figure1(b)) and to
incorporate this to the particle filter framework. So far each
object is tracked by an individual particle filter, without any
knowledge about surrounding objects. Each object o has its
own particles xi,o

t , with i = 1, ...So, which are re-weighted
according to Eq. (9). In general, this leads to hijacked par-
ticles, where several trackers are following the same voting
maxima, which is often called the “error merge” problem.

After re-weighting the particles for each individual ob-
ject o, we introduce a joint re-weighting, where particles
of different objects xi,o1

t and xj,o2
t are penalized if they

are overlapping [22]. Penalizing such overlapping particles
avoids that particles belonging to different objects merge to
one maximum within the common vote map. This can be
seen related to the magnetic-inertia potential model [24],
which proposes to model a gravitation and magnetic repul-
sion scheme. But, in contrast to [24] the non-overlapping
assumption is directly assured in our concept as a result of
the ground plane projections described in Section 3.1.

3.3. View-specific Hough Voting

Random forests (and therefore also Hough forests) are
a perfect choice for learning generic classifiers, since they
allow for training from huge data sets and can cope with
multi-modal data. However, for specific camera views not
all information is needed and the large variability in the data
would cause some noise in the Hough votes increasing the
uncertainty of the world points ΣX . One way to overcome
these problems would be to train a separate Hough forest
for each camera view, however, requiring a massive labeling
effort.

In contrast, we exploit the geometric constraints by us-
ing the back-projection of the tracking results on the top
view map to each of the camera views. In this way, we
can adapt a general pre-trained classifier to every camera in
order to reduce the amount of noise. We introduce an addi-
tional view specific term p(Pv|c = 1, L(y)) for each vote
vector di in the leaf node L, where Pv considers only ob-
ject patches that vote correctly within this specific view. To
reduce the importance of a vote vector di which is not suit-
able for a specific view v and hence introduces noise, we
are now interested in p(Ev(x)|L(y)), where Ev(x) is the

evidence of an object at location x in camera view v. By
approximating p(d(y) = y − x|c(y) = 1, L(y)) by a sum
of Dirac measures δdi

(y − x), as shown in [15], the view
specific probability can now be calculated as

p(EV (x)|L(y)) =
1

|PL(y)|
·∑

Pv∈PL(y)

p(Pv|c = 1, L(y)) · p(c = 1|L(y)) · δdi(y − x).

(10)
The view specific term p(Pv|c = 1, L(y)) is updated over
time by using the back-projection of the tracking results on
the common ground plane. Therefore, we count how of-
ten a specific vote di votes into a correct position (given
by the back-projection of the tracking results coming from
the particle filter) and denote this number by n+di

. In addi-
tion, we count how often this vote casts to a wrong location,
i.e., where no object-of-interest is present: n−di

. The view
specific term can now be calculated by

p(Pi ∈ V |c = 1, L(y)) =


0.5 if sumn = 0
n+di

n+di
+ n−di

otherwise ,

(11)
where sumn = n+di

+n−di
. The benefits of the view-specific

updates are illustrated in Figure 2, where we show the evo-
lution of the vote maps for each camera over time. Fig-
ure 2(a) shows the vote maps for each of the three camera
views for frame 160, where it can be seen that a lot of noisy
votes are reported for the background. In contrast, for frame
2300 shown in Figure 2(b), the level of noise is decreased
in the view specific vote maps as well as in the combined
top view vote map, which demonstrates the effect of view-
specific updates.

4. Experiments
In the following, we demonstrate our approach on dif-

ferent publicly available datasets for multi-camera object
tracking. For the experiments, we trained a Hough forest
[14] voting to the foot-point of the object on the VIPeR
pedestrian data set [16]. The forest consists of three trees,
each of it having a maximum depth of 15. In addition, we
give a comparison to two baseline approaches. First, to a
background subtraction (BGS) based approach, where we
project the foreground pixels of each camera onto the com-
mon ground plane to obtain a summed common foreground
pixel top view map. Second, to a single camera approach,
which builds on the same Hough maps as the proposed
approach. For all approaches we apply the same particle
filter framework holding a set of 300 particles described
in Section 3.2, where the tracking is initialized manually,
but the probability maps are derived in a different way.



(a) Frame 160: First column shows the input images, second column shows
the corresponding Hough maps of each camera view and the third column
shows the projected common Hough map of the top view.

(b) Frame 2300: First column shows the input images, second column shows
the corresponding Hough maps of each camera view and the third column
shows the projected common Hough map of the top view.

Figure 2. View-specific Hough votes: Input images, Hough maps of individual views and common top view Hough map. The evolution
of Hough maps over time – showing the maps for frames 160 and frames 2300 demonstrates the effect of the updates. The single votes
contain less noise resulting in much better combined top-view maps.

For the first comparison the probability maps come from
a simple background subtraction. In this case the multiple-
camera information is exploited. For the second comparison
no multiple-camera information is used but the probability
maps build on the original Hough maps.

The first experiment we run on the Set 1 sequence of
the publicly available Medium Dataset [25]. The dataset,
showing an indoor lab environment, captures three people
walking around. The persons occlude each other and are
captured by three different cameras. Each video contains
about 2500 frames with a resolution of 384 × 288 pixels.
To give a quantitative evaluation we annotated every tenth
frame and estimated the pixel error on the ground plane.
The corresponding results over time are shown in Figure 3.

It can be seen that at the beginning both multi-camera ap-
proaches yield a comparable performance, but after the per-
sons move too close to each other (which happens around
frame 1000) the quality of the background subtraction based
approach is decreasing. The same can also be recognized
for the single view trackers, however, here the tracking ac-
curacy is degraded much earlier. In particular, these meth-
ods are suffering from the “error merge” problem as well as
the “labeling problem. The first one, which especially ap-
plies for the single view trackers, describes the problem that
the tracker looses its specific instance and falsely coalesces
with others. The second one means that identities of the ob-
jects are mixed up by the trackers. However, it can be seen
that the proposed approach avoids both problems and thus
yields much more stable tracking results. Additionally, we
give the averaged pixel error for all approaches in Table 1
and show illustrative results in Figure 4.

In the second experiment, we run the same setup as de-

170 250 500 750 1000 1250 1500 1750 2000 2250 2500
0

50

100

150

200

250

Frame

E
rr

o
r 

o
n
 g

ro
u
n
d
 p

la
n
e
 (

P
ix

e
l)

 

 

Proposed

Multi−camera BGS

Cam1: Single View Hough Tracking

Cam2: Single View Hough Tracking

Cam3: Single View Hough Tracking

Figure 3. Medium Set 1 sequence: Error in pixel on the ground
plane stays constant over time for the proposed approach, but in-
creases for all other approaches.

scribed above on the publicly available Campus Sequence
2 [5] consisting of 5884 images from three cameras with
a resolution of 360 × 288 pixels showing an outdoor se-
quence with three moving persons. The obtained error rates
averaged over the whole sequence are listed in Table 1. In
general, considering the error rates it is revealed that this
scenario of lower complexity than the other one – a larger
area is observed and the number of occlusions is smaller.
This also explains the rather good results for the simple
background subtraction based approach. However, as for
the previous setup it can be seen that using the combined



Figure 4. Medium Set 1 sequence: Illustrative tracking results.

multi-camera approach the tracking results can significantly
be improved. Even though we do not use an instance spe-
cific tracking approach the view-specific updates, which re-
duce the noise within the common vote map, in combination
with the non-overlapping constraint of the particle filter en-
ables our approach to track both sequence without any error
merge or labeling problems. Finally, illustrative results for
this data set are shown in Figure 5.

Figure 5. Illustrative results on the Campus Sequence 2.

Approach Set 1 Campus 2
Proposed 23.9 15.1
BGS Based 128.2 27.2
HV Cam1 186.8 80.8
HV Cam2 153.8 77.5
HV Cam3 152.6 136.0

Table 1. Comparison of mean error in pixels on the top view map
for Set 1 and Campus 2 sequences.

Additionally, we evaluate our approach on the Apidis
dataset1, showing a basket ball game from 7 cameras. We
use camera 1, 2, 4 and 7 for our evaluation. To reduce com-
putational complexity we use an image size of 400 × 300
pixels. Illustrative results are shown in Figure 6.

Figure 6. Illustrative results on the Apidis for camera 1,2,4 and 7,
covering one half of the playground.

5. Conclusion
Most multiple camera approaches for multiple object

tracking rely on background subtraction and project all fore-
ground pixels onto a common ground plane. Hence, hurt-

1http://www.apidis.org/Dataset/



ing the geometric constraints large projection errors are in-
troduced resulting in ghost detections. To overcome these
limitations, we propose a novel multi-camera tracking ap-
proach, where we introduce a multi-camera Hough voting
scheme. The key idea is to direct the votes to the foot-points
instead of to the centroid. In this way, exploiting geomet-
ric constraints we can map the single camera votes onto a
common ground plane and can implicitly handle geometric
uncertainties. Additionally, we use an extended more robust
particle filtering tracking approach, where the constraints
given by the common ground-plane are exploited, i.e., that
objects cannot occupy the same position at the same time.
Having the positions of the tracked objects we back-project
the tracking results onto each individual view to identify in-
stable votes. This further allows us to perform view specific
updates, reducing the noise within each individual Hough
map. Overall, we get a robust multiple object tracking ap-
proach, which avoids the error merge and labeling problem,
even though no instance specific information is used. Fu-
ture work will concentrate on automatic initialization and
canceling of the object tracks.
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