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Abstract

Classifier grids have shown to be a considerable choice for object detection from static cameras. By applying a
single classifier per image location the classifier’s complexity can be reduced and more specific and thus more accurate
classifiers can be estimated. In addition, by using an on-line learner a highly adaptive but stable detection system can
be obtained. Even though long-term stability has been demonstrated such systems still suffer from short-term drifting
if an object is not moving over a long period of time. The goal of this work is to overcome this problem and thus to
increase the recall while preserving the accuracy. In particular, we adapt ideas from Multiple Instance Learning (MIL)
for on-line boosting. In contrast to standard MIL approaches, which assume an ambiguity on the positive samples,
we apply this concept to the negative samples: Inverse Multiple Instance Learning. By introducing temporal bags
consisting of background images operating on different time scales, we can ensure that each bag contains at least one
sample having a negative label, providing the theoretical requirements. The experimental results demonstrate superior
classification results in presence of non-moving objects.
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1. Introduction

The first step in many computer vision applications
is to identify the objects-of-interest (object detection).
The most prominent approach is to apply a sliding win-
dow technique (e.g., Dalal and Triggs, 2005; Nair and
Clark, 2004; Felzenszwalb et al., 2008; Viola et al.,
2003). Each patch of a given image is tested whether it
is consistent with a previously estimated model or not,
and finally all consistent patches are reported. Typically,
the goal of such methods is to build a generic model that
is applicable for all possible scenarios and tasks (e.g.,
Leibe et al., 2008; Felzenszwalb et al., 2008; Dalal and
Triggs, 2005).

However, as can be seen from Figure 1(a), even if
trained from a very large number of training samples
such generic detectors (“broad application”) often fail
in practice. Since not all variability, especially for the
negative class (i.e., all possible backgrounds), can be
captured this results in a low recall and an insufficient
precision. Assuming a stationary camera, which is a
reasonable constraint for most applications, using scene
specific information can help to reduce the number of

false alarms (e.g., Hoiem et al., 2006). As can be seen
from Figure 1(b) this can dramatically improve the over-
all performance of a generic detector. To further im-
prove the classification results specific classifiers (“nar-
row applications”) can be applied, which are designed
to solve a specific task (e.g., object detection for a spe-
cific setup). In fact, to train such classifiers less training
data is required and for the particular task they are usu-
ally better in terms of accuracy and efficiency (Levin
et al., 2003; Wu and Nevatia, 2007a; Roth et al., 2005).
This is illustrated in Figure 1(c).

To further improve the classification power and to fur-
ther reduce the number of required training samples an
adaptive classifier using an on-line learning algorithm
can be applied (Nair and Clark, 2004; Javed et al., 2005;
Wu and Nevatia, 2007a). Thus, the system can adapt
to changing environments (e.g., changing illumination
conditions) and these variations need not to be handled
by the initial model. In fact, in this way the complexity
of the problem is reduced and a more efficient classifier
can be trained.

Adaptive systems, however, have one main disadvan-
tage: new unlabeled data has to robustly be included
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(a) Fixed Detector.

(b) Scene-specific Detector.

(c) Adaptive Detector.

Figure 1: Changing environmental conditions like lightning changes
or changes of objects in the background can not be handled by a fixed
model. This requires an adaptive (scene specific) system.

into an already built model. Typical approaches are self-
training (e.g., Rosenberg et al., 2005; Li et al., 2007),
co-training (e.g., Blum and Mitchell, 1998; Levin et al.,
2003), semi-supervised learning (e.g., Goldberg et al.,
2008), or the application of oracles1 (e.g., Nair and
Clark, 2004; Wu and Nevatia, 2005). Semi-supervised
methods, however, are often biased by the prior and
thus only a “limited” information gain can be achieved
whereas oracles often provide too less new information.
Self- or co-training suffer from the problem that the the-
oretical constraints can not be assured in practice or that
they rely on a direct feedback of the current classifier -
both resulting in unreliable classifiers.

More specific and thus more efficient classifiers
avoiding these problems can be trained using classifier
grids (e.g., Grabner et al., 2007; Stalder et al., 2009;
Roth et al., 2009). In contrast to a sliding window tech-
nique, where one classifier is evaluated on different im-
age positions, the main idea of classifier grids is to train
a separate classifier for each image location. Thus, the
complexity of the classification task that has to be han-

1An oracle can be considered a classifier, even at a low recall rate,
having a high precision, which can be used to generate new training
samples.

dled by a single classifier is dramatically reduced. Each
classifier has only to discriminate the object-of-interest
from the background at one specific location in the im-
age. By using on-line classifiers the system is able to
adapt to changing environmental conditions, which fur-
ther reduces the required complexity of the classifiers.

Adaptive approaches, in general, suffer from the
drifting problem, i.e., due to wrong updates the system
starts to learn something completely different degrad-
ing the classification performance. To avoid drifting
in classifier grids (Roth et al., 2009) applied fixed up-
date strategies. In particular, the negative updates for
a grid classifier are generated from the corresponding
image patch, whereas the positive representation was
pre-trained and kept fix. These update strategies ensure
“long-term” stability, i.e., the classifier cannot get to-
tally degenerated. In fact, a classifiers that was trained
using wrongly labeled samples would recover within a
certain time interval, which we will refer to as “short-
term” drifting. This might be the case if an object stays
at the same position over a longer period of time and
the foreground information is used to model the nega-
tive class.

In this work, we address the problem of short-term
drifting by incorporating temporal information and re-
placing the fixed update strategy by a multiple instance
learning (MIL)-based approach. In particular, we intro-
duce temporal bags, containing patches of background
models operating on different timescales, for each grid
element assuming that each bag consists of at least one
correctly labeled sample. Since in our case the posi-
tive samples are well defined and the ambiguity results
from the negative samples, we have to adapt the orig-
inal MIL concept for our purpose. The experimental
results clearly demonstrate the benefits of the proposed
method. Especially compared to existing approaches
non-moving objects can be handled considerable better,
increasing both, the recall and the precision.

The rest of the paper is organized as follows. First, in
Section 2, we review the idea of classifier grids. Next,
we introduce inverse multiple instance learning for clas-
sifier grids in Section 3. In Section 4, we give an exper-
imental evaluation of the proposed approach. Finally,
we summarize and conclude the paper in Section 5.

2. Classifier Grids

In the following, we give an short overview of ob-
ject detection from static cameras, review the main ideas
classifier grids, and discuss their practical applicability
under real-world conditions.
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2.1. Object Detection from Static Cameras

Even though for most object detation scenarios a sta-
tionary camera can be assumed, this constraint, which
could help to drastically improve the classification per-
formance, has been only of limited interest (e.g., Hoiem
et al., 2006; Roth and Bischof, 2008; Wu and Nevatia,
2007b; Nair and Clark, 2004). However, there are three
different concepts for object detection from stationary
cameras: (a) fixed models which are trained off-line,
(b) adaptive models which are trained on-line, and (c)
classifier grids. These are illustrated in Figure 2, where
the dark highlighted regions on the left side illustrate
the patches where the trained detector should be appli-
cable. On the right side the training datasets (positive
and negative samples) of each approach are sketched.

(a) Fixed general detector.

(b) Scene-specific detector.

(c) Grid-based detector.

Figure 2: Overview of different concepts for object detection from
static cameras and the corresponding training sets: (a) fixed detec-
tor, (b) scene specific detector, and (c) grid-based detector. The gray
blocks highlight the regions in both, time and location, where the clas-
sifier has to perform well.

In general, a training set X =

{〈x1, y1〉, ..., 〈xL, yL〉 | xi ∈ IRm, yi ∈ {−1,+1}} of
L samples is used to train a detector. In the first case
(fixed detector), which is illustrated in Figure 2(a), the
training set X is fixed and a classifier is trained using
an off-line training algorithm. Since the parameters are
fixed the detector has to handle all possible situations
and has to perform well at any time on all possible
scenes and all positions in the image. Thus, to finally
get a representative model a huge amount of training
data is necessary.

To overcome these problems an adaptive detector us-
ing an on-line learning algorithm can be applied. Hence,

the system can adapt to changing environments (e.g.,
changing illumination conditions) and these variations
need not to be handled by the model. Compared to a
fixed model the detection task is much easier since the
detector has “only” to distinguish the positive class from
the background of a specific scene. Thus, the variabil-
ity of the background as well as the number of required
training samples is reduced as illustrated in Figure 2(b).

2.2. Classifier Grid and Fixed Update Rules

The main idea of classifier grids (Grabner et al., 2007;
Roth et al., 2009) is to exploit the prior knowledge,
that the camera is fixed. By using this information, the
whole detection task can be simplified by sampling the
input image into by using a fixed highly overlapping
grid (both in location and scale), where each grid ele-
ment i = 1, . . . ,N corresponds to one classifier Ci. This
is illustrated in Figure 3. Thus, the classification task
that has to be handled by one classifier Ci is reduced
to discriminate the background of the specific grid ele-
ment from the object-of-interest. Moreover, stationary
cameras allow to pre-estimate the ground-plane, which
further helps to reduce the number of classifiers within
the classifier grid. Due to this simplification less com-
plex classifiers can be applied. In particular, the grid-
based representation is well suited for compact on-line
classifier, which can be evaluated and updated very effi-
ciently.

Figure 3: Concept of grid-based classification: a highly overlapping
grid is placed over the image, where each grid element corresponds to
a single classifier.

The main problem of adaptive system is to robustly
incorporate unlabeled data from the scene, which may
lead to the “drifting problem”. By talking about “drift-
ing” the problem is that wrong updates may completely
destroy the classifier. To overcome this problem, at time
t fixed updates (Grabner et al., 2007) can be applied for
updating a classifier Ci,t−1. Given a set of representative
positive (hand) labeled examples X+. Then, using
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〈x,+1〉, x ∈ X+ (1)

to update the classifier is a correct positive update by
definition. The probability that an object is present in a
patch xi is given by

P(xi = object) =
#pi

∆t
, (2)

where #pi is the number of objects entirely present in a
particular patch within the time interval ∆t. Thus, the
negative update with the current patch

〈xi,t,−1〉 (3)

is correct most of the time (wrong with probability
P(xi = object)). The probability of a wrong update for
this particular image patch is indeed very low.

2.3. Discussion
The fixed update strategies cause three main prob-

lems. First, even if the positive information is kept fixed,
positive updates are required. Second, no new positive
information can be acquired. Third, still wrong negative
updates might occur leading to short-term drifting.

The first problem was addressed in (Roth et al.,
2009), where the main idea was to further increase the
stability and to speed up the computation by a combina-
tion of two generative models in parallel: a pre-trained
model for the positive class and an adaptive model for
the negative class. The pre-trained model for the pos-
itive class can be calculated in an off-line manner. By
using off-line boosting for feature selection this gives
the additional advantage, that the classifier is initialized
by features well suited for the task of interest in con-
trast to a random initialization of a on-line classifier.
Since well suited features are selected within the classi-
fier, one further has the advantage that the classifier size
can be reduced compared to randomly initialized classi-
fiers, where a larger classifier size is required for a good
classification result. The strong positive prior inhibits
fast temporal drifting while the negative updates during
runtime ensure the required adaptivity. Moreover, since
the positive model is kept fix, the number of required
updates is reduced.

The second problem was addressed in (Stalder et al.,
2009) and in (Sternig et al., 2010b). (Stalder et al.,
2009) introduced context-based classifier grids to ex-
tract additional positive information from a specific
scene. This context information is gained through three
different ways: a fixed detector, a tracker and 3D-
context information. The authors showed that the re-
call can be drastically increased, but on the expense of

the precision. In contrast, in (Sternig et al., 2010b) we
proposed to use a co-training approach (Classifier Co-
Grids) in combination with a robust on-line learner. The
robust on-line learner keeps two seperate models for the
positive class and two separate models for the negative
class. For both, the positive and the negative class one
model is off-line pre-trained and kept fixed during run-
time, while one model is adapted. This combination of
an off-line pre-trained model with an on-line adapted
model within a robust on-line learner allows to incorpo-
rate scene specific positive information (i.e., the recall
can be increased), while still preserving the accuracy of
our system.

However, if too many wrong updates are performed, a
foreground object may grow into the background class
and the detector fails (i.e., it generates a miss). Even
though the detector recovers quickly – within a few
frames (short time drifting), the goal would be to avoid
this problem. Thus, this open problem is addressed in
the following by using the idea of Inverse Multiple In-
stance Learning.

3. Inverse MIL for Classifier Grids

Even though the updates generated by the fixed rules
are correct most of the time, they might be wrong caus-
ing the classifier to drift within a certain time interval.
Especially, if an object is not moving over a long pe-
riod of time, foreground information is used to perform
negative updates, which causes the positive information
to be temporally unlearned. Since this can be seen in
the context of ambiguous labeled samples, Multiple In-
stance Learning could help to deal with this problem.
Thus, in the following we first review the main ideas of
MIL, derivate an inverse on-line MILBoost algorithm,
and show how it can be applied in the context of clas-
sifier grids. In particular, we build on the boosting ap-
proach presented in (Roth et al., 2009), which already
ensures the long-term robustness.

3.1. Multiple Instance Learning

Multiple-instance learning (MIL) was first introduced
by (Dietterich et al., 1997). It is a machine learning
paradigm for dealing with ambiguously labeled data.
Thus, there has been a considerable interest and vari-
ous different approaches have been proposed. Most of
these approaches are based on popular supervised learn-
ing algorithms such as SVM (Andrews et al., 2003) or
boosting (Viola et al., 2005), that are adapted in order to
incorporate the MIL constraints.
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In contrast to supervised learning algorithms, where
each sample (instance) is provided a label, in multiple-
instance learning the training samples are grouped into
bags Bi ⊂ Rd, i = 1, . . . ,N. Each bag consists of an
arbitrary number of instances: Bi = {x1i, x2i, . . . , xmii}.
Negative bags B−i are required to consist only of nega-
tive instances, whereas for positive bags B+

i it has only
to be guaranteed that they contain at least one positive
instance. There are no further restrictions to the non-
positive instances within the positive bag B+

i , they might
not even belong to the negative class.

The task now is to learn either a bag classifier f :
B → {−1, 1} or an instance classifier f : Rd → {−1, 1}.
However, a bag classifier can follow automatically from
instance prediction, e.g., by using the max operator over
posterior probabilities over the instances pi j within the
ith bag: pi = max j{pi j}.

3.2. On-line Inverse MILBoost

In general, the goal of boosting is to estimate a strong
classifier

H(x) =

N∑
j=1

α jh j(x) (4)

by a linear combination of N weak classifiers h j(x). In
particular, we build on Babenko et al. (Babenko et al.,
2009) and use a different loss function, optimizing the
binary log likelihood over bags in form of

log L =
∑

i

(
yilog p(yi) + (1− yi)log (1− p(yi))

)
, (5)

where the instance probability can be estimated using a
sigmoid function

p(y|x) = σ(H(x)) =
1

1 + e−H(x) , (6)

which requires a gradient descent in function space.
The bag probability p(y|B) is modeled by the Noisy-OR
(NOR) operator:

p(yi|Bi) = 1 −
∏
j=1

(1 − p(yi|xi j). (7)

However, since in the classifier grid scenario the posi-
tive samples are well defined (positive samples are hand
labeled) and the ambiguity concerns only the negative
samples (comming directly from the scene without la-
beling), the original MIL idea has to be adapted. Thus,
the negative bags B−i would need to contain only one

negative example whereas the positive bag B+
i consists

only of positive examples:

∀x+
i j ∈ B+

i : y(x+
i j) = 1 (8)

∃x−i j ∈ B−i : y(x−i j) = −1 . (9)

In order to correctly calculate the loss L by invert-
ing the problem, we have to switch the labels between
the positive and the negative class (inverse MIL). This
causes to focus on examples that are more likely to
be correct negative examples, which directly fits to our
problem.

3.3. IMIL in Classifier Grids

Building on (Roth et al., 2009) the model describing
the object class (the positive model) is pre-calculated
off-line and only negative updates are performed. Thus,
we can neglect the positive bags. To generate the nega-
tive bags, we can collect a stack of input images from
the image sequence over time, which we refer to as
“temporal bag”. Having a large stack assures that the
assumption for the negative bag containing at least one
negative sample is mostly valid, since the probability
that an object stays at one specific location over a longer
period of time is very low (Sternig et al., 2010a).

Collecting a large stack of input images is adversar-
ial for the runtime behavior. In order to avoid a large
stack of input images within the temporal bag we use a
small set of background images which operate on dif-
ferent time scales, which means that they are updated in
different time intervals. Any kind of background model
can be used. However, in our case we apply the ap-
proximated median background model (McFarlane and
Schofield, 1995). Since these background models are
updated in different time intervals even a small num-
ber ensures that the temporal bags fulfill the MIL con-
straints. To give enough adaptivity to chaning illumina-
tion conditions we have background models which are
updated in small time intervals, while to avoid objects
staying at the same position for a while to become part
of the background we have background models updated
in long time intervals. Hence, the multiple instance
learning property of inherently dealing with ambiguity
in data can be exploited for improving the classifier grid
approach and avoiding short-term drifting.

4. Experimental Results

To demonstrate the benefits of the proposed ap-
proach, we run five experiments considering two tasks,
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namely pedestrian and car detection. We first give
an illustrative comparison between the original grid
approach (e.g., Roth et al., 2009) and the proposed
method. Then, using a publicly available pedestrian
dataset we show that by the IMIL grid approach state-
of-the-art (or even better) detection results can be ob-
tained. Finally, we selected a number of datasets (pedes-
trians and cars) containing objects which are not mov-
ing over a long period of time. This causes short-term
drifting in existing classifier grid approaches (e.g., Roth
et al., 2009), which is in particular the problem ad-
dressed within this paper. From all experiments the ben-
efits of the proposed methods are clearly visible.

For all experiments on pedestrian detection we use
classifiers consisting of 30 selectors, where each selec-
tor consists of a set of 30 weak classifiers. For the car
detection experiment we use classifiers consisting of 50
selectors, each of them containing 30 weak learners. As
weak classifiers we use simple decision stumps over the
feature responses of Haar-like features. To increase the
robustness of the negative updates, we collect a stack
of four background images, operating on four different
timescales, which are updated every second frame, ev-
ery 50-th frame, every 100-th frame, and every 150-th
frame.

For practical applications, it is not necessary to up-
date the system with every input frame (typically there
is a trade-off between runtime and adaptivity to chang-
ing environments). However, to demonstrate the bene-
fits and the robustness of our approach, i.e., the avoid-
ance of temporal drifting, we update each classifier
within the classifier grid with every single input frame.
The overlap of the grid elements within the classifier
grid is set to 70% for the pedestrian sequences and to
85% for the car sequence. For calculating the Recall-
Precision-Curves (RPC) a detection is counted as true
positive if it fulfills the overlap criterion (Agarwal et al.,
2004), where a minimal overlap of 50% is required.

4.1. IMIL Behavior Analysis
First of all, we want to illustrate the benefits of the

proposed approach compared to the CG approach by
considering the particular case that an object (i.e., a per-
son) is not moving for a longer time. We picked out
a sub-sequence of the longterm experiment (see Sec-
tion 4.5) where one person is standing at the same posi-
tion over 450 frames and analyze the confidences at one
specific position in the image. The confidence for both,
the proposed approach and the CG approach as well as
the ground truth are shown in Figure 4. One can clearly
see that the confidence for the proposed approach stays
the same due to the correct updates with our inverse

multiple instance learning strategy while the wrong up-
dates with the current input image of the CG approach
lead to decreasing confidence over time. Moreover, it
can also be seen that for negative class, i.e., the back-
ground the confidence is much lower.

Figure 4: Confidence values for the proposed approach and the CG ap-
proach for a typical scenario: left - background, right - person stand-
ing on the same position for a longer period of time.

4.2. PETS 2006
For this experiment we used a sequence from the

publicly available PETS 2006 dataset consisting of 308
frames (720x576 pixels), which contains 1714 pedes-
trians. We compare our approach to other state-of-the-
art person detectors, namely the deformable part model
(Felzenszwalb et al., 2008) (FS) and the Histograms of
Oriented Gradients approach (Dalal and Triggs, 2005)
(DT). Both approaches use fixed off-line trained classi-
fier and are based on the sliding window technique. In
addition, we compared our method to the classifier grid
(CG) approach (Roth et al., 2009). Since the classifier
grid approaches use ground plane information to gener-
ate the grids we removed all false positives for the slid-
ing window based detectors which are smaller than 75%
or larger than 125% of the groundtruth size in order to
guarantee a fair comparison.

The results are shown in Figure 5, where it can be
seen that the proposed approach clearly outperforms the
generic detectors as well as the original Classifier Grid
approach, which can be considered a baseline for the
proposed method. In addition, in Table 1 we give the
recall and precision for the best F-Measure value and
show some qualitative results in Figure 6. In this case
having an image size of 720x567 a classifier overlap of
70% results in 785 classifiers. Using a non-optimized,
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not parallelized implementation run on a standard PC,
thus a computation time of approximative 1.5 seconds
per frame is required.
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Figure 5: Recall-Precision Curves for PETS 2006 sequence for differ-
ent state-of-the-art detectors compared to the proposed approach.

Figure 6: Illustrative detection results of our approach on the PETS
2006 sequence.

Recall Precision F-Measure
Proposed 0.86 0.96 0.90
FS 0.73 0.88 0.79
DT 0.50 0.88 0.64
CG 0.78 0.79 0.78

Table 1: Comparison of Recall and Precision for the best F-Measure
value for different approaches for PETS 2006.

4.3. Corridor Sequence
To demonstrate the benefits of our approach in pres-

ence of non-moving objects compared to existing classi-

fier grid detectors, we generated a test sequence show-
ing exactly this problem: Corridor sequence. The se-
quence showing a corridor in a public building con-
sists of 900 frames (640x480) containing 2491 persons,
which are staying at the same position over a long period
of time. The results obtained by the proposed approach
and the CG method are shown in Figure 7.
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Figure 7: Recall-Precision Curves for the Corridor sequence for the
original Classifier Grid and the proposed approach.

Since due to the IMIL formulation we get rid of short-
term-drifting, the recall (at a reasonable precision level)
can be significantly improved. This is also illustrated
in Figure 8, where the first row shows detection results
of the original classifier grid approach, whereas the sec-
ond row shows detection results using the proposed in-
verse multiple-instance learning. It can clearly be seen
that the person on the right side, standing at the same
position over 175 frames, is detected by the proposed
approach whereas it is not in the other case. In addi-
tion, Table 2 shows the recall and precision for the best
F-Measure value.

Recall Precision F-Measure
Proposed 0.92 0.93 0.92
CG 0.76 0.80 0.78

Table 2: Comparison of Recall and Precision for the best F-Measure
value for the original CG and the proposed approach on the Corridor
Sequence.

4.4. Vehicle Sequence

To demonstrate that our approach is not limited to
pedestrian detection, we additionally evaluate it on
a sequence showing vehicles on a highway: Vehi-
cle sequence. This sequence consists of 500 frames
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Frame 99 Frame 164 Frame 274

(a) Classifier Grid (Roth et al., 2009).

Frame 99 Frame 164 Frame 274

(b) Proposed approach.

Figure 8: Temporal information incorporation by MIL avoids short-
term drifting. The original classifier grid approach (first row) tempo-
rary drifts after about 60 frames whereas the proposed approach (sec-
ond row) avoids temporal drifting even after more than 170 frames.

(720x576), containing 2375 cars. One car broke down
within this sequence and is standing at the same position
for 400 frames.

The Recall-Precision curves, again for the proposed
and the original CG approach, are shown in Figure 9.
Again it can be seen that compared to the baseline ap-
proach the detection performance can be noticeable im-
proved. Additionally, illustrative detection results for
this scenario are shown in Figure 10. Table 3 shows the
recall and precision for the best F-Measure value.

Recall Precision F-Measure
Proposed 0.99 0.92 0.95
CG 1.00 0.85 0.92

Table 3: Comparison of recall and precision for the best F-Measure
value for the original CG and the proposed approach on Vehicle se-
quence.

4.5. Longterm Pedestrian Detection

Finally, we want to demonstrate that the longterm sta-
bility, which was already shown for the original grid ap-
proach in (Roth et al., 2009), also holds for the IMIL
extension. Since the proposed idea builds on the same
fixed update strategy the overall longterm stability is
still ensured. Thus, we have to show that also short-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
e
c
a
ll

 

 

Proposed

CG

Figure 9: Recall-Precision Curves for the Vehicle sequence, contain-
ing objects that are not moving over a long period of time.

Figure 10: Illustrative detection results on the Vehicle sequence.

term drifting can be avoided when running for a longer
period of time.

For that purpose, we recorded a sequence consisting
of 435.000 frames captured over 24 hours with a frame
rate of approximately five frames per second, showing
the same difficulties as described in Section 4.3 (i.e.,
containing people standing on the same position over a
longer period of time). To demonstrate the robustness
over time we hand-labeled three sub-sequences at dif-
ferent points in time: one right at the beginning, starting
at frame 3500, one in the middle of the sequence, start-
ing at frame 312.000, and one close to the end, starting
at frame 416.000. All sub-sequences have a length of
2000 frames and contain 956, 940 and 603 pedestrians,
respectively.

The thus obtained Recall-Precision-Curves shown in
Figure 11 demonstrate that the performance stays the
same even after more than 415.000 updates. The minor
differences can be explained by the different absolute
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number of true positives, which directly influences the
impact of false positives to the precision.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1−Precision

R
ec

al
l

 

 

Frame 3500−5500
Frame 312000−314000
Frame 416000−418000

Figure 11: Recall-Precision Curves for longterm sequence consisting
of 435.000 frames evaluating the performance of the proposed ap-
proach on three different points in time.

4.6. Discussion

From the results presented in this section it can be
seen that classifier grids, in general, provide a consid-
erable alternative to typical sliding window approaches
when run on static cameras. In particular, only a small
number of positive samples (approximative 500) is re-
quired to get a meaningful model for the positive class.
This has to be done only once and can be re-used for
different scenarios. Using more samples would not de-
grade the classification results, but there is also no ben-
efit since the strength of the method mainly results from
the negative data captured during runtime. Since the
model is adapted online, minor movements or even a
large displacement of the the camera could be compen-
sated as long as the geometry of the ground plane is not
changed too much.

As we already showed in (Roth et al., 2009) that the
approach is robust even when running in a real-world
24/7 setup, the goal of this paper was to address the
problem of short-time drifting if objects are not mov-
ing for a longer period of time. This effect was illus-
trated in Section 4.1. also showing that the proposed
inverse multiple instance approach could cope with this
problem. This also can be seen from the other exper-
iments (Section 4.2-4.4) which were run for person an
car detection: the accuracy of the detection results can
be increased. Moreover, in Section 4.5 we showed that
the robustness of the original approach is preserved and
that the method yield excellent detection results even

if the system is updated thousands of times. As draw-
back, however, the MIL implementation increases the
runtime. But this could be compensated exploiting the
highly parallel structure of the approach.

5. Conclusion

Having a stationary camera, which is a reasonable
assumption for many detection tasks, classifier grids
can be applied instead of sliding window approaches.
However, due to fixed update strategies, using the cur-
rent input image to update the negative representation,
non-moving objects cause the system to drift temporary,
even though it is able to recover later on. To cope with
this specific problem, we proposed to adopt multiple-
instance learning (MIL), a well known machine learn-
ing approach for handling ambiguously labeled posi-
tive samples. However, since in our case the ambiguity
concerns the negative samples, we modified the origi-
nal multiple-instance learning idea (inverse MIL). We
adapted on-line MILBoost (Babenko et al., 2009) to fit
to our problem. In particular, as in (Roth et al., 2009)
we kept the positive representation fixed an generated a
bag of negative samples from an estimated background
model. The experimental results, demonstrated on three
different setups, clearly show that state-of-the-art results
can be obtained and that the problem of short-term drift-
ing can be avoided clearly improving the detection per-
formance.
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