
Learning of Scene-Specific Object Detectors by Classifier Co-Grids

Sabine Sternig, Peter M. Roth, and Horst Bischof
Graz University of Technology

Institute for Computer Graphics and Vision
{sternig,pmroth,bischof}@icg.tugraz.at

Abstract

Recently, classifier grids have shown to be a consider-
able alternative to sliding window approaches for object
detection from static cameras. The main drawback of such
methods is that they are biased by the initial model. In fact,
the classifiers can be adapted to changing environmental
conditions but due to conservative updates no new object-
specific information is acquired. Thus, the goal of this work
is to increase the recall of scene-specific classifiers while
preserving their accuracy and speed. In particular, we in-
troduce a co-training strategy for classifier grids using a
robust on-line learner. Thus, the robustness is preserved
while the recall can be increased. The co-training strategy
robustly provides negative as well as positive updates. In
addition, the number of negative updates can be drastically
reduced, which additionally speeds up the system. In the
experimental results these benefits are demonstrated on dif-
ferent publicly available surveillance benchmark data sets.

1. Introduction
The first step in many visual surveillance applications

is to identify the objects-of-interest (object detection). The
most prominent approach is to apply a sliding window tech-
nique (e.g., [5,6]), where each image patch is tested whether
it is consistent with a previously learned model or not and
all consistent patches are reported. Even though for most
surveillance applications a stationary camera can be as-
sumed, this constraint, which could help to drastically im-
prove the classification performance, has been only of lim-
ited interest (e.g. [9,15,16,22]). Hoiem et al. [9] proposed to
use context information to reduce the number of false posi-
tives when applying a fixed generic object detector. In con-
trast, other approaches directly estimated a scene-specific
object detector by incorporating information from the ob-
served scenario via on-line learning [15, 16, 22].

Even more specific and thus more efficient classifiers can
be trained using classifier grids (e.g., [8,17,18]). In contrast
to a sliding window technique, where one classifier is eval-
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Figure 1. Co-grid classification: the grid classifiers on the left side
are updated using labels generated by a second independent co-
trained classifier evaluated on the background subtracted image.

uated on different image positions, the main idea of clas-
sifier grids is to train a separate classifier for each image
location. Thus, the complexity of the classification task that
has to be handled by a single classifier is dramatically re-
duced, which, in turn, allows to apply less complex classi-
fiers speeding up the detection procedure. A more detailed
overview and discussion is given in Section 2.1.

By using on-line classifiers within the classifier grid the
system is able to adapt to changes in the scene. Hence,
those variabilities have not to be handled by the classifier
and even less complex models can be applied. However,
on-line learning requires to (robustly) include unlabeled
data. Typical approaches to incorporate unlabeled data are
semi-supervised learning (e.g. [7]), self- or co-training (e.g.,
[4, 12]), or the application of oracles1 (e.g., [15,21]). All of
these methods explore unlabeled data to gain new informa-
tion. Semi-supervised methods, however, are often biased
by the prior and thus only a “limited” information gain can
be achieved whereas oracles often provide too less new in-
formation. Self- or co-training suffer from the problem that
the theoretical constraints can not be assured in practice or
that they rely on a direct feedback of the current classifier -
both resulting in unreliable classifiers.

The goal of this work is to develop an adaptive object de-
tection system allowing to robustly include new scene spe-
cific samples while preserving the accuracy. In particular,
this is realized by extending the ideas of classifier-grids by
a robust “orthogonal” label generator (oracle) and the appli-

1An oracle can be considered a classifier, even at a low recall rate, hav-
ing a high precision, which can be used to generate new training samples.



cation of a more suitable (i.e., multi-class) learning method.
This is illustrated in Figure 1. The oracle is initially trained
by co-training following the ideas of Levin et al. [11]. How-
ever, to avoid drifting, after an initialization phase the co-
training is stopped. In fact, it can be shown that the applied
representation is invariant to most environmental changes
and thus such a classifier provides excellent positive as well
as negative updates. Moreover, the number of required up-
dates is drastically reduced, speeding up the whole system.
In the experiments, we demonstrate our approach on differ-
ent publicly available benchmark data sets and show that
compared to existing approaches including scene specific
information helps to increase the recall while preserving the
accuracy.

The rest of the paper is structured as follows. First, in
Section 2 we review the ideas of classifier grids and co-
training, which build the basis for our approach. Next, we
introduce our new co-grid approach in Section 3 and give
an experimental evaluation on publicly available standard
benchmark data sets in Section 4. Finally, we summarize
and conclude the paper in Section 5.

2. Classifier Grids and Co-Training

Stationary camera setups enable training of scene spe-
cific classifiers. Thus, compared to general detection tasks
(e.g., [5,6]), where a classifier has to work for any given sce-
nario, the complexity of the classification task is drastically
reduced, and more efficient and more compact classifiers
can be applied. Moreover, by using temporal information
and an on-line learning algorithm (e.g., [15]) the classifier
is able to adapt to changing environments, which further
reduces the classifiers’ complexity. This, however, requires
that new unlabeled data is considered during the update pro-
cess. In the following, we discuss the two scene-specific
learning approaches that are relevant for this work.

2.1. Classifier Grids

The main concept of classifier grids [8] is to sample an
input image by using a highly overlapping grid, where each
grid element i = 1, . . . , N corresponds to one classifier Ci.
This is illustrated in Figure 2. Thus, the classification task
that has to be handled by one classifier Ci can be drastically
reduced, i.e., discriminating the background of the specific
grid element from the object-of-interest. To exploit infor-
mation from labeled and unlabeled data, Grabner et al. [8]
used fixed update rules. The positive updates are performed
on a (small) labeled set whereas the negative samples are
extracted from the underlying image patch described by one
grid-classifier. These fixed rules have three main disad-
vantages: first, wrong negative updates may occur; second,
even if the positive information is kept fix, positive updates
are required; third, no new positive information is acquired.

Figure 2. Grid-based classification: a highly overlapping grid of
classifiers is placed over the image.

The first two problems can be reduced/avoided by the
combination of two generative models as proposed by Roth
et al. [17]. In particular, they apply a pre-trained genera-
tive model for the positive class and an adaptive generative
model for the negative class, which is updated using sam-
ples from the scene. In this way the strong positive prior
inhibits fast temporal drifting while ensuring the required
adaptivity. Moreover, since the positive model is kept fix,
the number of required updates is reduced. However, if
too many wrong updates are performed, a foreground ob-
ject may grow into the background class and the detector
fails (i.e., it generates a miss). This can easily be prevented
by applying an additional background model to generate
the data for the negative updates. However, the model for
the foreground guarantees that the system recovers quickly
(within a few frames), which allows to use such a setup for
longterm tasks. Thus, when adapting over time the initial
performance can be assured even if the system is running
for a longer time,

The third problem, not gaining new positive information
during learning, was addressed by Stalder et al. [18] by in-
troducing context-based grid detectors to extract additional
positive information from a specific scene. For that purpose
they introduced three different ways to generate new scene
specific samples: a fixed detector, a tracker, and 3D-context
information from multiple camera views (if available). The
negative samples are still generated from the scene (i.e., ex-
tracted from a background model or patches showing iden-
tified static objects). In this way the recall can be drastically
increased, but at the expense of the precision.

2.2. Co-Training

A different way to train scene-specific classifiers by ex-
ploiting information of unlabeled data from a scene was
proposed by Levin et al. [11]. In particular, starting with
a small number of hand-labeled samples they generated ad-
ditional labeled examples by applying co-training [4] of two
boosted off-line classifiers. One is trained directly from
gray-value images whereas the other is trained from back-
ground subtracted images. The additional labels are gener-
ated based on confidence-rated predictions. Using the addi-



tionally labeled samples the training process is started again
from scratch. In this way better classifiers can be obtained.

Co-training [4], in general, exploits the redundancy of
unlabeled input data. The main idea is to train two initial
classifiers h1 and h2 on some labeled data DL and then
let these classifiers update each other using unlabeled data
DU . An update is performed if one classifier is confident
on a sample whereas the other one is not. Since Abney [1]
showed that co-training classifiers aim to minimize the er-
ror on the labeled samples while increasing the agreement
on the unlabeled data, it is clear that the unlabeled data
can help to improve the margin of the classifiers and to de-
crease the generalization error. Thus, co-training has re-
cently become popular in the field of computer vision and
was applied for a variety of applications including back-
ground modeling [23], learning an object detector [11], or
tracking [13]

Since the approach of Levin et al. [11] is based on off-
line classifiers, it is not suitable for an adaptive real-world
detection system. However, since on-line boosting has be-
come popular for visual learning (e.g., [2, 10]), having an
initial classifier of sufficient accuracy the off-line classifier
can easily be replaced by an on-line method still preserving
the required properties. In fact, in Liu et al. [13] a proof for
error bounds for on-line boosting in co-training was given.
Moreover, the originally strong condition of conditionally
independent classifiers was later relaxed by several authors
(e.g., [1, 3]). Wang and Zhou [20] provided a PAC-style
proof that co-training can converge to good accuracy if the
classifiers are strong and highly uncorrelated. Thus, co-
training can typically also be applied if, in principle, the
learners are strong and low-correlated.

3. Classifier Co-Grids
The main disadvantage of existing grid-based object de-

tectors, as discussed in Section 2.1, is that they are either
biased by an off-line estimated prior or that adding new
scene specific samples degrades the precision. However, the
goal would be to increase the recall by adding scene specific
samples, but keeping the classifiers’ accuracy on the given
level. In the following, we introduce an extended update
scheme that assures both, a higher recall and stability.

Our main concept is depicted in Figure 1. The key idea
is to use an independent “orthogonal” information source
to provide stable positive and negative updates from the
scene. To get such an “orthogonal” information source we
adopted the visual co-training approach of Levin et al. [11].
In fact, we also apply background subtraction (i.e., approx-
imated median background model [14]) to exploit the infor-
mation given by this additional view on the data. In contrast
to Levin et al., co-training is performed only in an initial
phase. Later on this classifier is kept fix and used as an
oracle for two reasons. First, not all situations can be han-

dled by co-training in a robust manner. Hence, if too many
wrong updates are performed the co-trained classifier would
start to drift and finally fails totally. Second, as illustrated in
Figure 3, most environmental changes are eliminated by the
background subtraction and the variability in the positive
class vanishes. Thus, no further information can be gained.

Figure 3. Different illumination conditions with the correspond-
ing background subtracted images. Even in case of totally differ-
ent illumination conditions and differently appearing objects the
background subtracted image gives a similar representation of the
object.

3.1. Co-Training Stage

During the initial stage our system is trained in a co-
training manner. Given n grid classifiers Gj operating on
gray level image patches Xj and one compact classifier C
operating in a sliding window manner on background sub-
tracted images B. To start co-training, the classifiers Gj as
well as the classifier C are initialized with the same off-
line pre-trained classifier, then the classifiers co-train each
other. A confident classification (positive and negative) of
a classifier Gj is used to update the classifier C with the
background subtracted representation at position j. Vice
versa, a confident classification of classifier C at position
j generates an update for classifier Gj . Due to the off-line
pre-trained prior, already capturing the generic information,
only a small number of updates is sufficient to adapt the
classifiers to a new scene or changing environmental condi-
tions. The update procedure during the initialization for a
specific grid element j is summarized in Algorithm 1.

3.2. Detection Stage

After the initial stage, as described above, the classifier
C is not longer updated and is applied as an oracle to gen-
erate new positive and negative samples. Hence, we can
abstain from fixed update rules, which are broadly used for
classifier grids. Moreover, we perform negative updates for
the classifiersGj only if they are necessary, i.e., if the scene
is changing. Even if the oracle classifier C has a low recall,
the precision is very high. Thus, only very valuable updates
are generated, increasing the performance of the classifiers
Gj . In particular, a confident classification result of classi-
fierC at position j generates an update for all classifiersGi,



i = 1, . . . , n. In this way new scene specific positive sam-
ples are disseminated over the whole classifier grid. Nega-
tive updates are performed for classifiers Gj if there is no
corresponding detection reported at this position for classi-
fier C. The update procedure during the detection phase for
a specific grid element j is summarized in Algorithm 2.

Algorithm 1 Co-Grid Initialization

Input: grid-classifier Gt−1
j , classifier Ct−1

Input: grid-element Xj , BGS patch Bj

1: if Ct−1(Bj) > θ then
2: update

(
Gt−1

j ,Xj ,+
)

3: else if Ct−1(Bj) < −θ then
4: update

(
Gt−1

j ,Xj ,−
)

5: end if

6: if Gt−1
j (Xj) > θ then

7: update
(
Ct−1,Bj ,+

)
8: else if Gt−1

j (Xj) < −θ then
9: update (Ct−1,Bj ,−)

10: end if

Output: grid-classifier Gt
j , classifier Ct

Algorithm 2 Co-Grid Update

Input: grid-classifier Gt−1
j , classifier C

Input: grid-element Xj , BGS patch Bj

1: if C(Bj) > θ then
2: ∀i : update

(
Gt−1

i ,Xj ,+
)

3: end if

4: if C(Bj) < −θ then
5: update

(
Ct−1

j ,Xj ,−
)

6: end if

Output: grid-classifier Gt
j

3.3. On-line Learning

In general, any on-line learner can be applied within the
co-grid approach. However, to increase the robustness (the
co-trained oracle may still suffer from a small amount of
label noise), we apply on-line TransientBoost [19], which
allows to combine reliable (labeled) data with unreliable
data (unlabeled from the scene). Thus, robustly new pos-
itive information can be gained, especially increasing the
recall but preserving the accuracy. The main idea of Tran-
sientBoost is to train a binary classifier which is based on
an internal multi-class representation. Assuming a strong
classifier Fm(x) =

∑m
t=1 ft(x), this is realized by using

histograms as weak learners ft(x). Moreover, histograms

are highly suitable for a combined off-line/on-line learn-
ing since they can easily be estimated for both domains.
In our case, we apply three classes: one for the reliable
positive data (+1), one for the possibly unreliable positive
data (+2), and one for the classifier-specific background
(-1). The class +1 is trained off-line and is kept fix whereas
the others are updated on-line over time. To finally get a
binary classification, compared to multi-class methods the
weight update during training and the evaluation have to be
adapted. In our case the weight wn for the current sample
x is estimated as wn = −`′ (sign(yt)Fm(x)), where yt is
the computed label, Fm is the strong classifier, and ` is the
loss function. In addition, the evaluation function is set to
sign (Fm(x)). For more details we refer to [19].

4. Experimental Results
In the following, we demonstrate our approach for two

different tasks, i.e., pedestrian detection and car detection.
We evaluated our approach on two publicly available stan-
dard benchmark data sets for pedestrian detection, i.e., the
PETS 2006 data set2 and the PETS 2009 data set3 and
one publicly available data set for car detection, i.e., AVSS
20074. In particular, we want to show that incorporating
scene specific information can help to increase the recall
while using the proposed approach the accuracy can be
preserved. In addition, we compared our approach for all
data sets to the adaptive grid-based object detector of Roth
(GB) et al. [17] and a fixed generic state-of-the art detec-
tor, namely the deformable part model of Felzenszwalb et
al.5(FS) [6]. Both can be applied for person as well as for
car detection. The latter one does not use any scene spe-
cific specific knowledge, however, to enable a fair evalua-
tion similar to Hoiem et al. [9] all false positives that are not
on the given ground-plane are removed.

4.1. PETS 2006

First of all, we run the experiments on the PETS 2006
data set showing the concourse of a train station, where
we have chosen a representative sequence consisting of
308 frames (720x576 pixels). The corresponding recall-
precision curves (RPC) are shown in Figure 4. It clearly
can be seen that the fixed generic detector as well as ex-
isting grid-based approach can be outperformed in terms
of both, recall and precision (i.e., for a comparable preci-
sion the recall can be increased from 0.45 to 0.80). This
clearly shows that including scene-specific data is highly
beneficial. Moreover, illustrative results for this sequence
are shown in Figure 5.

2http://www.pets2006.net
3http://www.pets2009.org
4http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007 d.html
5 http://people.cs.uchicago.edu/˜pff/latent
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Figure 4. RPCs for the PETS 2006 Sequence.

Figure 5. Illustrative detection results of our approach for the PETS
2006 Sequence.

4.2. PETS 2009

Next, we evaluated our approach on the PETS 2009
data set. The selected sequence consisting of 188 frames
(768x576 pixels), which is very highly crowded and thus
very challenging, is the same that was used in Stalder et
al. [18]. Thus, for this test set we additionally give a com-
parison to three different grid-based approaches proposed
by Stalder et al. The obtained RPCs are shown in Figure 6.
Again it can be seen that the proposed approach allows to
robustly include new information increasing the recall but
not tackling the precision. Moreover, it can be seen that
even though Stalder et al. [18] use more sophisticated meth-
ods to incorporate new information (e.g., tracking or 3D in-
formation) our approach yields a significantly better preci-
sion on the same recall level. Illustrative detection results
of our approach on this data set are shown in Figure 7.

4.3. AVSS 2007

Finally, to show that the proposed method is not limited
to person detection, we demonstrate it for car detection. In
particular, we run the experiments on the AVSS 2007 data
set, where we evaluated on the first 500 frames (720x576
pixels) of the vehicle detection sequence AVSS PV Hard.
The RPCs for the proposed approach, CG, and FS are

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
c
a
ll

1−Precision

 

 

3D Grid

Tracker Grid

Detection Grid

FS

Proposed

Figure 6. RPCs for the PETS 2009 Sequence.

Figure 7. Illustrative detection results of our approach for the PETS
2009 Sequence.

shown in Figure 8. It can be seen that the FS approach
clearly can be outperformed and that compared to the CG
approach, even given an excellent baseline, the recall can
be further increased. Again illustrative detection results of
our approach are shown in Figure 9.
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Figure 9. Illustrative detection results of our approach for the AVSS
2007 sequence (detection results within the fully colored region).

5. Conclusion
We presented a robust real-time object detection system

for stationary cameras which is able to adapt to a scene
without drifting. The approach is based on the idea of clas-
sifier grids, i.e., each image location is represented by one
separate classifier. Since existing systems are either biased
by a prior or the accuracy is decreased when performing
positive updates the goal of this work is to benefit from pos-
itive scene specific information while preserving the accu-
racy. This is realized by the combination of an oracle, which
is initialized using co-training, and a robust on-line learner.
In general, any on-line learning method can be applied, but
in particular to increase the robustness, we apply Transient-
Boost, an on-line multi-class boosting method allowing for
preserving the prior information. We demonstrated our sys-
tem for three different publicly available data sets (person
and car detection), where we show that the recall can be
increased while preserving the accuracy and that existing
methods can be outperformed.
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