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Abstract. In this paper, we present a novel formulation of Random
Forests, which introduces order statistics into the splitting functions of
nodes. Order statistics, in general, neglect the absolute values of single
feature dimensions and just consider the ordering of different feature di-
mensions. Recent works showed that such statistics have more discrim-
inative power than just observing single feature dimensions. However,
they were just used as a preprocessing step, transforming data into a
higher dimensional feature space, or were limited to just consider two
feature dimensions. In contrast, we integrate order statistics into the
Random Forest framework, and thus avoid explicit mapping onto higher
dimensional spaces. In this way, we can also exploit more than two fea-
ture dimensions, resulting in increased discriminative power. Moreover,
we show that this idea can easily be extended for the popular Hough For-
est framework. The experimental results demonstrate that using splitting
functions building on order statistics can improve both, the performance
for classification tasks (using Random Forests) and for object detection
(using Hough Forests).

1 Introduction

Random Forests (RF), as introduced by Amit and Geman [1] and further de-
veloped by Breiman [6], became quite popular in recent years due to its sim-
plicity and low computational costs. They find many applications in various
sub-domains of computer vision, like object detection [10], tracking [11, 12], and
semantic image labeling [18]. Random Forests are ensembles of randomized de-
cision trees, which separate the data via learned splitting functions and make
predictions in the leaf nodes, e.g., with estimated class-conditional probabili-
ties for classification tasks. Random Forests are easy to implement and, due to
the hierarchical tree structure, are very fast during both training and testing,
making them a good choice for many computer vision applications.

In many of the aforementioned applications, Random Forests are adopted to
suit the specific needs by changing the splitting functions. For instance, for fine-
grained image categorization [21], max-margin classifiers are used to split the
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data in each node. Another example are Oblique Random Forests [14], which in-
tegrate random projections into the splitting functions. For object detection and
semantic image labeling, both Hough Forests [10] and Texton Forests [18] rely
on splitting functions based on the difference of two randomly selected pixels on
small image patches. The splitting functions used in the latter two approaches
consider partial ordering statistics, i.e., the ordering of different feature dimen-
sions according to their feature values. However, both approaches rely on the
differences between the pixel values and not directly on the ordering and are
limited to two pixels only. Furthermore, they neither set their focus on these
splitting functions nor explore their functionalities in more detail.

A totally different approach, which explicitly explores partial order statis-
tics, is that of Yagnik et al. [19]. They propose a non-linear transformation that
randomly selects a subset of the feature dimensions and encodes the index of
the maximum value of this subset. This is repeated several times to build a
feature vector. They use this new data representation for several vision tasks
(e.g., image classification) and show the discriminative power of this non-linear
transformation. However, for good performance, they need to generate a huge
number of completely random non-linear codes (i.e., yielding a quite high di-
mensional feature vector). As not all codes are discriminative, this increases the
computational costs.

In this work, we show how such non-linear and discriminative transformations
can be seamlessly integrated into the splitting functions of Random Forests. We
can thus avoid the explicit calculation of such high dimensional data as in [19],
because each node in the RF only selects the most discriminative codes. This
can be seen as a feature selection process that results in lower computational
costs. Nevertheless, we still maintain the properties of the non-linear transforma-
tion in each tree, thus making the Random Forest more discriminative. Similar
to [19], the novel splitting functions neglect absolute values of single features but
rather observe their partial ordering. Such statistics are particularly interesting
in computer vision as they are independent from the illumination. That is, our
splitting functions for RFs depend on several feature dimensions simultaneously
and exploit their ordering statistics to split the data (see Sec. 3), rather than
considering only a single dimension as in standard RFs. In the sequel, we denote
this RF formulation as Ordinal Random Forest (ORF).

We also show how these splitting functions can be integrated into the Hough
Forests [10] (see Sec. 4), which is a popular and widely applicable framework
used for object detection [10], tracking [11, 12], and action recognition [20]. This
extension of Hough Forests, in the following denoted as Ordinal Hough Forests
(OHF), makes them more discriminative as we show in our experiments.

In Sec. 5, we evaluate our novel splitting functions on two different tasks: (i)
image categorization and (ii) object detection. We first apply the ORF frame-
work for image categorization on the popular Caltech101 and USPS data sets.
Then, in the second experiment, we show object detection results with the OHF
framework on widely used data sets (i.e., TUD pedestrian, TUD crossing, and
TUD campus). Both experiments show relative improvements of ORF and OHF



Ordinal Random Forests for Object Detection 3

compared to standard Random Forest and Hough Forest, indicating the benefits
of considering order statistics of several feature dimensions, rather than values
of a single dimension.

2 Random Forests

Given labeled data {xi, yi}Ni=1, where xi ∈ RD is a D-dimensional feature vec-
tor, yi ∈ 1, . . . , C is the corresponding class label, and N is the number of
training samples, the goal of a machine learning algorithm is to learn a mapping
from a given test sample x to the correct class label y. For Random Forests [6]
(RF), this is realized by building an ensemble of T randomized decision trees Tt,
t = 1, . . . , T . The literal purpose of RFs was to solve a supervised classification
problem, although this learning approach was already extended to other tasks
like regression, semi-supervised learning or density estimation [7]. However, in
this work we focus on the classification problem.

During training, the algorithm tries to split the given training data {xi, yi}Ni=1

in each node, such that samples from different classes are separated. This recur-
sive algorithm continues to split the data until either the maximum depth of
the tree is reached, the subset of the data in a node is pure, or the number
of samples is below a threshold. If any of these conditions is met, a leaf node
is created and the class probability p(y|x) is estimated by simply counting the
number of samples that fell into this leaf node for each class y, normalized such
that

∑C
y=1 p(y|x) = 1.

In order to split the data in a single splitting node, a pre-defined number Γ
of splitting functions

ξjd,τ (x) =

{
0, if xd < τ
1, otherwise

, (1)

is drawn randomly, where j = 1, . . . , Γ , xd denotes the d-th dimension (randomly
drawn) in x, and τ is a random threshold, which split the data to the left or
right child node. The number Γ of randomly sampled splitting functions is a
hyperparameter, pre-defined by the user. The current node selects the function
ξjd,τ that best splits the data according to

I = − |L|
|L|+ |R|

·H(L)− |R|
|L|+ |R|

·H(R) , (2)

where L and R are the left and right subsets of the data after splitting with
ξjd,τ . In our implementation H(·) = −

∑C
y=1 p(y) · (1 − p(y)) is the Gini index,

although the entropy can also be used; p(y) is the class probability for class y.
After having found the best splitting function ξ∗d,τ among the Γ sampled ones,
the data in that node is split and forwarded to the left and right child nodes,
respectively, where the recursive algorithm continues.

During inference, a test sample x is traversed down all T trees and ends up in
some leaf nodes. Each of these leaf nodes gives a prediction for a class label with
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its learned class probabilities p(y|x). The prediction of the complete ensemble of
trees is then given as the average of those class probability estimates:

y∗ = arg max
y∈1,...,C

1

T

T∑
t=1

pt(y|x) . (3)

One property of Random Forests is that the generalization error can be es-
timated as a function of the strength of the individual trees and the diversity
among them [6]. The generalization error is given as

GE ≤ ρ̄1− s2

s2
, (4)

where ρ̄ is the mean correlation between two pairs of trees and s is the strength
of the trees in terms of prediction accuracy. Thus, strong but uncorrelated trees
decrease the generalization error.

Random Forests have some desirable properties, especially for computer vi-
sion tasks. Due to their hierarchical structure, they are very fast during both
training and testing. Furthermore, they can be easily parallelized (also on the
GPU [17]) as the trees can be trained and tested independently from each other,
making RFs even faster. RFs are inherently multi-class capable and do not rely
on heuristic learning schemes like ”one-vs.-all” or ”one-vs.-one”. Breiman [6] also
states that RFs can handle significant amounts of noisy data. These reasons led
to various applications for Random Forests [7], like semantic image labeling [18],
object detection [10], object tracking [11, 12], or image classification [4, 15].

3 Ordinal Split Functions for Random Forests

In this section, we introduce our novel splitting function for Random Forests
that is based on partial order statistics. We thus modify the splitting function in
Eq. (1) with the goal to neglect absolute values of single dimensions in a feature
vector x and observe order statistics between several features instead.

We define our novel splitting function as

ψjD,δ(x) =

{
0, if arg maxd∈{0,...,K−1} x(D)d = δ

1, otherwise
, (5)

where D is a vector of lengthK containing randomly sampled indices in the range
0, . . . , D−1; x(D) is the K-dimensional vector containing the feature dimension
indexed by the vector D; δ is an integer value in the range [0, . . . ,K − 1]. That
is, to define such a splitting function, we have to construct the random vector
D that selects K dimensions of the data sample x, yielding the vector x(D).
Then, the response r of this data sample is defined as the index of the maximum
element in x(D), which is in the range [0, . . . ,K − 1]. If the response matches δ,
the sample is forwarded to the left child node, otherwise to the right child node.

Let us now consider this splitting function in more detail. The standard
splitting function given by Eq. (1) only considers a single feature dimension and
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thresholds the values of this dimension. Samples x having a higher/lower value
in a single dimension xd than a threshold τ are forwarded to the left/right child
nodes. After having split the data, the only commonality of the samples in one
of the child nodes is that the values in one dimension are above/below τ . On
the other hand, considering our novel splitting functions ψjD,δ in Eq. (5), the
(enforced) commonality of split data is much higher, thus making the splitting
functions stronger. Considering samples in the left child node after splitting, all
samples within this node fulfill K − 1 inequalities. Namely, one of the randomly
selected feature dimensions has a higher value than K − 1 other feature dimen-
sions. Although samples in the right child node only fulfill a single constraint,
namely that the selected feature dimension is not the maximum, the overall
(enforced) commonality of split data is still higher than in standard RFs, thus
yielding stronger decision trees.

However, making single trees in an ensemble method stronger can be harmful,
as often the diversity is reduced. As mentioned above (see Eq. (4)), to reduce the
generalization error, we have to increase the strength of single trees, while still
keeping the diversity across the forest. The new splitting functions Ψ jD,δ make the
trees stronger, but we keep the diversity as the functions are still drawn complete
randomly. Additionally, the number of available ordinal splitting functions is
now

(
D
K

)
, instead of only D in standard splitting functions. Thus, the number of

available splitting functions increases with K, as long as K ≤ D
2 .

Finally, we have to note that such transformations [19] or splitting functions
like in Eq. (5) are only meaningful if the distributions of data samples from dif-
ferent classes do not share the same covariance information. Otherwise, relations
between feature dimensions are not discriminative at all. That is, pure machine
learning or artificial data is often not suitable for such splitting functions, how-
ever, when working with vision data, partial order statistics make sense for most
data representations (e.g., consider simple pixel tests [10, 18]).

4 Extension to Hough Forests

We now describe the extension of our splitting functions, introduced in Sec. 3,
to the Hough Forests (HF) [10]. First, we briefly review HF and then integrate
our novel splitting functions into the original formulation of [10].

Hough Forests work on small patches Pi extracted at random locations within
a given bounding box from positive and negative training images of an object.
Each patch is described with several features, termed channels. Positive samples
additionally store an offset vector oi pointing to the center of the bounding box.
HFs then try to separate positive from negative patches and simultaneously
cluster together similar positive patches according to their offset vectors oi.

The splitting functions in the HF framework are defined as follows:

Ω(Pi; a, p, q, r, s, τ) =

{
0, if Pai (p, q) < Pai (r, s) + τ
1, otherwise

, (6)
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where a indicates the feature channel, Pai is the calculated feature response of
feature type a for patch Pi, (p, q) and (r, s) define two pixel locations within Pai
and τ is a threshold. That is, each node in the HF randomly selects a feature
channel and two pixels within the patch Pi and calculates the difference of the
feature values. This difference is then thresholded to determine which patches
are forwarded to the left or the right child node. This is already quite similar
to our previously defined splitting functions (Eq. (5)) based on partial order
statistics, however, only two pixels are considered and a different thresholding
is applied.

To integrate the ordinal splitting functions into the Hough Forest framework,
we also build on only one feature channel but select K ≥ 2 pixels. Then, we split
the data in the same way as described in Sec. 3 by forwarding all patches Pi
to the left child, if the maximum pixel index is equal to the “threshold” δ (an
integer between 0 and K−1). Hence, we forward patches Pi to the left child node
if all K−1 inequalities (i.e., simple pixel tests) are fulfilled. All other patches are
forwarded to the right child node. Then, the standard growing procedure of HFs
continues by selecting the best randomly sampled splitting function according
to the optimization objective (see [10] for more details).

In contrast to the works of Gall and Lempitsky [10] (and Shotton et al. [18]),
we define splitting functions solely based on partial ordering of feature dimen-
sions, not limited to two features (or pixels).

5 Experimental Evaluation

To demonstrate the benefits of our ordinal splitting functions, we perform two
different experiments. First, image classification using Random Forests and, sec-
ond, object detection using Hough Forests.

Table 1. Classification accuracy on the Caltech101 data set, where the columns cor-
respond to different forest sizes T . The rows show the evaluated methods, RF and
ORF, where different values for the parameter K of ORF are tested. Best performing
methods are marked bold for each forest size.

Method T = 1 T = 5 T = 10 T = 20 T = 50 T = 100

RF .161 .256 .347 .412 .461 .492
ORF, K = 2 .257 .363 .405 .445 .486 .496
ORF, K = 3 .262 .370 .402 .435 .483 .499
ORF, K = 4 .262 .372 .399 .443 .489 .508
ORF, K = 5 .266 .369 .422 .460 .488 .507
ORF, K = 6 .273 .387 .411 .455 .497 .511
ORF, K = 7 .269 .379 .421 .440 .498 .520
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5.1 Image Classification

We first evaluate the novel ordinal splitting functions on two image classification
tasks and compare it to the standard Random Forest framework [6]. We use
the popular Caltech101 object categorization data set [9] and the USPS digit
categorization data set [13]1. The Caltech101 data set contains images from
101 categories (we leave out the additional background class), where we use 15
images per class for training and 10 images for testing. This results in a training
set of 1515 images and a test set of 1010 images. As feature representation, we
used PHOW features [5]2, for gray and color channels, each with a codebook
size of 600 (computed with k-means), ending up in a 1200-dimensional feature
vector.

The USPS data set consists of 7291 training samples and 2007 test samples
from 10 different classes, i.e., hand-written digits from 0 to 9. The 256 dimensions
of the feature vectors in this data set contain the raw pixel values from a 16 ×
16 gray scale image capturing the handwritten digits (the feature values are
normalized in the range [0 , 1]).

Table 2. Classification accuracy on the USPS data set, where the columns correspond
to different forest sizes T . The rows show the evaluated methods, RF and ORF, where
different values for the parameter K of ORF are tested. Best performing methods are
marked bold for each forest size.

Method T = 1 T = 5 T = 10 T = 20 T = 50 T = 100

RF .820 .888 .917 .926 .936 .938
ORF, K = 2 .851 .924 .939 .946 .947 .950
ORF, K = 3 .841 .926 .936 .944 .949 .949
ORF, K = 4 .849 .917 .930 .941 .944 .949
ORF, K = 5 .834 .911 .929 .938 .945 .947
ORF, K = 6 .828 .904 .925 .938 .941 .943
ORF, K = 7 .816 .899 .927 .933 .939 .941

We compare our novel Ordinal Random Forest (ORF) framework with stan-
dard Random Forests3. We evaluate our approach for different numbers of trees
in the forest and, for ORF, also for different values of the window size K. As
suggested in [6], we set the number of randomly sampled splitting functions per
node in the standard RF to

√
D, where D is the feature dimensionality. As

already mentioned in Sec. 3 we have to increase the number of sampled split-
ting functions for our approach as the feature space is increasing when sampling
more than one feature for a single splitting function. In fact, the number of pos-

sible combinations of K feature dimensions is
(
D
K

)
, resulting in

√(
D
K

)
sampled

1 http://www.cs.nyu.edu/~roweis/data.html
2 We use the publicly available toolbox from http://www.vlfeat.org/
3 We use public code from http://code.google.com/p/randomforest-matlab/
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splitting functions for ORF. However, to keep the computational effort on a rea-
sonable level, we reduced the number of sample tests to 500, which has been
shown to be enough for our purposes. We depict our results for both data sets in
Tables 1 and 2, respectively. As can be seen from both tables, compared to the
standard RF, ORF improves the classification scores for all sizes of the forest
and different values of the parameter K. Furthermore, we note that best results
are obtained with higher values of K on the Caltech101 data set and with lower
values on the USPS data set. A reason for this could be the large amount of
classes in Caltech101 in combination with the rather small amount of training
data, thus requiring stronger splits.
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Fig. 1. (a-c) Precision-recall curves of OHF and HF on the three data sets, i.e., TUD-
pedestrian, TUD-crossing, and TUD-campus.

5.2 Object detection

In the second experiment, we evaluate our extension of HFs [10] with ordinal
splitting functions (see Sec. 4) and compare it with the standard HF imple-
mentation on three popular pedestrian detection benchmarks, namely the TUD-
pedestrian, TUD-crossing, and TUD-campus data sets [2], which were often used
for evaluating Hough Forest-based approaches [3, 16].

The TUD-pedestrian data set contains 400 bounding-box annotated persons
and 250 test images, capturing 311 pedestrians. The other data sets, TUD-
crossing and TUD-campus, are smaller and contain only test sets with 201 and 71
images, respectively. We thus use the training images from the TUD-pedestrian
data set as training data for all 3 test sets. For training, we uniformly extracted
the patches from all training images, such that the total amount of positive
training patches is around 10000; we use the same amount of negative patches,
randomly cropped from the background.

For all our experiments we used 15 trees and a maximum depth of 15, similar
to [10]. We use the publicly available implementation4 for the Hough Forests,

4 http://www.vision.ee.ethz.ch/~gallju/projects/houghforest/houghforest.

html
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where we also build our extensions on. Due to computational reasons, we set
the number of randomly sampled tests for both methods to 2000, although our
splitting functions would theoretically require more, as soon as K > 2. Never-
theless, we also evaluate the influence of the number of randomly drawn splitting
functions (see Table 3). For all other evaluations we set K = 4.

We depict our results as precision-recall curves in Figure 1 and also report the
average precision values [8]. As can be seen from the figures, the novel splitting
function can boost the performance on all three data sets. All results are averaged
over 3 independent test runs to compensate for the randomness in the training
procedure of the forests.

Table 3. Average precision values on the TUD-crossing data set for different parameter
values. The columns correspond to different numbers of randomly sampled splitting
functions Γ . The rows show the evaluated methods, HF and OHF (with different
values for K). Best performing methods are marked bold for each Γ .

Method Γ = 500 Γ = 1000 Γ = 2000 Γ = 3000

HF .757 .753 .761 .733
OHF, K = 2 .781 .776 .779 .767
OHF, K = 3 .784 .782 .784 .772
OHF, K = 4 .762 .782 .761 .769
OHF, K = 5 .771 .764 .769 .772
OHF, K = 6 .770 .763 .776 .776

We also evaluate the influence of the parameter K and the number of sampled
random tests per node, Γ , on the Ordinal Hough Forest. For comparison, we also
added the performance of the standard Hough Forests (HF) for different values
of Γ . Table 3 shows the results as average precision values. As can be seen from
the table, OHF outperforms HF for all parameter settings. Furthermore, to get
good performance, the number of randomly sampled splitting functions Γ has
to be increased with K. This is somehow clear, as also the possible number of
available splitting functions increases with K.

6 Conclusion

Partial order statistics, which neglect absolute values of features and only con-
sider relative differences and orderings, have recently shown good discriminative
power; especially, when dealing with high dimensional data. In this work, we
adopted these ideas and proposed a novel, more discriminative splitting func-
tion for Random Forests. We integrated this splitting function into both, the
Random Forest and the Hough Forest frameworks. To demonstrate the bene-
fits of the proposed approach, we applied it for two different tasks, i.e., image
categorization and object detection. In both cases the discriminative power can
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be increased, and we are able to show that using the new splitting function the
standard implementations (i.e., for Random Forests and Hough Forests) can be
outperformed. Hence, the approach could also be used for other computer vision
tasks. Furthermore, future work also includes the combination of both kinds of
splitting functions (absolute feature values and order statistics), getting the best
of both worlds.
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