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Abstract

In this paper, we present a novel object detection ap-
proach that is capable of regressing the aspect ratio of ob-
jects. This results in accurately predicted bounding boxes
having high overlap with the ground truth. In contrast to
most recent works, we employ a Random Forest for learn-
ing a template-based model but exploit the nature of this
learning algorithm to predict arbitrary output spaces. In
this way, we can simultaneously predict the object proba-
bility of a window in a sliding window approach as well as
regress its aspect ratio with a single model. Furthermore,
we also exploit the additional information of the aspect ra-
tio during the training of the Joint Classification-Regression
Random Forest, resulting in better detection models.

Our experiments demonstrate several benefits: (i) Our
approach gives competitive results on standard detection
benchmarks. (ii) The additional aspect ratio regression de-
livers more accurate bounding boxes than standard object
detection approaches in terms of overlap with ground truth,
especially when tightening the evaluation criterion. (iii)
The detector itself becomes better by only including the as-
pect ratio information during training.

1. Introduction
Object detection is one of the most important tasks in

computer vision. Modern object detectors have to be both
accurate and fast as they are often employed in time-critical
applications, such as gaming or robotics. Moreover, they
also act as a building block in various other applications like
semantic segmentation [19, 28] or scene recognition [24].

In recent years, the progress in this field has been tremen-
dous. Popular fast and accurate detection approaches can
be roughly subdivided into three different strands: First,
the works based on the rigid Dalal and Triggs [10] detec-
tor using HOG features and SVMs. In particular, the De-
formable Parts Model [15] extends the rigid detector with
a part-based multi-component model and achieves state-of-
the-art results on many benchmarks. Second, object detec-

Figure 1: Illustrative output of the proposed detector (red)
and a state-of-the-art method (blue). The given values
show the overlap with the green ground truth bounding box,
where our detector achieves a much higher overlap because
it regresses the aspect ratio of the object.

tors building on the work of Viola and Jones [29] using
Boosting and various feature channels [5, 12, 13]. These
rigid detectors are less flexible in terms of object outlines,
but achieve state-of-the-art results on pedestrian detection
benchmarks and run in real-time. Third, detection mod-
els operating over small patches that vote for object cen-
ters with the generalized Hough transform [16, 22]. These
detectors are very flexible and powerful in detecting body
parts [26] or fiducial points in faces [11] but are less suc-
cessful on common object detection benchmarks.

The quantitative evaluation of all these detection models
typically focuses on the amount of true and false positive
detections in a certain data set. True positives are commonly
characterized by a predefined overlap (50% in most bench-
marks) of the detection with the ground truth bounding box.
However, the question arises if a criterion based on such an
arbitrarily chosen threshold actually reflects the quality of
an object detector. Consider for instance the blue bounding
box in Figure 1, a detection given by a template-based de-



tector similar to [5, 12, 13], which is a true positive but has
an overlap of only 59% with the green ground truth bound-
ing box. Thus, tightening the overlap criterion would dras-
tically decrease the overall performance of such a detector,
as we show in our experiments.

In this work, we propose a novel object detection ap-
proach capable of predicting more accurate bounding boxes
with a Joint Classification-Regression Random Forest for-
mulation similar to [16, 17]. We exploit the fact that RFs,
can predict arbitrary output spaces, cf. [14, 16, 18], and aug-
ment the label space for object detection with the bounding
box size, which we exploit during both training and testing.
In this way, we cannot only predict the foreground proba-
bility of a detection but can also regress the extent of the
object with a single model, alleviating the need for learning
many mixture models [15]. An illustrative result is shown
in Figure 1, where the red bounding box is the output of
our detection algorithm, which has a much higher overlap
of 89% with the ground truth, thus identifying the extent of
the object more accurately.

In our experiments, we demonstrate that our object de-
tection approach yields state-of-the-art results on several
data sets and compare it with related approaches like Hough
Forests [16], DPM [15] and a Boosting-based rigid template
approach [5, 12, 13]. More importantly, we also show that
our approach can accurately regress the bounding box as-
pect ratio of objects in unseen test images, which is also
reflected in the results. Namely, the detection performance
of most typical detectors breaks down when increasing the
overlap criterion for true positives, while our approach still
gives comparably good results.

2. Related Work
The most related approaches to ours are the works of

Dollár et al. [12, 13] and Benenson et al. [5], who build on
a similar detection pipeline and employ the same features.
The influential work on Integral Channel Features [13]
computes several feature channels, including color, gradi-
ent magnitude and orientation quantized gradients, which
is similar to [5]. Both works rely on an efficient Boost-
ing framework for learning the object models. This line
of work almost exclusively focuses on pedestrian detection
and there are some extensions that make this framework
extremely fast [4] or exploit application-specific knowl-
edge [3]. However, only fixed size bounding boxes are pre-
dicted, which is reasonable for pedestrians, but is a limita-
tion if dealing with arbitrary objects.

The Deformable Parts Model (DPM) [15] extends the
rigid HOG template and SVM approach of [10] and in-
cludes deformable parts and multiple components. This
mixture model captures the intra-class variability by sepa-
rating the training data according to the aspect ratio (newer
versions also include appearance), thus enabling the predic-

tion of a discrete set of aspect ratios. Furthermore, a linear
regression on the inferred part locations refines the aspect
ratio prediction. Nevertheless, the DPM has some disad-
vantages because (i) different models have to be trained for
each component and (ii) the aspect ratio prediction per com-
ponent is limited on a linear model solely based on the part
locations. In particular, the first issue limits the DPM in two
ways: First, the model becomes slower during both train-
ing and testing, and second, the more components are em-
ployed, the less training data is available for each of them.
In contrast, we have a single model that can exploit all the
training data and can predict a continuous aspect ratio.

Blaschko and Lampert [7] formulate the detection as a
regression problem and train a structured output SVM for
learning. While yielding accurate results, a fast localiza-
tion method is necessary to have reasonable runtimes dur-
ing both training and detection. They use Efficient Sub-
window Search, which requires computing an upper bound
on the detection score, thus limiting the choice of features
and learning method [20]. Our work is more flexible in the
choice of features, faster during training and also has a rea-
sonable runtime within a sliding window scheme.

We also note that RFs, in general, have rarely been em-
ployed for object detection. One exception is the Hough
Forest framework [16], which describes an object as a set of
small patches that are connected to a reference point, typi-
cally the center of the object. However, this patch-based ap-
proach is relatively slow compared to other detection mod-
els. To overcome this issue, [27] proposes a two-level ap-
proach for speeding up the detection process. Nevertheless,
it still relies on the Hough voting scheme for the final pre-
diction, where the non maximum suppression is a delicate
task, cf. [30]. While Hough Forests [16] typically predict a
fixed bounding box, it can also handle variable aspect ratios;
either via back-projecting the voting elements, which then
define the bounding box, or via voting in a third dimension
in Hough space. However, employing the back-projection
is rather slow or memory intensive, while increasing the
Hough space dimensionality hampers the maximum search.

Recently, [23] showed a holistic RF model that trains
local experts (SVMs) in each node. However, this model
also builds on a fixed bounding box prediction and was only
evaluated on pedestrian detection benchmarks.

3. Joint Classification-Regression Forests
To derive our Joint Classification-Regression Forest

(JCRF) formulation, we first give a brief review of standard
Random Forests (RF) in Section 3.1 and of the basic ob-
ject detection model in Section 3.2. Then, we show how the
label space is augmented for predicting variable bounding
box aspect ratios in Section 3.3. Finally, the training and
detection procedures of JCRF are illustrated in Sections 3.4
and 3.5, respectively.



3.1. Random Forests

Random Forests [1, 8, 9] (RF) are ensembles of T binary
decision trees ft(x) : X → Y , where X = Rn is the n-
dimensional feature space and Y = {0, 1} describes the
label space1.

During testing, each decision tree returns a class proba-
bility distribution pt(y|x) for a given test sample x and the
final class label y∗ is calculated via

y∗ = arg max
y

1

T

T∑
t=1

pt(y|x) . (1)

During training, the decision trees are provided with
training data T = (xi, yi)

N
i=1, where N is the number of

training examples, and all trees are trained independently
from each other. For training a single decision tree, the pa-
rameters Θ of a splitting function

Φ(x,Θ) =

{
0 if rΘ(x) < 0
1 otherwise , (2)

which separates the data into two disjoint sets, have to be es-
timated. In Equation (2), rΘ(x)→ R calculates a response
of the feature vector x. The quality of a given splitting func-
tion Φ is typically defined as

I(Θ) =
|L|

|L|+ |R|
H(L) +

|R|
|L|+ |R|

H(R) , (3)

where L = {x : Φ(x,Θ) = 0}, R = {x : Φ(x,Θ) = 1},
| · | denotes the size of a set, and H(·) measures the purity
of a set of training examples in terms of class labels. The
purity H(·) is typically calculated via the entropy or the
Gini index [8].

The standard procedure in Random Forests for finding
a good splitting function in a single node is to randomly
sample a set of parameters {Θj}kj=1 and simply choosing
the best one, Θ∗, by evaluating Equation (3). This splitting
function is then fixed, the training data is separated accord-
ingly and the tree growing continues until some stopping
criteria, such as a maximum tree depth or a minimum num-
ber of samples in the node, are reached.

3.2. Object Detection Model

The training data for our detection model is a set of rigid
templates P with size h̄ × w̄, which is the mean bounding
box size of all the objects in the training set, normalized to
100 pixel width or height, depending on what is larger2. As
in [12], the size of this template also includes a padding of
20% in order to capture some context around the objects.

1Please note that we only consider the binary case here as our applica-
tion is binary object detection. However, RF are inherently multi-class.

2Throughout the paper, we will always refer to a fixed-width model.

Figure 2: Training samples capturing objects with differ-
ent height. Features are computed from the whole template
(blue box), but the regression targets zi are different.

We center such a template at each of the annotated train-
ing objects and on randomly sampled bounding boxes from
negative images. For each of the cropped training exam-
ples, we calculate 10 different feature channels: We use the
3 LUV color channels, the gradient magnitude, and 6 gradi-
ent channels, quantized into equally sized orientation bins,
similar to [5, 12, 13].

The training data T , i.e., positive and negative sam-
ples, is thus given as a set of pairs (xi, yi)

N
i=1, where

xi ∈ Rh̄×w̄×10 and yi ∈ {0, 1}. Given this data, we train
a Random Forest F(x) = 1

T ft(x) with the standard objec-
tive given in Equation (3). As splitting functions, we use
pixel-pair test, cf. [16], and thus define

rΘ(x) = x(Θ1
l ,ΘC)− x(Θ2

l ,ΘC)−Θσ , (4)

where Θ1
l and Θ2

l describe two 2D locations within the tem-
plate P , ΘC ∈ {1, . . . , 10} defines a feature channel and
Θσ ∈ R is a threshold. Please note that in the following
sections, we will extend the label space and also provide a
different objective function for training the model.

We also include three rounds of bootstrapping after the
initial training of the Random Forest. In each round, a set of
hard negative windows is identified by applying the current
model on the negative images, which are then added to the
pool of negative data. In each round we re-train the Random
Forest from scratch.

3.3. Augmenting the Label Space

As described in the previous section, each training ex-
ample is cropped and scaled such that it fits in the template
P of size h̄ × w̄. The scaling factor is defined by the fixed
model width. Thus, the actual height of the objects captured
in the training images most likely varies with the viewpoint
of the object. See Figure 2 for some examples. In order to
give predictions about the correct height, and thus the aspect
ratio of an object, we additionally store the actual height z
for each of the training examples.

Therefore, we augment the label space with the ground
truth height of each positive training example, which ex-
tends the label space to Y = {0, 1} × R. Our train-
ing set now becomes a set of triplets (xi, yi, zi)

N
i=1, where



yi ∈ {0, 1} still corresponds to the positive and negative la-
bel, and zi ∈ R is the correct bounding box height. Please
note that for background training samples, i.e., yi = 0, zi is
undefined.

3.4. Training the Random Forest Model

For training our Joint Classification-Regression Forest
(JCRF), we have two objectives. First, we want to sepa-
rate positive and negative classes and, second, we want to
regress the bounding box height for positive samples. Sim-
ilar to Hough Forests [16], we use two separate split node
types that optimize the different objective functions. The
first node type is a (binary) classification node and the sec-
ond is a regression node.

For classification nodes, we use the recently proposed
Alternating Decision Forests (ADF) [25] that show how a
well defined loss function can be optimized over all trees,
while still being able to parallelize the training. For em-
ploying ADF, we assign each training sample xi a corre-
sponding weightwi, similar to Boosting. Then, the trees are
trained breadth-first and after training each level of depth,
the weights are updated according to the respective loss,
which was calculated over all trees. The purity measure
H(·) in Equation (3) is still the same, i.e., the entropy.

For regression nodes, we employ a standard reduction-
in-variance approach, where the purity measureH(·) is thus
defined as the variance of the target values zi in the corre-
sponding sets. Please note that the regression objective is
only evaluated with the positive training data.

In general, a single splitting node decides randomly with
equal probability which of the two objectives are being op-
timized. As in Hough Forests [16], we also assign certain
levels of depth in the tree a fixed type of evaluation objective
that has to be optimized. We thus introduce the steering pa-
rameter γ which has different interpretations: While setting
γ = 0 ignores the regression objective at all, setting γ > 0
indicates that starting with depth γ, only regression nodes
are evaluated in all trees, similar to [16]. In this work, we
additionally allow setting γ < 0, where only the first levels
up to depth |γ| are optimizing the regression objective.

Tree growing stops as in standard Random Forests when
either the maximum tree depth is reached or not enough
training examples are available for further splitting. In con-
trast to standard Random Forests, where tree growing also
stops if a certain node becomes pure in terms of class labels,
in this setting, we continue splitting nodes containing only
positives but fix the splitting objective to be regression.

The resulting leaf nodes then calculate (i) the class his-
togram based on the training data falling in that leaf and (ii)
the mean of the regression targets z of all positive training
examples. As thus each tree can return two kinds of outputs,
we denote by fCt (x) the classification output of tree t and
by fRt (x) the regression output.

3.5. Detection with Aspect Ratio Regression

For detecting objects in unseen test images, we em-
ploy a standard sliding window approach over the scale-
space. The score of a window W at location (x, y) in
the image is given by the classification output of the RF
s = FC(x) = 1

T

∑T
t=1 f

C
t (x). As we use an ensemble

method which consists of several independent weak classi-
fiers (randomized trees in this case), we could parallelize
their evaluation to achieve a higher detection speed. How-
ever, given a certain detection threshold τ below which de-
tections are discarded, we can also iteratively evaluate the
trees and employ an early-stopping scheme. Moreover, we
can still benefit from parallel processing, e.g., at the scale
space pyramid or for the simultaneous evaluation of multi-
ple images.

In our early stopping approach, we examine whether or
not the trees in the RF not evaluated up to now can the-
oretically achieve such a high foreground probability that
the total score for that window W exceeds the detection
threshold τ . Assume that we already evaluated the trees
up to index t < T , the current unnormalized score thus is
si≤t =

∑t
i=1 f

C
i (x). The upper bound of the score from

the remaining trees is s̄i>t =
∑T
i=t+1 1.0 = T − t. There-

fore, if

si≤t + s̄i>t < τ · T , (5)

we can already stop evaluating the feature vector x in the
current windowW . For instance, having T = 10 and a de-
tection threshold τ = 0.95, the evaluation can already stop
if the first tree has a foreground probability fC1 (x) < 0.5.
Using this approach, we can reject clear negative windows
during the evaluation process very quickly without reducing
detection performance.

For each of window with s ≥ τ we evaluate fRt (x) for
each tree in the JCRF to return the prediction about the re-
gression target, i.e., the height of the object captured in the
current window. The final estimate z of the object height is
given as the average over all independent trees:

z = FR(x) =
1

T

T∑
t=1

fRt (x) . (6)

Please note that a mode seeking approach like mean shift
could also be employed, but averaging turned out to be a
good choice in our setting. The resulting detection window
including the detection score in the original scale is then
given by D = (xκ ,

y
κ ,

w=100
κ , zκ , s), where κ is the scale of

the detection.
After having identified a set of potential detections for a

test image, we apply a standard greedy non-maximum sup-
pression approach that removes detections having an over-
lap greater than 50% with a higher scoring detection [15].



4. Experiments
In our experiments, we demonstrate the performance of

our object detection approach. First, we compare with state-
of-the-art methods on three different data sets with a stan-
dard object detection evaluation criterion. Second, we also
evaluate the detection performance of all methods when this
evaluation criterion is tightened. Finally, we analyze our
trained model and the most relevant parameters.

4.1. Overall Performance Evaluation

We first evaluate the overall detection performance of the
proposed approach on three standard benchmarks. We in-
vestigate three different variants of our approach: StdRF
implements a standard Random Forest disregarding the re-
gression information at all. StdRF-Regr trains a RF and in-
cludes the regression information during both training and
testing. ADF-Regr employs the training scheme from [25]
for classification nodes, see Section 3.4.

In addition, we give a comparison to state-of-the-art de-
tection approaches. First, we evaluate Aggregate Channel
Features (ACF) [12], a Boosting-based approach similar
to [5, 13] that builds on the same detection pipeline (i.e., the
same features and bootstrapping scheme) as our detector.
Second, we also compare with Hough Forests [16] (Hough-
Forest) that also rely on a Random Forest framework for
learning the object model, however, it works on the patch-
level and employs the generalized Hough voting scheme for
detection. Please note that both approaches only predict a
single bounding box aspect ratio, which is averaged over
the training data. Finally, we also compare with the De-
formable Parts Model [15] (DPMfull ), where we addition-
ally evaluate a version that only uses the root filter DPM-
root to have a fair comparison with the other approaches
building on a rigid template. However, more important for
our scenario are the multiple components included in this
model, which are defined by clustering the aspect ratio of
the training bounding boxes. To denote the different ver-
sions of [15] we add the number of components (1, 2 or 4)
as postfix to DPMroot or DPMfull, respectively. For all ap-
proaches building on randomization steps, i.e., [16] and our
variants, we average the results over three independent runs.
Data sets: We use three different data sets for evaluation
purpose, namely the ETHZcars [21], the TUDpedestrian [2]
and the MITStreetsceneCars [6]. For the ETHZcars data
set, we use 420 training and 175 testing images that cap-
ture cars from different viewing angles. Although the test
set defines a rather easy detection task, because it shows
cars prominently with little background, it exactly fits the
needs for evaluating the quality of the bounding box detec-
tions. Namely, the aspect ratio of the ground truth bound-
ing boxes in the test set strongly varies. The TUDpedestrian
data set contains 400 training images and 250 test images.
Also in this scenario, the aspect ratio varies due to different

articulations. Finally, the MITStreetsceneCars data set is a
larger data set capturing cars in different street scene sce-
narios and under different illumination. We split this data
set in 2

3 training and 1
3 testing images, resulting in 2909 and

1020 images, respectively.
Evaluation Criterion: The evaluation criterion in this ex-
periment is the commonly used Pascal overlap. For each
detection D it calculates the overlap with a ground truth
bounding box G as the Intersection over Union:

IoU(D,G) =
D ∩ G
D ∪ G

. (7)

The IoU(D,G) overlap separates all detections D in true
(IoU ≥ ξ) or false (IoU < ξ) positives, which are used
for drawing precision-recall curves and calculating the Area
Under Curve (AUC) measure. The parameter ξ is the suc-
cess threshold that is typically, and also in this experiment,
set to 0.5. Note that in the following section we evaluate the
detection results when setting ξ > 0.5.
Results: We depict our results as precision-recall curves
for all data sets in Figure 3 and report the AUC values in
the legend. As can be seen, the proposed ADF-Regr is al-
ways en par with the best performing approach and clearly
wins on one of the data sets. We also note that ADF-Regr is
typically better than ACF, except for the ETHZcars where
the difference is insignificant, and the results are rather satu-
rated. On the TUDpedestrian and the MITStreetsceneCars,
our approach is 11.7% and 7.7% better than ACF, respec-
tively. Furthermore, our approach performs significantly
better than Hough Forests, the only other Random Forest
based method. Finally, we also note that ADF-Regr outper-
forms all versions of DPM, except for DPMfull2 and DPM-
full4 on the ETHZcars data set, and that including the parts
in the DPM does not always improve the results on these
data sets.

Comparing the different proposed variants, i.e., StdRF,
StdRF-Regr and ADF-Regr, we see that including the re-
gression output typically gives significantly better perfor-
mance and that the ADF learning scheme [25] further im-
proves the results.

4.2. Tightening the Pascal Overlap Criterion

In this experiment, we directly evaluate the quality of
the bounding box predictions of the different methods
and investigate the performance of our joint classification-
regression prediction in more detail. To do so, we use a
different type of evaluation curve. Following the standard
Pascal criterion, we draw precision-recall curves and mea-
sure the AUC. However, we vary the success threshold ξ for
a true positive detection, see Equation 7. We then plot the
AUC value over ξ in the range between 0.5 to 1.0. Except
from the evaluation criterion, the experimental setup is the
same as in the previous experiment.
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Figure 3: Precision recall curves for all evaluated approaches on three different data sets: (a) ETHZcars, (b) TUDpedestrian
and (c) MITStreetsceneCars.

Results: We illustrate our results for all three data sets in
Figure 4. As can be seen, the proposed ADF-Regr gives
the best results on two benchmarks and is en par with DPM
(2 or 4 components) on one benchmark. The performance
difference between all methods is most pronounced on the
ETHZcars data set (Figure 4a), which shows most aspect ra-
tio variations. We can see that HoughForest, ACF, StdRF,
DPMroot1 and also DPMfull1 drastically lose performance
if the success threshold ξ gets increased. For instance, set-
ting ξ = 0.7, none of these approaches achieve higher AUC
than 50%. Using DPM with 2 or 4 components (regard-
less of the parts) increases the performance to 62% and
80%, respectively. This is intuitive as increasing the num-
ber of components also increases the number of aspect ra-
tios that can be predicted. However, further adding com-
ponents will likely decrease the performance as less train-
ing examples will be available per component (can be ob-
served on TUDped and MITStreetsceneCars). In contrast,
our Joint Classification-Regression Random Forest formu-
lations, StdRF-Regr and ADF-Regr, can predict the bound-
ing boxes even more accurately, improving over DPMroot4
by 6% for ξ = 0.7 and by 41% for ξ = 0.8. Our best vari-
ant, ADF-Regr achieves an AUC value of 73% at the very
tight success threshold of ξ = 0.8, while all methods pre-
dicting a fixed bounding box do not exceed an AUC value
of 20%. We illustrate some qualitative results in Figure 5.

4.3. Analysis of the Random Forest Model

In this section, we analyze the most relevant parameters
of our RF framework. We evaluate the number of trees T ,
as well as the parameter γ that regulates the amount of re-
gression nodes evaluated during training (for StdRF-Regr
and ADF-Regr). Furthermore, we also investigate the fea-
ture selection process of Random Forests when including
the regression objective during the training phase.
Number of trees: First, we evaluate the number of trees
T when fixing the maximum tree depth to 12 on the TUD-
pedestrian data set. In this setting, the additional regression
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Figure 6: (a) Evaluation of the number of trees T on the
TUD-pedestrian data set. (b) Evaluation of the parameter
γ that influences the behavior of the regression objective in
the RF. We plot the accuracy as (AUC) for different values
of γ for the ETHZcars data set.

is also turned on and the parameter γ is set to −2. The re-
sults are depicted in Figure 6a. As expected, we can see a
clear trend of increasing performance with the number of
trees T up to a certain limit T = 100. For more trees, the
results are saturated.
Regression-Only Parameter: We further analyze the pa-
rameter γ. For this evaluation, we use the ETHZcars data
set, which provides the most variation in aspect ratios. In
Figure 6b, we see the mean and standard deviation of 3 in-
dependent runs for different values of γ. We can observe
that using too many or too few regression nodes is unfavor-
able. Best performance can be observed by setting γ either
to −2 or 9 (when using trees with maximum depth of 12).
Feature Selection: We also visualize the different feature
selection processes for StdRF-Regr and StdRF, i.e., with or
without including the regression objective, on the car model
of the ETHZcars data set. To do so, we count how often a
certain location in the rigid template was selected for per-
forming a split in the Random Forest, regardless of the fea-
ture channel. Again, we set γ = −2 for StdRF-Regr.

Figure 7 illustrates the behavior for both training
schemes when summing up all selected feature locations; In
this setting, we used 100 trees with a maximum tree depth
of 12 over 2 independent runs. Interestingly, we can observe
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Figure 4: Area under the Curve (AUC) for increasingly harder Intersection over Union success thresholds for different data
sets: (a) ETHZcars, (b) TUDpedestrian and (c) MITStreetsceneCars.

Figure 5: Example results when comparing a fixed bounding box prediction and a flexible one. The green box is the ground
truth, the blue one is the fixed size bounding box, i.e., the mean over the training examples, and the red one is the flexible
bounding box predicted with our Joint Classification-Regression Forest.

that the feature selection is very different for the two learn-
ing schemes. StdRF concentrates on positions on the left
and right side of the cars, which is clear as the width of the
model is fixed and, thus, the gradients at these locations are
present in all training images. Furthermore, for this training
scheme, also the bottom of the templates are frequently se-
lected. This can be explained by the fact that cars typically
stand on the street and also have gradients on the bottom,
which is typically not the case in negative images.

On the other hand, StdRF-Regr evaluates a much more
diverse set of locations as it also tries to separate the differ-
ent viewing angles, e.g., frontal-view from side-view cars.
Thus, it selects the features at different y-coordinates in the
center of the x-dimension. Of course, this training scheme
also evaluates classification nodes, thus we can observe sim-
ilarly selected locations from StdRF as well.
Classification model: Finally, we also evaluate if the re-
gression objective during training also improves the classi-
fication performance of the RF. That is, we train two mod-
els, one including the regression objective (γ = −2) and
one only evaluating classification nodes (γ = 0). During

testing, however, we only use the fixed mean bounding box
in order to turn off the effect of regressing the bounding
box height on the final AUC performance. We observe that
including regression during training improves the perfor-
mance regardless if the regression output is actually used
during detection. On the TUDpedestrian data set, we get
78.3 ± 1.2% AUC without using the regression objective
(γ = 0) and 83.3 ± 3.1% when including it (γ = −2). In-
cluding the regression output during the testing phase for
predicting variable bounding box aspect ratios further im-
proves the results, cf., Section 4.1.

5. Conclusion

In this work, we proposed a Random Forest based ob-
ject detection model that is capable of predicting vari-
able bounding box aspect ratios. We augmented the stan-
dard binary label space accordingly with a regression tar-
get for predicting the bounding box aspect ratio. Our
Joint Classification-Regression Forest (JCRF) formulation
exploits the additional label information during both train-
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Figure 7: Feature selection of both training schemes: (a)
Only classification and (b) including regression.

ing and testing. For training JCRF, we employ the ADF
training scheme and include regression nodes for optimiz-
ing the bounding box aspect ratio.

Our results on common object detection benchmarks
showed that our proposed detection model is better or en
par with related state-of-the-art approaches. Furthermore,
our experiments revealed that most commonly used object
detectors that predict a fixed bounding box size break down
as soon as the evaluation criterion becomes tighter in terms
of overlap with the ground truth bounding box. In contrast,
our JCRF formulation can efficiently deal with variable as-
pect ratios in a single model and achieves good results even
if the overlap criterion gets harder.
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