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Abstract

Unsupervised object discovery is the task of finding recurring objects over an un-
sorted set of images without any human supervision, which becomes more and more im-
portant as the amount of visual data grows exponentially. Existing approaches typically
build on still images and rely on different prior knowledge to yield accurate results. In
contrast, we propose a novel video-based approach, allowing also for exploiting motion
information, which is a strong and physically valid indicator for foreground objects, thus,
tremendously easing the task. In particular, we show how to integrate motion information
in parallel with appearance cues into a common conditional random field formulation to
automatically discover object categories from videos. In the experiments, we show that
our system can successfully extract, group, and segment most foreground objects and is
also able to discover stationary objects in the given videos. Furthermore, we demonstrate
that the unsupervised learned appearance models also yield reasonable results for object
detection on still images.

1 Introduction
The ever-growing amount of images and videos asks for automatic approaches that analyze
and summarize the upcoming data, as human annotation becomes too costly or even infeasi-
ble. Unsupervised object discovery (UOD) systems tackle this problem by finding common
visual concepts across an unlabeled set of images. These concepts should then describe ob-
jects, like cars or pedestrians, and stuff, like road or sky. Once discovered, this information
opens several interesting applications such as (i) reducing human labeling efforts and costs
when training classifiers, (ii) avoiding user-specific bias in annotation tasks, (iii) discovering
novel or unusual visual patterns, and (iv) summarizing and filtering visual content.

Previous approaches tackled the task of UOD mainly using collections of still images [13,
20, 27], which are either based on topic modeling or clustering methods. Even though show-
ing promising results, it is still hard to separate object- from stuff -regions without any prior
knowledge. Moreover, object regions describe the most interesting visual concepts for many
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tasks, e.g., object retrieval [22, 29]. Thus, recent works [19, 20] are mainly focused on
objects by exploiting prior knowledge like object detectors or saliency measures.

In this work, we show that the use of video data can tremendously ease UOD. Compared
to still images, videos offer several advantages: (i) It is relatively easy to segment an object
from the background using motion and observed temporal consistency, (ii) videos capture a
higher variability of an object’s appearance, and (iii) a small set of videos already provides a
large number of training images. Moreover, there are rich and easily accessible sources for
realistic video material such as YouTube or Vimeo, and it has been reported in literature [3, 25,
31] that learning from continuous image sequences is also biologically plausible. Humans
tend to learn and categorize moving objects first, i.e., foreground vs. background, learn
valid transformations, etc., and then gradually extract general knowledge that also allows for
improving the recognition skills on stationary objects.

Therefore, we propose an unsupervised method for object discovery in videos. Not as-
suming any prior knowledge about location, number or category of objects, we take unla-
beled videos as input and estimate a motion segmentation. We use a Conditional Random
Field (CRF) [17] formulation with potentials based on estimated optical flow fields. Given
the motion segmentation, we extract tentative object proposals and discover semantically
different object classes via a robust clustering approach. Based on a recently popular object
detection approach, Hough Forests (HF) [12], we simultaneously learn appearance models
on two different abstraction levels, one for segmentation (pixels) and another one for object
detection (bounding boxes). We integrate all information cues (motion and two appearance
cues) into a combined CRF formulation to discover objects in videos, even static ones. Fi-
nally, the output of our approach is two-fold: (i) The videos segmented into semantic labels
and (ii) a (fully unsupervised) trained object detector instantly applicable to still images.

In our experiments, we show the benefits of additionally using motion information for
UOD. We demonstrate that our approach can successfully identify and cluster objects in
videos and further show the generalization power of the unsupervised learned object models
for video retrieval and even for detection on still images.

2 Related Work
Unsupervised object discovery was mainly studied in context of still images. Existing works
are either based on latent topic models [27, 30] or clustering algorithms [13, 19]. Sivic et
al. [30] proposed to use Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet
Allocation to separate images of different object categories. Russell et al. [27] extended this
approach by using multiple image segments instead of the original images as the equivalent
of documents in the topic model. As a drawback, all these methods share the same concept
of model assumption. However, image categories are arranged in complex and unknown
shapes, making designing explicit models difficult.

An alternative research direction, which is more versatile in handling structured data,
builds on similarity-based methods. Frey and Dueck [9] applied their affinity propagation
algorithm [11] for unsupervised image categorization. Grauman and Darrell [13] developed
partially matching image features to compute image similarity and used spectral clustering
for unsupervised category learning. As the semantic level grows, measuring similarities
between images becomes the main difficulty. Lee and Grauman [20] apply curriculum learn-
ing [4] in order to discover visual categories. Similar to [19], [20] assumes some prior
knowledge about previously learned categories, background and objectness [1], and itera-
tively tries to discover object clusters by concentrating on “easy” samples first.
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Figure 1: Overview: Given a set of videos, we first calculate optical flow and a CRF-based
motion segmentation, returning a set of object proposals. Next, we remove outliers, cluster k
categories, and train appearance classifiers for each cluster (UOD Block). The output of the
learned classifiers on the videos is integrated into the CRF formulation to finally discover
and label the objects in the videos (even static ones).

In contrast, studying videos for UOD was only of limited interest up to now. For instance,
Liu and Chen [21] proposed a latent topic model for UOD in videos. However, the method
concentrates only on relatively small objects in low-resolution images, a typical setup for
surveillance scenarios. Later the same authors proposed a video retrieval system that esti-
mates similarities between videos based on local information of the object of interest [22].

Most recently, also weakly-supervised learning from videos has been of interest. Prest et
al. [26] proposed to jointly extract moving objects out of a set of equally labeled videos to
learn appearance-based models for object detection on still images. Similarly, Hartmann et
al. [14] perform spatio-temporal semantic segmentation of objects from videos with (noisy)
labels. Although both approaches demonstrate promising results, the videos still have to be
labeled and object categories cannot be discovered.

Our approach can also be motivated by findings from cognitive sciences [3, 31] on how
humans learn to recognize objects. Long-term studies on previously blind humans who
gained their visual senses after successful surgeries clearly revealed (i) that visual recogni-
tion is learned, (ii) that observation of motion and transformation of foreground objects are
important, and (iii) that labels are less important than previously expected, (cf . [25]).

3 Unsupervised Object Discovery in Videos
In the following, we describe our approach to unsupervised object discovery from videos,
which is illustrated in Figure 1. The input is an unordered set of n videos V = {Vi}n

i=1, each
consisting of mi frames Vi = { f 1

i , . . . , f mi
i }, and the only supervision is given by the number

of categories k to be discovered. The ultimate goal is to localize all objects (moving and
static) and to assign a semantic label to each of them. The output is thus a segmentation of
each video frame into either background or one of k categories. Additionally, our approach
also returns fully trained object detectors for each of the discovered categories.

We start by estimating motion information via optical flow (Sec. 3.1) and perform a
motion segmentation with our CRF formulation (Sec. 3.2). This gives an initial set of ten-
tative object proposals without any semantic information yet. Our approach can then group
those proposals into k semantically similar sets and learn appearance-based object models
for all sets on two different abstraction levels (local and holistic) in a common framework
(Sec. 3.3). Given those object models, we can classify each frame of the input videos and
calculate probability maps for each category.
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Next, our proposed joint CRF formulation allows for exploiting both, motion and seman-
tic information, and generates more elaborate object proposals. With the additional semantic
information, the CRF is now able (i) to confirm object proposals already identified via mo-
tion and to give them a semantic label, (ii) to remove outlier proposals from the first step,
and (iii) also to discover new static objects having no motion information.

3.1 Optical Flow and Pre-processing
As a first step, we calculate an optical flow field F j

i for each frame f j
i in all video sequences

Vi (see Fig. 1). We use the method of [33], which is quite robust and efficient, even using
a standard consumer GPU. We get a dense optical flow field F j

i = {vk}K
k=1, where vk is the

flow vector at pixel k in frame f j
i and K is the number of pixels in that frame.

To make the motion estimation more robust, we have to compensate for camera motion.
This is important as many video sequences are captured from non-stationary cameras, thus,
non-moving background regions could yield higher responses than moving objects. For that
purpose, we take a small part of the optical flow’s border region to robustly estimate an affine
model of the camera movement via RANSAC. We observed that, for our task, this gives
similar results as well-known motion estimation approaches (e.g., [7]), but being simpler
and much faster.

As we have to deal with huge amounts of data, we reduce the computational complexity
of the CRF-based segmentation task by discretizing the image in a coarser pixel-grid with a
fixed size. Please note that we can also calculate boundary-aligned super-pixels, but as we
do not focus on pixel-accurate segmentations, we stick with the more efficient pixel-grid that
can also be seen as regular super-pixels. Throughout the paper, we refer to the pixel-grid as
a set of super-pixels S j

i = {sl}L
l=1 for each frame f j

i , where L is the number of super-pixels
in a single frame.

3.2 Object Extraction and Segmentation via CRF
This section describes our CRF formulation that serves two purposes: (i) Motion segmen-
tation if no semantic information from appearance models is given and (ii) semantic seg-
mentation as soon as all information cues of our approach are available, i.e., after having
discovered object categories (see Sec. 3.3). We define the input as the set of videos Vi, the
computed optical flow fields F j

i , the super-pixels S j
i , and the appearance information of all

frames f j
i . Recap that appearance information is not available in the first iteration. The

output is a semantic segmentation of the given video frames.
To solve the CRF, we construct a graph G = 〈V,E〉 in each input video frame f j

i . The
vertices V correspond to the super-pixels sl in a frame f j

i and take a label l ∈ L, where
L consists of k+ 1 labels (k categories and a background label). The edges E correspond
to neighboring super-pixels, where we define two superpixels as neighbors if they share a
common boundary. We also link two superpixels not only spatially but also temporally, i.e.,
across two frames f j−1

i and f j
i , in order to account for the space-time coherence. The CRF

finds the optimal labeling x of all super-pixels sl by minimizing the energy

E(x) = ∑
sl∈V

Φ(sl)+ ∑
(sl ,sk)∈E

Ψ(sl ,sk) , (1)

where Φ(sl) is the unary potential for super-pixel sl , and Ψ(sl ,sk) is the pair-wise potential
between super-pixels sl and sk.
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Unary potentials: We formulate the unary potentials such that they integrate both, motion
and appearance information. We thus define them as the sum over different cues:

Φ(sl) = ∑
c

γ
U
c ·Φc(sl) , (2)

where c is either motion (m), super-pixel appearance (spa), or object appearance (oa). The
latter two cues are the two different abstraction levels of appearance information given by
our classifiers (see Sec. 3.3); γU

c are positive steering factors that sum up to 1.
We define Φm(sl) to be dependent on the norm of the median over all flow vectors v

within the superpixel sl . Higher norms indicate higher probabilities for objects (i.e., one of
the k categories) and lower values indicate higher probabilities for background. Note that we
spread the foreground probabilities equally to all k categories to fill the label space, which
allows us for using exactly the same CRF solver for both scenarios, motion segmentation
and semantic segmentation. We add a constant probability η for foreground objects to avoid
having zero probability for static objects, i.e., superpixels with a zero norm median flow
vector. The costs for the motion cue can thus be defined as

Φm(sl) =− log
(

η +
med(‖v(sl)‖)

maxl med(‖v(sl)‖)

)
, (3)

where med(·) denotes the median operator. Note that this is the only potential active in the
first iteration (i.e., motion segmentation).

To define the appearance-based costs Φspa(·) and Φoa(·), we assume that we are given the
probability maps pspa(·) and poa(·) in the range [0,1] from the appearance-based classifiers
(Sec. 3.3) for all frames f j

i . Then, we can define Φspa(sl) = − log(pspa(sl)) and Φoa(sl) =
− log(poa(sl)) (see Sec. 3.3) to be dependent on the output of the super-pixel level and the
object level classifiers, respectively.
Pair-wise potentials: We use contrast-sensitive pair-wise potentials for penalizing label
transitions based on color and motion differences between neighboring superpixels sl and
sk. We compute the mean RGB color vector for both superpixels and use the normalized dif-
ference to calculate a weight wcolor

kl between sl and sk. Motion weights wmotion
kl are calculated

in the same way based on the mean flow vectors of each superpixel. As for the unary terms,
we also compute a weighted sum between the two pair-wise factors ∑c γP

c ·wc
kl , where c is

either color or motion. Throughout all our experiments, we equally weight the influence of
both factors.

3.3 Unsupervised Learning of Appearance Models
Next, we discuss the unsupervised learning of object models from video data, which includes
grouping of object proposals into semantically similar clusters and learning appearance-
based models to further improve the overall discovery process. As can be seen from Figure 1,
the only input to our unsupervised discovery approach are the object proposals from the
initial motion segmentation, i.e., some proposals that might stem from moving foreground
objects. The goal in this step is (i) to remove outlier proposals, (ii) to identify k semanti-
cally meaningful clusters, (iii) to learn appearance-based models for each of the discovered
clusters, and (iv) to apply those models to all input frames.
Outlier Removal: To remove outliers, we exploit the potential of video data (compared to
single image data), i.e., the temporal coherence of moving objects. We thus assume that
each object is moving smoothly through space and time. This allows us for easily detecting
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frames where motion segmentation fails and to remove them. Of course videos often consist
of different shots, thus breaking the smoothness assumption. However, by using a simple
shot boundary detection as in [26] the videos can be split and the problem is alleviated.

We define the object proposals given by motion segmentation as Pi j
m , m= 1, . . . ,M, where

i j associates the proposal with frame f j
i and M is the number of extracted proposals. Each

proposal is described with a bounding box, found by calculating the tightest bounding box
around the region that was marked "moving" during motion segmentation. Frames f j

i that
do not contain any proposals are discarded immediately.

To effectively remove outliers, we first gather statistics of all proposals Pi j
m . We collect

the x- and y-coordinates of the center and the width w and height h of the bounding boxes
over time, i.e., the temporal evolution of the proposals. As we assume smooth motion of the
object, the gathered statistics of the proposals should also vary smoothly. Thus, we solve a
simple line-fitting problem via RANSAC for each of the collected statistics over time and
discard all frames f j

i that are identified as outlier. The video shots are typically short enough
such that a simple linear line fit suffices to model the trajectory of the statistics.
Clustering: After having removed outliers, we are left with a set of M̂ object proposals Pi j

m̂ ,
m̂= 1, . . . ,M̂, which should be clustered into k categories. For that purpose, we describe each
proposal with a strong appearance feature, namely a Bag-Of-Words (BoW) model built on
dense SIFT features using a 300-dimensional codebook and a standard spatial pyramid [18].
Based on the X 2-distance, we calculate a similarity matrix S of all proposals Pi j

m̂ to employ
a spectral clustering approach [8], assigning each proposal to one of the k clusters.
Appearance models: The final step of our unsupervised object discovery process is to learn
appearance models for each cluster to provide the CRF with semantic class probabilities in
the next iteration. Most standard semantic segmentation approaches only use a classifier on
the (super-) pixel level for providing unary potentials (e.g., [28]). However, there is a strong
trend to use higher-level information like object detector outputs [16]. We also observed that
this is useful in our case.

In fact, we employ the Hough Forests (HFs) [12] to capture both levels. HFs model an
object as a set of 16×16 image patches having an offset vector pointing to the object center.
Random Forests [2] are trained with adapted splitting criteria for minimizing both, class
uncertainty and offset variance of patches. During inference, test patches traverse down the
trees to leaf nodes that store offset vectors from training. These offset vectors then vote for
tentative object centers in a Hough space. For more details we refer the reader to [12].

We extract features densely on all frames f j
i as described in [12]. For the super-pixel

level, we crop a feature patch on the region with double the size for each superpixel sl (thus
capturing some context information) and resize it to 16× 16 pixel. Here, we set the offset
vector d to a zero vector. For the holistic level, we also follow [12] and resize each object
proposal to a common height (100 pixel) and randomly extract 16× 16 feature patches,
including an offset vector d pointing to the object center. To gather negative samples, we
collect features on background regions according to the motion segmentation. We thus can
use the same feature representation for both levels. Due to the different scales and the fact
that we cannot exploit the offset vector regression for the superpixel level (we only use the
class uncertainty criterion [12]), we train two forests for the two different levels.

In order to integrate this new information into the final CRF segmentation, we apply both
classifiers on all frames f j

i . For the superpixel level, we extract features for all super-pixels
sl as in the training phase and apply the learned classifier to get class estimates pspa(sl). For
the holistic level, we densely evaluate the learned HF on the frames f j

i and use the resulting
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Hough maps to compute the class estimates poa(sl) for each super-pixel sl . For that purpose,
we compute the mean confidence ω̄sl within the area of sl and transform the confidence into
a probabilistic output as poa(sl) =

1
1+exp(−ω̄sl )

. Although the voting maps only show peaks
at tentative object centers, the semantic information is propagated to object boundaries by
the subsequent CRF with the help of superpixel, color, and flow information. The holistic
classifier thus rather indicates semantic information for segments. Uur experimental eval-
uation shows that this information helps to improve the overall performance. Furthermore,
these holistic models can be immediately used for prediction in still images, which we also
evaluate in the next section.

4 Experimental Evaluation
To demonstrate the benefits of our approach, we run 3 different experiments: (i) Unsuper-
vised object discovery – to demonstrate the ability of discovering and discriminating between
categories; (ii) video retrieval – showing the generalization power of the learned appearance
models; (iii) object detection on still images using the unsupervised learned models.

We validate our approach in the first two experiments with the data set presented in [23]1,
which captures 4 object categories (bicycle, car, pedestrian, streetcar) in 96 videos and more
than 7000 frames. Each video shows one prominently moving object, but also other objects
in the background, like parking cars or pedestrians. The videos are recorded with a non-static
hand-held camera, thus making the data set quite challenging.
Implementation Details: We use the features from the standard Hough Forest implementa-
tion [12] for both the superpixel- and the object-level, as described in Sec. 3.3. We train each
Hough Forest with 10 trees for both levels, respectively, and fix the maximum depth to 15.

To solve the CRF formulation, we use the software from [5, 6, 15]. Unary and pair-wise
potentials are defined as described in Sec. 3.2. We set the steering factors of the unary poten-
tials in the first iteration to γU = [1 0 0]. In the second iteration, we increase the importance
of the appearance cues and thus set γU = [0.25 0.40 0.35]. We tuned these steering parame-
ters by hand and observed that they are quite insensitive to the final performance as long as
each cue is given reasonable importance (≥ 0.1).

4.1 Unsupervised Object Discovery in Videos
First, we apply the proposed approach to the task of unsupervised object discovery in videos.
The goal is to show that we can successfully discover different moving objects captured in
the sequences, requiring only the number of categories, i.e., k = 4. Furthermore, we want to
demonstrate that our approach is also able to discover static objects in the background, e.g.,
parking cars or bicycles.

We use purity [32] as quantitative performance measure, which is the percentage of cor-
rectly classified frames f j

i , when each discovered cluster gets labeled with the majority class
label of its assigned discovered frames. A single frame is correctly classified, if its largest
discovered segment is assigned the correct label.

Although there is only limited related work also exploiting motion cues for UOD, we
still compare with a standard UOD approach [27]. Since [27] failed without assistance of
motion-cues, we additionally provide the system with our motion segmentations. This makes
it similar to [21] and allows [27] for discovering k topics.

1We thank the authors for providing the data set.
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Model Purity
Ours (full) 75.1
Ours (sp. only) 72.3
Ours (holistic only) 69.4
Ours (no outlier rem.) 62.2

[27] k = 4 52.0
[27] k = 5 55.0

- c1 c2 c3 c4

c1 65 05 12 06
c2 06 88 02 06
c3 13 06.1 80 04
c4 13 00.1 04 84

Model Frame Video

Ours (full) 65.9 73.9
[23] 74.3 87.4
[24] Appear 53.0 58.9
[24] Shape 74,4 88.4
[24] Comb. 81.4 94.5

Table 1: (left) Results of the UOD task (as purity); (middle) confusion matrix for Bicycle
(c1), car (c2), pedestrian (c3), and streetcar (c4); (right) results of the retrieval task. [23]
and [24] use weak-supervision; our approach just needs the number of categories k.

Figure 2: Qualitative results of our unsupervised discovery approach. The first block shows
successful discoveries of moving objects, while the second block also shows discoveries of
static objects in the background. The last block illustrates two failure cases.

Our quantitative results are summarized in Table 1. As can be seen, our approach yields
quite good results, correctly classifying around 75% of all frames, and also outperforms [27]
significantly. We further evaluate the influence of the different information cues and the
proposed outlier removal process. Omitting the outlier removal gives poor results (around
62%), which can be explained by the fact that the categories bicycle and person do not form
well separable clusters. We also provide the results when only one appearance cue, i.e.,
either superpixel or holistic, is used. As can be seen, the superpixel information seems to be
more informative, however, combining both cues gives the best score.

Table 1 also depicts the resulting confusion matrix. As expected, the categories bicycle
and person show most confusion. This can be easily explained by the fact that persons
always ride a bicycle in all videos of this data set. However, we still can classify 80% of the
bicycle videos correctly, showing the discriminative power of our models.

We also show qualitative results in Figure 2. Our approach segments the main objects
in the sequences (first block) and is also able to identify static objects (second block). The
last block illustrates two failure cases, which, however, also demonstrate the power of the
part-based Hough Forests, as it actually separates the person and the bicycle (bottom row).

However, the scalability of this unsupervised approach with respect to the number of
categories k has to be further evaluated and is left for future work.

4.2 Unsupervised Object Retrieval
Next, we apply our approach on the object retrieval task presented in [24]. The task is to learn
the objects from the training videos and to assign each testing frame the correctly retrieved
category. Following [24], we split the data in 72 training videos (24 per category) and 24
testing videos (8 per category). We average our results over 3 independent runs. As in the
previous experiment, we assign each frame the label of the largest retrieved segment. Please
note that the test sequences are independent and have never been seen during training.
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Figure 3: Precision-recall curves on ETHZ-cars (left) and TUD-pedestrian (right).

We measure the performance of all approaches by the retrieval rates per frame and per
video, i.e., the percentage of correctly classified frames and videos. As our approach is unsu-
pervised and thus only finds k clusters, we assign each cluster the most frequently occurring
label within its assigned frames to calculate a score. We compare our unsupervised approach
with the weakly-supervised works [23, 24]. Both works present similar frameworks that
segment moving objects based on tracking compositions of interest points, combined with
appearance and shape information. Results are given for several variants of different fea-
ture types and combinations thereof. In contrast to our approach, these works need more
supervision (i.e., the label for each video) and additionally exploit shape features.

Table 1 depicts all results. The best result in [24] is obtained with a combination of
shape and appearance features, where the shape feature is more important. Even though
we do not use shape features and have less supervision, our approach yields reasonable
results. Interestingly, our unsupervised (“appearance only”) approach attains 13% better
retrieval rates than the weakly-supervised (“appearance only”) variant from [24]. However,
our approach loses 15% compared to the best result of [24], but at a much lower level of
supervision and without any shape information.

4.3 Recognition in Still Images
Finally, we show that our unsupervised learned (holistic) appearance models can also be
applied to still images. The goal is to demonstrate that the unsupervised trained models yield
comparable results to the original fully-supervised Hough Forest [12]. We further combine
the different training sets and evaluate the combined HF.

We use the TUD-pedestrian data set and the ETHZ-cars data set for the evaluation of
object detection. Our unsupervised approach (Unsupervised HF) is solely trained on the
object proposals Pi j

m from the corresponding clusters (see Sec. 3.3); the supervised model
(Supervised HF) on the fully-annotated training data sets (at bounding-box level). To train
the combined Hough Forest (Combined HF), we used both data sets. For a fair comparison,
all models are trained with the same settings for the forest: we use 10 trees, a maximum depth
of 15, and 1000 random splitting functions. Please note that our unsupervised approach faces
two main challenges: (i) Domain adaption, as the training and testing data is completely
different, and (ii) little supervision, compared to the fully-supervised models.

Figure 3 depicts the results as precision-recall curves and average precision (AP) [10].
Our unsupervised models yield reasonable results on both data sets compared to the fully-
supervised approaches, confirming the quality of our object discovery. For TUD-pedestrian,
the combined model is slightly worse than the supervised model, as the test images mainly
show pedestrians from a side-view unlike the additional unsupervised data collected from
arbitrary views. However, for ETHZ-cars, the combined model can even outperform the
supervised model, which is a motivating result as the unlabeled data comes for free.
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5 Conclusions
We addressed the task of unsupervised object discovery in videos and showed that exploiting
motion cues helps to drastically ease the task. We formulated an iterative process that ex-
ploits both, motion and appearance cues, via a joint CRF formulation to extract and segment
objects. Our experiments show that the proposed method allows for discovering and group-
ing objects in unlabeled video sequences. Moreover, the unsupervised learned appearance
models generalize well on unseen videos, can identify static objects having no motion, and
can even be applied on still images.

Acknowledgement: The work was supported by the FFG projects Human Factors Tech-
nologies and Services (2371236) and Mobile Traffic Checker (8258408).
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