
PROST: Parallel Robust Online Simple Tracking∗

Jakob Santner Christian Leistner Amir Saffari Thomas Pock Horst Bischof
Institute for Computer Graphics and Vision, Graz University of Technology

{santner,leistner,saffari,pock,bischof}@icg.tugraz.at

Abstract

Tracking-by-detection is increasingly popular in order to
tackle the visual tracking problem. Existing adaptive meth-
ods suffer from the drifting problem, since they rely on self-
updates of an on-line learning method. In contrast to pre-
vious work that tackled this problem by employing semi-
supervised or multiple-instance learning, we show that
augmenting an on-line learning method with complemen-
tary tracking approaches can lead to more stable results.
In particular, we use a simple template model as a non-
adaptive and thus stable component, a novel optical-flow-
based mean-shift tracker as highly adaptive element and an
on-line random forest as moderately adaptive appearance-
based learner. We combine these three trackers in a cas-
cade. All of our components run on GPUs or similar multi-
core systems, which allows for real-time performance. We
show the superiority of our system over current state-of-
the-art tracking methods in several experiments on publicly
available data.

1. Introduction
Visual object tracking is one of the cardinal problems

of computer vision. Although tracking finds many practi-
cal applications ranging from robotics, surveillance, aug-
mented reality to human-computer interaction, the state-of-
the-art is still far from achieving results comparable to hu-
man performance. Trackers have to deal with several diffi-
culties such as background clutter, fast appearance and illu-
mination changes and occlusions. Many different tracking
methods have been proposed, from global template-based
trackers [2], shape-based methods, probabilistic models us-
ing mean-shift [7] or particle filtering [13] to local key-point
based trackers [14] or flow-based trackers [19].

Recently, tracking methods based on detection systems

∗This work was supported by the Austrian Research Promotion Agency
(FFG) within the projects VM-GPU (813396) and Outlier (820923) as well
as the Austrian Science Fund (FWF) under the doctoral program Conflu-
ence of Vision and Graphics W1209. We also greatly acknowledge Nvidia
for their valuable support.

have become very popular. These tracking-by-detection
systems usually perform one-shot learning of object detec-
tors for the target object at the first frame. Surrounding
patches are taken as negative samples [2]. These systems
are fast and yield good performance since the classification
task is simple: Discriminate the target object from its sur-
rounding background. In order to allow for fast appearance
changes, recent works use online learners that perform up-
dating on the target object based on the tracking result (self-
updating) [9].

The problem with these approaches is, that the self-
updating process may easily cause drifting in case of wrong
updates. Even worse, the tracking-by-detection approach
suffers also from the fact that usually online counterparts
of supervised learning algorithms are used, which are not
designed for handling ambiguity of class labels: Despite
the fact that boosting is known to by highly susceptible to
label noise, it is widely used in self-learning based track-
ing methods. This severe problem of adaptive tracking-by-
detection methods can also be explained by the stability-
plasticity dilemma [11]: If the classifier is trained only with
the first frame, it is less error-prone to occlusions and can
virtually not drift. However, it is not adaptive at all and can-
not follow an object undergoing appearance and viewpoint
changes. On the other hand, online classifiers that perform
self-learning on their own confidence maps are highly adap-
tive but easily drift in the case of wrong updates.

Grabner et al. [10] alleviated this dilemma by formu-
lating tracking-by-detection as a one-shot semi-supervised
learning problem using online boosting. Supervised up-
dates are only performed at the first frame and all subse-
quent patches are exploited as unlabeled data with the help
of a non-adaptive prior classifier. Although this method has
shown to be less susceptible to drifting and simultaneously
more adaptive than an offline learner, it turned out that such
an approach is still not adaptive enough to handle fast ap-
pearance changes [3].

Another cause of drifting for online learners that perform
self-updating is label jitter. The problem of label jitter arises
if the bounding boxes of an object are not perfectly aligned
with the target, although it is detected correctly. If label jit-

1

ter occurs repeatedly over a tracking sequence, the tracker
will most likely start to loose the target object. For offline
detectors, Viola et al. [22] showed that multiple-instance
learning can easily handle such ambiguities of bounding
boxes. Therefore, Babenko et al. [3] recently used online
multiple instance learning to reduce the effect of label jit-
ter during tracking. In their work, the main idea is to take
patches lying most likely on the target object as instance for
a positive bag and instances further away as negatives. This
approach currently yields the best tracking-by-detection re-
sults and can be considered as the state-of-the-art.

In this paper, we revisit the stability-plasticity dilemma
[11] of online tracking-by-detection methods. In contrast to
recent works (e.g. [10, 3]), we do not tackle the problem by
applying another learning method, but by combining several
complimentary trackers operating at different timescales.
Recently, Stenger et al. [21] investigated in different com-
binations of tracking methods. Given a particular tracking
scenario, they tried to learn which methods are useful and
how they can be combined to yield good results. Our work
differs from their approach such that our method does not
require offline pre-training of possible combinations.

We show that augmenting a simple online learner with
its two extreme counterparts in terms of adaptivity can lead
to much better results. In particular, our approach is based
on the fact, that different tracking approaches lie on differ-
ent scales of the adaptivity spectrum (Figure 1): On the one
very end are trackers, that are totally non-adaptive such as
template-based trackers. On the other end are highly adap-
tive methods such as optical-flow-based trackers. Tracking-
by-detection systems are somewhere in between, depending
on their learning method and adaptivity rate.

We propose a system called PROST1 (Parallel Robust
Online Simple Tracking), consisting of three different track-
ers that are able to cover the entire adaptivity spectrum. We
use basic normalized cross correlation template matching
to cover the non-adaptive end. Additionally, we introduce a
novel highly adaptive optical-flow-based mean-shift tracker.
In between, our system consists of an online random forest
[17] as adaptive appearance-based classifier. In contrast to
previous methods, our system is especially designed to al-
leviate the drifting problem of appearance based trackers
while still being highly adaptive. The core parts have been
selected to be easily parallelized and are implemented on
the GPU in order to allow for real-time performance.

The adaptivity rate of online trackers can be adjusted by
parameter tuning in order to fit to a specific dataset. A par-
ticular advantage of our system is, that it is able to perform
well on unseen sequences without the need of being ad-
justed beforehand. Throughout all experiments in this pa-
per, no parameter adjustment has been done - all results use
the identical algorithm and settings.

1prost is the german word for cheers

Figure 1. The response characteristics of an online tracker can be
defined as the number of frames it needs to adapt to appearance
changes. Our complementary algorithms have been chosen from
the opposite ends of this spectrum.

In Section 2 and 3, we present our approach and give
a detailed overview of its individual parts. In Section 4,
we compare our approach to other state-of-the-art methods
on benchmark tracking data sets and on own recorded se-
quences. Finally, in Section 5, we give some conclusions
and ideas for future work.

2. Tracking Components
Our goal is to allow an online-tracker to be adaptive to

fast appearance changes without being too prone to drifting.
In other words, we would like to increase its stability and
plasticity at the same time. Therefore, we add complemen-
tary algorithms with different adaptivity rate α, where α
denotes the number of frames a tracker needs to fully adapt
to appearance changes.

We make the following observations: (i) Object detec-
tion algorithms do not adapt to appearance changes, yield-
ing an infinite adaptivity rate α = ∞. (ii) Frame-to-frame
trackers adapt to changing object appearance at every frame
thus having α = 1. (iii) Online trackers usually can be ad-
justed to have a certain adaptivity rate 1 ≤ α ≤ ∞.

In order to study the most complementary algorithms for
an online system, we selected one tracking method from
each far end of the adaptivity graph (see Figure 1): An
optical flow based tracker and a simple template matching
method. All parts are described in more detail below. Note
that there are more sophisticated methods performing bet-
ter than the chosen ones. However, the goal is to demon-
strate that an online tracker can be substantially improved
by smartly combining it with even simple methods.

2.1. Template Correlation

The static part in our system is based on normalized
cross-correlation (NCC). We simply use the object which
is marked in the first frame by a rectangle as template and
match it in every forthcoming frame. The tracking rectan-
gle is moved to the peak of the correlation confidence map.
NCC does not adapt to any changes but brightness, which
renders it useless when the object appearance changes per-
manently.

2.2. Mean Shift Optical Flow

The estimation of optical flow is one of the essential
problems in low-level computer vision. It basically deals
with computing the motion between consecutive frames of
a sequence. In [12], Horn and Schunk estimated optical
flow by minimizing an energy functional of the form

min
u

{∫
Ω

|∇u1|2 + |∇u2|2 dΩ+

λ

∫
Ω

(I1(x+ u(x))− I0(x))2
dΩ

}
(1)

with u = (u1, u2)T , consisting of two terms: A regular-
ization term

∫
Ω
|∇u1|2 + |∇u2|2 smoothing the flow field

and a data term
∫

Ω
(I1(x+ u(x))− I0(x))2. λ is a param-

eter steering between data term and regularization term, I0
and I1 represent the sequential frames and u is the two-
dimensional flow field. This model uses quadratic penal-
izers and therefore is not suited for estimating flow fields
with sharp discontinuities. Using an L1 norm on the data
term and Total Variation (TV) regularization [20] leads to
the following energy:

min
u

{∫
Ω

|∇u1|+ |∇u2| dΩ+

λ

∫
Ω

|I1(x+ u(x))− I0(x)| dΩ
}

(2)

Zach et al. [24] achieved realtime performance by minimiz-
ing this energy on the GPU. The TV regularization favors
sharp discontinuities, but also leads to a so-called staircase
effect, where the flow field exhibits piecewise constant lev-
els. In recent work, Werlberger et al. [23] replaced the TV
norm by a Huber norm to tackle this problem: Below a cer-
tain threshold the penalty is quadratic, leading to smooth
flow fields for small displacements. Above that threshold,
the penalty becomes linear allowing for sharp discontinu-
ities. With the additional incorporation of a diffusion tensor
for anisotropic regularization, their method (Huber - L1) is
currently one of the most accurate optical flow algorithms
according to the Middlebury evaluation website [4]. Figure
2 shows the difference between the method of Werlberger
et al. and the algorithm of Horn and Schunk.

In order to use the dense flow field as input to a tracker,
we estimate the object’s translation from the flow vec-
tors. We use a mean-shift procedure in the two-dimensional
translation space, taking into account every flow-vector
within our tracking rectangle. In contrast to averaging the
displacement vectors, mean shift allows to handle occlu-
sions more robustly. For simplicity, we estimate only trans-
lation of our object throughout this work; however, note
that other motion models incorporating e.g., rotation, scale,
affine motion, etc. could be estimated from the flow field.

(a) (b)

(c) (d)
Figure 2. Optical flow estimation using the algorithm of Horn and
Schunk [12] (a,b) and Werlberger et al. [23] (c,d). These flow-
fields are printed in color-coded representation, where hue encodes
direction and intensity encodes magnitude of the flow vectors. As
can easily be seen, (c) and (d) are less noisy than (a) and (b) while
preserving sharp motion boundaries.

This mean shift optical flow tracker (FLOW) is fast and ac-
curately adapts to appearance changes. However, it may
loose the object in presence of large occlusions, fast illu-
mination changes and vast 3D-motion such as out-of-plane
rotations. Furthermore, once it fails, it is not able to recover.

2.3. Online Random Forest

Complementary to FLOW and NCC, we employ an
adaptive appearance-based tracker based on online ran-
dom forests (ORF). Random Forests [6] are ensembles of
N recursively trained decision trees in form of f(x) :
X → Y . For a forest F = {f1, · · · , fN}, a decision
is made by simply taking the maximum over all individ-
ual probabilities of the trees for a class k with C(x) =
arg max

k∈Y

1
N

∑N
n=1 pn(k|x), where pn(k|x) is the estimated

density of class labels of the leaf of the nth tree. In order to
decrease the correlation of the trees, each tree is provided
with a slightly different subset of training data by sub sam-
pling with replacement from the entire training set, a.k.a
bagging. During training, each split node randomly selects
binary tests from the feature vector and selects the best ac-
cording to an impurity measurement. The information gain
after node splitting is usually measured with

∆H = − |Il|
|Il|+ |Ir|

H(Il)−
|Ir|

|Il|+ |Ir|
H(Ir), (3)

where Il and Ir are the left and right subsets of the train-
ing data. H(I) = −

∑K
i=1 p

j
i log(pj

i) is the entropy of the
classes in the node and pj

i is the label density of class i in
node j. The recursive training continues until a maximum
depth is reached or no further information gain is possible.

Random Forests have several advantages that make them
particularly interesting for computer vision applications,
i.e., they are fast in both training and evaluation and yield
state-of-the-art classification results while being less noise-
sensitive compared to other classifiers (e.g., boosting). Ad-
ditionally, RFs are inherently multi-class and allow, due to
their parallel structure, for multi-core and GPU [18] imple-
mentations.

Recently, Saffari et al. [17] proposed an online version
of RFs which allows to use them as online classifiers in
tracking-by-detection systems. Since recursive training of
decision trees is hard to do in online learning, they propose a
tree-growing procedure similar to evolving-trees [15]. The
algorithm starts with trees consisting only of root nodes and
randomly selected node tests fi and thresholds θi. Each
node estimates an impurity measure based on the Gini in-
dex (Gi =

∑K
i=1 p

j
i (1 − pj

i)) online, where pj
i is the label

density of class i in node K. Then, after each online update
the possible information gain ∆G during a potential node
split is measured. If ∆G exceeds a given threshold β, the
node becomes a split node, i.e., is not updated any more and
generates two child leaf nodes. The growing proceeds until
a maximum depth is reached. Even when the tree has grown
to its full size, all leaf nodes are further updated online.

The method is simple to implement and has shown to
converge fast to its offline counterpart. Additionally, Saf-
fari et al. [17] showed that the classifier is faster and more
noise-robust compared to boosting, which makes it an ideal
candidate for our tracking system.

3. Tracker Combination

A tracker has to incorporate two conflicting properties: It
has to (i) adapt to fast object appearance changes while (ii)
being able to recover in case of drifting. In other words, we
need an highly adaptive tracker that is corrected by system
components that are more inertial. Therefore, we combine
the three different tracking approaches discussed before in
a simple fall-back cascade (see also Figure 3): In order to
allow for fast changes, FLOW forms the main tracker. This
implies that FLOW can also easily lose the target, hence, it
can be overruled by ORF. NCC is employed to prevent ORF
from making too many wrong updates. Our cascade can be
summarized with the following simple rules:

1. FLOW is overruled by ORF if they are (i) not
overlapping and (ii) ORF has a confidence
above a given threshold.

2. ORF is updated only if it overlaps with NCC
or FLOW.

Figure 3. Highly-flexible parts of our system take care of tracking,
while the conservative parts correct the flexible ones when they
have drifted away.

4. Experiments

During the experiments, we compare our algorithm
to current state of the art methods on publicly available
datasets. We also created several new challenging video se-
quences, which are available on our website together with
ground truth annotation and results 2. The major conclusion
from the experiments is that our algorithm is more adaptive
and stable at the same time compared to other tracking-by-
detection systems. Please note that we always use the same
parameters throughout the experiments in this section.

4.1. Implementation

For FLOW, we employ the GPU-based implementation
of Werlberger et al. [23], which is available online. NCC is
based on the cvMatchTemplate() function implemented in
the OpenCV library, ORF is based on the code of Saffari et
al. [17], which is also publicly available. We achieve real-
time performance with our system, however, NCC and es-
pecially ORF could benefit largely from being implemented
on the GPU.

4.2. Quality Score

To evaluate the performance of their tracker, Babenko et
al. [3] use a score representing the mean center location er-
ror in pixels. This is not a good choice, as the ground truth
rectangles are fixed in size and axis-aligned whereas the se-
quences exhibit scale and rotational changes. Furthermore,
their score does not take into account the different size of
the objects in different sequences.

To overcome these problems, we additionally use a score
based on the PASCAL challenge [8] object detection score:
Given the detected bounding box ROID and the ground
truth bounding box ROIGT , the overlap score evaluates as

score =
area(ROID ∩ROIGT)
area(ROID ∪ROIGT)

.

2www.gpu4vision.org

By interpreting a frame as true positive when this score ex-
ceeds 0.5, we can give a percentage of correctly tracked
frames for each sequence.

4.3. Sequences

Throughout the experiments, we use ten challenging se-
quences (Table 1) featuring e.g. moving cameras, clut-
tered background, occlusions, 3-D motion or illumination
changes. The video data, ground truth and results of other
methods for the first six sequences have been taken from
Babenko et al. [3]. The other four videos (see Figure 7)
have been created and annotated by ourselves.

Sequence Frames Main Challenges
Girl [5] 502 3D-motion, moving camera

David [16] 462 moving camera, varying illumination
Sylvester[16] 1344 3D-motion, varying illumination
Faceocc1 [1] 886 moving camera, occlusions
Faceocc2 [3] 812 occlusions, heavy appearance change

Tiger1 [3] 354 fast motion, heavy appearance change
Board 698 3D-motion

Box 1161 fast 3D-motion, occlusions
Lemming 1336 heavy scale changes, motion blur

Liquor 1741 motion blur, occlusions
Table 1. The tracking sequences used in our experiments. The last
four videos are available together with ground-truth annotations
on our website.

4.4. Performance of the building blocks

In the first experiment, we investigate the behavior of
our three building blocks separately on two sequences,
Sylvester and David. The average pixel error is given in
Figure 4.

• NCC works well when the appearance of the object is
close to the learned template. In the sequence David,
this holds for the first 100 frames, then the object has
changed such that NCC is not able to distinguish it
from background. For Sylvester, the NCC works also
well on the initial frames and, although loosing the
object later, it is able to find it again several times
throughout the sequence.

• ORF clearly indicates the fundamental problem of on-
line tracking algorithms on these two sequences: With
identical parameters, it is stable enough for Sylvester
but looses David completely after 150 frames.

• FLOW tracks the object correctly for the first 150
frames on David and 400 frames of Sylvester, but then
starts to drift away, accumulating errors from frame to
frame. In David, it gets back to the object by chance
around frame 200, but then looses it again at frame
400. In general, the more frames tracked, the less ac-
curate FLOW gets.

With these experiments we show, that the different algo-
rithms can complement one another. FLOW is a good high
dynamic tracker, but needs correction from time to time to
get rid of cumulating errors. ORF could do that, but needs
a supervisor preventing it from doing too many wrong up-
dates. NCC is not suited to track on a per-frame basis but
gives strong cues when the object reappears similarly to the
initial template.

Figure 4. Separate evaluation of the building blocks of our system.

4.5. Benchmarks

4.5.1 Standard Datasets

In this experiment, we would like to benchmark our ap-
proach on the following sequences: Girl, David Indoor,
Sylvester, Occluded Face, Occluded Face 2 and Tiger 1.
Recently, Babenko et al. [3] showed superior results com-
paring their method (MILTrack) to AdaBoost of Grabner
et al. [9] and FragTrack of Adam et al. [1]. We bench-
mark against their results, details on the parametrization of
the different algorithms are given in their paper. For their
own method, they provide results for five different runs:
As their algorithm depends on random features, the perfor-
mance varies between subsequent runs. This difference is
most of the times substantial, however, we give our own al-
gorithm a handicap by comparing our results to their best
run in each sequence according to the PASCAL score.

Table 2 and Figure 5 depict the results based on the mean
pixel error: In 3 of 6 sequences, our method yields the best
scores, in the other sequences it is the second best. Table
3 depicts the percentage of frames tracked correctly over
all six sequences based on the PASCAL score: Our algo-
rithm’s correct frames average to 83.8% followed by MIL-
Track (80.0%), FragTrack (59.8%) and AdaBoost (41.0%).

Figure 5. Tracking results for standard tracking sequences

Sequence Adaboost FragTrack MILTrack PROST
Girl 43.3 26.5 31.6 19.0

David 51.0 46.0 15.6 15.3
Sylvester 32.9 11.2 9.4 10.6
Faceocc 49.0 6.5 18.4 7.0

Faceocc2 19.6 45.1 14.3 17.2
Tiger1 17.8 39.6 8.4 7.2

Table 2. Mean distance of the tracking rectangle to annotated
ground truth, the best result is printed in bold faced letters, the
second best result is underlined.

Sequence Adaboost FragTrack MILTrack PROST
Girl 24 70 70 89

David 23 47 70 80
Sylvester 51 74 74 73
Faceocc 35 100 93 100

Faceocc2 75 48 96 82
Tiger1 38 20 77 79

Table 3. Percentage of frames tracked correctly.

4.5.2 PROST dataset

To further demonstrate the capabilities of our system, we
compare on newly created sequences. Besides our own
method (parametrized identically to the previous experi-
ments), we benchmark the following algorithms:

• ORF with 100 trees of maximum depth 5 and a search
region factor of 1.0. Similar to MILTrack [3], we use
Haar-like features. This is exactly the online part of
our tracker, thus this experiment directly shows the
benefit of the complementary methods.

• FragTrack [1] with 16 bins and a search window half
size of 25 to cope with the larger frame size.

• MILTrack [3], as provided on their webpage with

search window size increased to 50. Similar to the pre-
vious experiment, we use the best out of 5 differently
initialized runs.

The average pixel error for each method is given in ta-
ble 4, the PASCAL based score in table 5. Our approach
yields the best score in three sequences, tracking correctly
an average of 79.5% over all four sequences, followed by
FragTrack (65.3%), MILTrack (48.5%) and ORF (27.3%).
Looking at the pixel error graph in Figure 6 directly shows
the benefits of our combined system over the online tracker
ORF it is based on:

• ORF looses the object in every sequence after at
least 400 frames. With the high-dynamic optical flow
tracker increasing plasticity, our system looses the ob-
ject far less often.

• When ORF has lost the track, it performs wrong up-
dates until eventually totally drifting away from the
object. This happens in the sequences board, box and
lemming. In liquor, it is able to recover the object three
times. Although far less often, our system also looses
the track several times, but is, except for the last frames
of liquor, always able to recover the object.

Sequence MILTrack ORF FragTrack PROST
Board 51.2 154.5 90.1 37.0

Box 104.6 145.4 57.4 12.1
Lemming 14.9 166.3 82.8 25.4

Liquor 165.1 67.3 30.7 21.6
Table 4. Mean distance error to the ground truth.

Figure 6. Tracking results for the PROST dataset

Sequence MILTrack ORF FragTrack PROST
Board 67.9 10.0 67.9 75.0

Box 24.5 28.3 61.4 91.4
Lemming 83.6 17.2 54.9 70.5

Liquor 20.6 53.6 79.9 83.7
Table 5. Percentage of frames tracked correctly.

5. Conclusion

In this paper, we addressed the robustness and adaptivity
of on-line appearance-based tracking. In order to increase
the stability and plasticity of an on-line tracker at the same
time, we proposed to combine it with both a static and a
highly dynamic element. In particular, we combined an on-
line random forest with a simple correlation-based template
tracker and a novel optical-flow-based mean shift tracker as
most adaptive part. The three elements are combined in a
cascade-style.

In the experimental part, we compared our method with
state-of-the-art appearance-based methods on both tracking
benchmark data sets and on own recorded sequences. We
demonstrated superior performance in sequences that de-
mand more conservative tracking behavior as well as se-
quences with rapid appearance changes with constant pa-
rameter settings.

Our approach suggests several extensions: First, we used
simple methods in our combined tracker. As each individ-
ual part of our system can be exchanged easily, employ-
ing more powerful trackers could increase the performance
of the overall system. Second, the tracker is currently re-
stricted to axis-aligned fixed-size rectangles. One can in-
crease the power of the system by extending it to handle
rotation, scale change or affine motion and by giving pixel-
wise segmentations of the object.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In CVPR, 2006.
5, 6

[2] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(2):261–271, 2007. 1

[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual Tracking
with Online Multiple Instance Learning. In CVPR, 2009. 1,
2, 4, 5, 6

[4] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and
R. Szeliski. A database and evaluation methodology for opti-
cal flow. In ICCV, 2007. http://vision.middlebury.edu/flow/.
3

[5] S. Birchfield. Elliptical head tracking using intensity gradi-
ents and color histograms. In CVPR, 1998. 5

[6] L. Breiman. Random forests. Machine Learning, 45:5–32,
2001. 3

[7] D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking
of non-rigid objects using mean shift. In CVPR, 2000. 1

[8] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The Pascal Visual Object Classes (VOC)
Challenge. Int. J. Comput. Vision, 88(2):303–308, 2009. 4

[9] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking
via on-line boosting. In Proceedings British Machine Vision
Conference, 2006. 1, 5

[10] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised
on-line boosting for robust tracking. In ECCV, 2008. 1, 2

[11] S. Grossberg. Competitive learning: From interactive acti-
vation to adaptive resonance. Neural networks and natural
intelligence, pages 213–250, 1998. 1, 2

[12] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Artificial Intelligence, 17, pages 185–203, 1981. 3

[13] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking
in low frame rate video: A cascade particle filter with dis-
criminative observers of different lifespans. In CVPR, 2007.
1

Board, Frame 5 Frame 485 Frame 570

Box, Frame 5 Frame 455 Frame 900

Lemming, Frame 5 Frame 325 Frame 975

Liquor, Frame 5 Frame 730 Frame 1285
Figure 7. Exemplar frames of the PROST dataset, the rectangle represents the ground truth.

[14] M. Özuysal, P. Fua, and V. Lepetit. Fast keypoint recognition
in ten lines of code. In CVPR, 2007. 1

[15] J. Pakkanen, J. Iivarinen, and E. Oja. The evolving tree—
a novel self-organizing network for data analysis. Neural
Process. Lett., 20(3):199–211, 2004. 4

[16] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental
learning for robust visual tracking. Int. J. Comput. Vision,
77(1-3):125–141, 2008. 5

[17] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof.
On-line random forests. In 3rd IEEE ICCV Workshop on On-
line Comput. Vision, 2009. 2, 4

[18] T. Sharp. Implementing decision trees and forests on a GPU.
In ECCV, 2008. 4

[19] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
1

[20] D. Shulman and J.-Y. Hervé. Regularization of discontinu-
ous flow fields. In Proceedings Workshop on Visual Motion,
1989. 3

[21] T. Stenger, B. Woodley and R. Cipolloa. Learning to track
with multiple observers. In CVPR, 2009. 2

[22] P. Viola, J. Platt, and C. Zhang. Multiple instance boosting
for object detection. In Advances in Neural Information Pro-
cessing Systems, volume 18, pages 1417–1424. MIT Press,
2006. 2

[23] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers,
and H. Bischof. Anisotropic Huber-L1 optical flow. In Proc.
of the British Machine Vision Conf., 2009. 3, 4

[24] C. Zach, T. Pock, and H. Bischof. A duality based approach
for realtime tv-l1 optical flow. In Pattern Recognition (Proc.
DAGM), 2007. 3

