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Abstract

Computer vision-based interfaces to games hold the
promise of rich natural interaction and thus a more real-
istic gaming experience. Therefore, the video games in-
dustry started to develop and market computer vision-based
games recently with great success. Due to limited computa-
tional resources, they employ mostly simple algorithms such
as background subtraction, instead of sophisticated motion
estimation or gesture recognition methods. This not only
results in a lack of robustness, but also in very limited inter-
action possibilities and thus reduced gaming experience.

In this paper, we show a couple of concepts to control
video games based on optical flow. We use a state-of-the-
art optical flow algorithm able to be computed densely in
real-time on GPUs, which are in fact built-in in nearly ev-
ery gaming hardware available. Based on the estimated
motion, we develop several computer games with increas-
ing complexity: Starting with using the flow field as force
acting on moveable objects, we span the spectrum to more
sophisticated concepts such as controlling widgets and ac-
tion recognition.

1. Introduction
The way a human player and a computer game inter-

act is a crucial element for gaming experience. This led
to the development of various input devices, ranging from
mice and keyboards to gamepads, from joysticks to steer-
ing wheels, from light guns to complex airplane cockpits.
While these devices rely on the interpretation of mechanical
motion solely, also computer vision-based interfaces have
been of great interest recently: Sony shipped over 10 million
units of their camera systems EyeToy and PlayStation Eye.
Microsoft currently develops a camera-based interface un-
der the code name Project Natal to replace their Xbox Live
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Figure 1. Theoretical peak performance of current gaming sys-
tems: Playstation 3 (Cell processor), Intel i7-975 (CPU), Nvidia
GT200 (GPU)

Vision camera. Besides video game consoles (Playstation
3, XBox 360, Wii etc.) the most important game platforms
comprise desktop and laptop computers as well as handheld
devices (mobile phones, PDAs, MP3 players etc.), which
often have built-in camera modules.

To employ a computer vision algorithm for video game
control, two basic requirements need to be fulfilled: First,
computational efficiency is crucial for convenient user inter-
action. Second, the method needs to be robust against illu-
mination changes and occlusions, invariant to the player’s
appearance etc. Many state-of-the-art computer vision
algorithms are either far from achieving realtime perfor-
mance, or not robust enough be be employed in end-
user software applications. Therefore, computer vision-
based games rely on rather basic computer vision methods:
McGuire and Jenkins [11] describe color blob detection,
face recognition by cross-correlation and background sub-
traction as the current methods of choice.

Concerning the computational performance of algo-
rithms, one has to take the trend towards multicore process-
ing into account: The XBox 360 uses a 3-core PowerPC
processor, recent desktop CPUs have four and more inde-
pendent processing units, and the Playstation 3 features a
Cell processor with seven cores. Above all, nearly every
gaming platform has a GPU with up to several hundreds
of processing cores. These parallel processing units led to
a boost in computational performance, allowing to build a
TFlops computer with standard consumer hardware (Fig-



ure 1). This vast performance potential can of course only
be tapped by highly parallelizable algorithms. For instance,
variational motion estimation algorithms, which took min-
utes to compute in single threaded implementations, run in
realtime exploiting the parallel architecture of GPUs.

Hence, in this work we focus on optical flow-based user
interaction. In contrast to background subtraction, which
only detects movement between frames, optical flow also
estimates the direction and speed of the movement. In 1996,
Freeman et al. [6] developed a basic optical flow algorithm
and demonstrated its applicability to control a video game.
They designed their system to work under controlled envi-
ronments with uniform background and constant illumina-
tion. Zivkovic [17] used an optical flow algorithm based on
the well known work of Lucas and Kanade [10] to create
simple interactive control elements. He achieved realtime
performance by computing optical flow only on tiny sub-
parts of the whole image. In rather limited experiments,
he showed the superiority of his approach over background
subtraction. Hämäläinen et al. [7] used the same flow al-
gorithm on silhouette pixels for an interactive martial arts
game.

As we will show in this paper, the most common opti-
cal flow algorithms (i.e. Lukas and Kanade [10], Horn and
Schunck [8]) yield imprecise results and cannot be com-
puted in realtime for reasonable image sizes. Werlberger
et al. [15] developed a fast optical flow method yielding
high accuracy in the Middlebury optical flow benchmark
[1]. They estimated flow densely by minimizing an energy
functional using GPUs and reached realtime performance
on VGA resolution (640x480).

In this paper, we demonstrate different ways of human–
computer interaction using the highly accurate motion esti-
mation technique of Werlberger et al. [15]. In Section 2, we
will describe their method and compare it to other optical
flow algorithms in terms of speed and accuracy. After show-
ing increasingly more sophisticated concepts to use optical
flow as input to computer games in Section 3, we will con-
clude this work and give an outlook in Section 4.

2. Optical Flow
The computation of apparent motion is a key problem in

computer vision and has been studied a lot over the past
years. For an overview of the vast amount of proposed
methods, we refer to the surveys [1, 2, 5, 14].

In their seminal work, Horn and Schunck [8] started
to embed the estimation of optical flow into a variational
framework: Given two sequential input images I0, I1 and
the unknown motion field u = (u1, u2)T : Ω → R2, they
used a quadratic regularization- (R(·)) and data-term (D(·))
in a functional of the form

min
u

{
R(u) +D(I0, I1,u)

}
. (1)

While the data term forces the flow field to be consis-
tent with the motion in the input images, the regularization
term ensures the smoothness of the flow field. Over time,
many modifications have been made to both regularization
and data term to improve the quality of the estimated op-
tical flow field. To compare different algorithms, Baker et
al. [1] initiated the Middlebury evaluation database for op-
tical flow.

For the appliance of optical flow for interactive video
game control, we need the estimated flow field as fast and
accurate as possible. Investigating the works published
through the Middlebury evaluation database yields only a
few methods closing this gap. One of these methods is the
work of Werlberger et al. [15], which is real-time capable
of computing accurate dense optical flow. In addition, they
provide a GPU-based library on their website 1, which al-
lows for easy integration and testing.

In contrast to previous robust methods, which employed
L1 penalization of the flow-field in the regularization term,
Werlberger et al. use an anisotropic Huber regularization
in their Huber-L1 model. The anisotropy enables the func-
tional to take directional edges into account and impede the
regularization across motion boundaries. In addition, the
Huber-norm reduces the zero-filling effects (staircasing ar-
tifacts) of the L1-norm. In detail, they solve the optimiza-
tion problem

min
u

{∫
Ω

|q1|ε + |q2|ε dx+ λ

∫
Ω

|ρ(x)| dx
}

, (2)

where | · |ε denotes the Huber regularity, qd = D1/2∇ud
the diffusivity-driven regularization and |ρ(x)| a robust L1

data term penalizing the linearized image residual ρ(x) =
I0(x) − I1(x + u(x)). For details on the used primal-dual
optimization scheme, refer to [15, 16].

Qualitative Comparison In order to show the benefit of
the method of Werlberger et al., we compare it to other pub-
licly available algorithms. Therefore, we utilized the meth-
ods of Horn and Schunck [8], Lucas and Kanade [10] as
well as Farnebäck [4], which are implemented in the open-
source framework OpenCV.

Figure 2 shows the resulting flow fields of these meth-
ods using the color-coding of the Middlebury benchmark
database. The hue and saturation of the pixels represent the
direction and magnitude of the optical flow vectors respec-
tively. While the implementations included in the OpenCV
toolbox show heavy outliers and imprecise motion bound-
aries (see Figure 2(d)–2(f)), the method of Werlberger et al.
yields a smooth flow field with sharp motion boundaries.

1http://gpu4vision.org
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Figure 2. Comparing different algorithms for optical flow estima-
tion on two sequential image frames (a,b): (d) Lucas and Kanade
[10], (e) Horn and Schunck [8], (f) Farnebäck [4] and (g) Werl-
berger et al. [15]. The color-coding of the flow fields is given in
(c).

Runtime As stated before, computational efficiency is the
knock-out criterion for interactive applications. The major-
ity of cited methods in the Middlebury database have a re-
ported runtime of several minutes and above. In Figure 2,
we computed optical flow on 256x256 images on a standard
desktop PC featuring a 2.6 GHz Intel quadcore processor
and a NVIDIA Geforce GTX280 GPU. The OpenCV algo-
rithms take at least several seconds per frame pair, while the
GPU-based implementation of Werlberger et al. finishes in
0.02 seconds.

3. Interaction
In this section, we show several examples for optical

flow-based user interaction. Please note that we do not
present quantitative results in terms of e.g. usability stud-
ies. Instead, we describe interaction methods, that proved

to work robustly under different conditions (changing illu-
mination, cluttered background etc.) with users of varying
sex, age and computer experience.

3.1. Input

The optical flow algorithm computes a dense two-
dimensional flow field u = (u1, u2)T between two images
I0 and I1 of width X and height Y . Throughout the follow-
ing examples, we denote the magnitude of the flow field

|u| =
√
u2

1 + u2
2 (3)

and its direction

∠u = atan2(u2, u1). (4)

3.2. Average Flow

The easiest way to control a game using optical flow is
to employ the arithmetic mean of the entire flow field

u =
1
XY

X∑
x=1

Y∑
y=1

u(x, y). (5)

The resulting average displacement in x and y direction
can be interpreted the same way as the two degrees of free-
dom (DOF) signal of a joystick or a mouse: As an example,
we reimplemented the control of a game called Neverball 2,
where the player has to navigate a marble through a maze
by tilting the playfield (see Figure 3). Given pitch θ and roll
ϕ angles of the playfield at a given time t, we increment
these angles with the average optical flow such that(

ϕ
θ

)
t+1

=
(
ϕ
θ

)
t

+ k · u. (6)

The weighing constant k can be used to adjust the sen-
sitivity of the control. Hence, when the player moves to
the left in front of the camera, the roll angle of the play-
field is changed such that the marble starts to accelerate
leftwards. Besides being extremely simple to create, this
style of game control is also intuitive to learn and play: In
empirical studies, people managed to play this game with-
out any instruction or teaching phase successfully after a
few seconds. Furthermore, this concept can be applied to a
variety of computer games, e.g.simple flight simulators or
racing games.

3.3. Moving Objects

The concept presented above can be easily extended to
interacting with moving objects such as balls in a ball game.
Therefore, we apply basic Newtonian mechanics: Using
Newton’s second law, we can compute the acceleration a

2http://neverball.org



Figure 3. Using the arithmetic mean of a dense flow field as game
control: As Homer moves his head to the left, the playfield is tilted
according to the average optical flow, making the marble roll left-
wards.

of a body of mass m when we know all forces Fi the body
is exposed to:

a =
∑

Fi
m

(7)

The average optical flow over the sensitive area of an ar-
bitrary body |uB| can be interpreted as physical force FB.
This and a gravity force FG are enough to create a ball game
(see Figure 4), where the ball is accelerated according to

FB + FG
m

. (8)

The derivation of a motion equation for that purpose is
described in detail in [11]. Figure 5 shows a complete
volleyball-like game with two players, a ball and a net.

Figure 4. A virtual ball exposed to two forces: In the first row,
the gravitational force accelerates the ball downwards. In the sec-
ond row, the movement of the player creates a force acting in the
opposite direction, making the ball change its trajectory.

Figure 5. A volleyball-like game controlled with optical flow.

3.4. Widgets

Widgets are the elementary parts of a graphical user in-
terface. Based on well known and widely accepted concepts
(such as e.g. triggering an action by clicking a virtual but-
ton), they provide a basic set of intuitive interaction points
between humans and software. In the following, we show
how to use optical flow to control buttons, sliders, scroll-
bars, knobs and jog dials. Note that many other basic wid-
gets such as e.g. checkboxes, radiobuttons or spinners can
be adapted based on the concepts we present in this section.
We then show two different games with interfaces based
solely on these widgets.

Buttons Triggering buttons using computer vision has
been done before (e.g. in [17]), however, we describe it
here for the sake of completeness.

Given B a set of pixel positions x, y representing a sen-
sitive area of arbitrary shape, we denote

uB = u(x, y) ∀ x, y ∈ B (9)

as all flow vectors within that area. The number of flow
vectors denote as the magnitude of the set |B|. See Figure 6
for an example: There, uB consists of all flow vectors lying
under the button represented by the green rectangle. A but-
ton is considered as being activated, when a trigger function

Figure 6. A button operated with optical flow: The first image
shows a hand moving towards a virtual button, the second image
shows the corresponding optical flow in color coded representa-
tion. When the average flow magnitude under the button exceeds
a certain threshold, the button is triggered.



exceeds a given threshold f(uB) > θ. The arithmetic mean
of the flow magnitude

f(uB) = |uB| =
1
|B|
∑
|uB| (10)

can be used as trigger function, other possibilities include
e.g., the maximum or the median of the flow magnitude. We
add hysteresis to the trigger function in order to avoid mul-
tiple activations per movement. By taking the angle of the
flow vectors into account, direction-sensitive buttons can be
realized.

Scrolling In conventional graphical user interfaces, wid-
gets such as scrollbars, sliders and spinboxes are employed
to input arbitrary values (see Figure 7).

These scrolling widgets exhibit a preferred orientation γ,
which is usually the horizontal or vertical direction. They
represent an arbitrary value φ, which can be changed by
clicking arrows or dragging sliders: Spinboxes have two
discrete buttons, one to increase and one to decrease the
widget’s value. The benefit of sliders and scrollbars over
spinboxes lies in the dragging mode, where a user can

Figure 7. Different widgets used for the input of arbitrary values:
Spinbox, slider, scrollbar. Note that each widget has either the
horizontal or vertical direction as preferred orientation.

(a) (b)

(c) (d)

Figure 8. An interactive jog dial widget: In (a), the hand is outside
of the sensitive area, thus nothing happens. As the hand moves
under the red dot (b,c), the jog dial starts to turn according to the
movement, until the hand leaves the sensitive area again (d).

quickly change the value of the slider over a wide range
with a single interaction. This dragging mode can be eas-
ily adapted using optical flow: Considering uB as all flow
vectors within the sensitive area of a scrolling widget, we
denote the average direction of uB as

∠uB =
1
|B|
∑

∠uB. (11)

We can add the average flow magnitude |uB| to the value φ
of the scrolling widget, when the mean flow direction aligns
with the preferred orientation γ up to a threshold θ:

φt+1 =


φt + |uB| if |γ − ∠uB| < θ

φt − |uB| if |γ + 180◦ − ∠uB| < θ

φt else
(12)

Jog Dial, Knob In contrast to linearly shaped sliders, jog
dials and knobs are widgets with circular shape. Consider-
ing uB as the flow values under the red dot in Figure 8, we
can apply the same update rules as for the sliders in the pre-
vious paragraph, except that the orientation γ depends on
the current value φ. Figure 9 shows a steering wheel based
on the same principles using two sensitive areas.

Figure 9. A steering wheel based on the same principles as the jog
dial in Figure 8. Two sensitive areas allow for robust and conve-
nient usage.

Minigolf Game With the presented widgets, we control
an open source minigolf game called Neverputt 3: We use a
slider to adjust the speed of the hit, a jog dial to set its direc-
tion and a button to perform the hit. We overlaid the camera
input and the widgets to the game display (see Figure 10).

Racing Game A more sophisticated example in this work
is a kart-racing game based on the open source project Su-
perTuxKart 4. Here we need five widgets: A steering wheel,

3http://neverball.org
4http://supertuxkart.sourceforge.net



Figure 10. A minigolf game based on optical flow: Notice the in-
teraction panel showing Bart Simpson on the top left: The speed
of the golf ball can be controlled with the slider on the left, the
direction with the jog dial in the middle. To play the ball, there is
a green button on the bottom right side of the interaction panel.

a slider for the throttle and three buttons for attack, drift
and boost. As the amount of controls increases, their posi-
tion gets more and more important: Considering the game
screenshot in Figure 11, one might notice that the blue but-
ton (boost) and the slider (throttle) on the right side are very
close together. Given a user sitting relaxed with both hands
on the steering wheel, it gets very difficult for him to trigger
the blue button without accidentally touching the throttle
slider. It turned out during experiments, that users have to
pay too much attention on triggering the right widget, when
their positions are badly chosen. This is where ergonomics
start to play an important role: When designing an optical
flow-based user interface with several controls, one needs
to choose the widget positions very carefully.

3.5. Human Action Recognition

A more sophisticated interaction method is to directly
classify specific human actions. In contrast to the concepts
presented so far, where optical flow information controls el-
ements or widgets directly, human action recognition can
be employed to trigger events by detecting and recognizing
a set of predefined distinctive movements. Although such
methods are of growing interest in the computer vision com-
munity (for an overview refer to the survey of [13]), their
utilization for game control is very limited so far.

Many action recognition methods rely on the estimation
of optical flow: Ke et al. [9] classified human actions by
segmenting and describing large spatial-temporal volumes.
They showed impressive results, however, due to the com-
putational complexity such representations are impractica-
ble for real-time interaction. Computationally more effi-

Figure 11. Controlling a cart racing game with optical flow only:
The interaction panel shows a steering wheel in the middle, and
a slider for throttle to the right. There are also three buttons for
attack (green), drifting (orange) and boost(blue).

cient is the method of Roth et al. [12]. They demonstrated
accurate classification of specific human actions by incor-
porating the information of only a small number of subse-
quent frames.

In their work they estimated Histograms of Oriented
Gradients (HOG) for the current frame as well as His-
tograms of Flow (HOF) for the corresponding dense flow
field estimated from two subsequent frames. Both descrip-
tors are then efficiently represented by the coefficients of a
Nonnegative Matrix Factorization (NMF). For the final ac-
tion classification, they applied an efficient cascaded Linear
Discriminant Analysis (CLDA) classifier.

In order to demonstrate the applicability of human action
recognition for controlling video games, we employed the
approach of Roth et al. [12] to trigger the four actions of a
Tetris game. Therefore, we modified an open source Tetris
implementation called Snip5. There are four commands
needed to control a Tetris game: Shifting the blocks left-
and rightwards, rotating the blocks and placing them. We
chose four actions that match these commands intuitively:
Waving the left or right hand shifts the block leftwards or
rightwards. Jumping in place rotates the block, a jumping-
jack places it (see Figure 12).

The training of the action recognition was performed off-
line on the publicly available Weizmann6 dataset [3], con-
taining 81 low resolution videos (180 × 144) of nine sub-
jects performing ten different actions. We trained a five
class classifier for wave-left, wave-right, jumping in place,
jumping-jack and an additional neutral class incorporating
all other actions covered in the database.

5http://snip.sourceforge.net/index.html
6http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html



We reach about 1 classification per second with unop-
timized code on a single core Pentium 4 processor, which
allows to play Tetris in earlier levels (where the velocity of
the bricks is moderate) conveniently.

Figure 12. Action Tetris: The left column shows screen shots of
a Tetris game situation. Performing one of the pretrained actions
(shown in the middle as appearance and corresponding flow field)
triggers the desired command (right column).

4. Conclusion

In this work, we demonstrated the applicability of state-
of-the-art optical flow algorithms to control video games.
We discussed and evaluated several motion estimation
methods in terms of speed and accuracy, and selected a
GPU-based energy minimization algorithm of Werlberger
et al. [15] for its ability to compute accurate dense flow
fields in realtime. Based on these flow fields, we devel-
oped several interaction mechanisms, ranging from control-
ling basic widgets over applying forces on moving objects
up to triggering actions by detecting distinctive movements.
We showed the feasibility of these mechanisms with several
small video games. The only requirement for running these
games is a standard webcam and a GPU, both of these are
readily available in most gaming systems.
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