
On-line Random Forests

Amir Saffari Christian Leistner Jakob Santner Martin Godec Horst Bischof
Institute for Computer Graphics and Vision

Graz University of Technology
{saffari,leistner,santner,godec,bischof}@icg.tugraz.at

Random Forests (RFs) are frequently used in many com-
puter vision and machine learning applications. Their pop-
ularity is mainly driven by their high computational ef-
ficiency during both training and evaluation while still
achieving state-of-the-art results. However, in most appli-
cations RFs are used off-line. This limits their usability for
many practical problems, for instance, when training data
arrives sequentially or the underlying distribution is contin-
uously changing.

In this paper, we propose a novel on-line random for-
est algorithm. We combine ideas from on-line bagging,
extremely randomized forests and propose an on-line deci-
sion tree growing procedure. Additionally, we add a tempo-
ral weighting scheme for adaptively discarding some trees
based on their out-of-bag-error in given time intervals and
consequently growing of new trees. The experiments on
common machine learning data sets show that our algorithm
converges to the performance of the off-line RF. Addition-
ally, we conduct experiments for visual tracking, where we
demonstrate real-time state-of-the-art performance on well-
known scenarios and show good performance in case of
occlusions and appearance changes where we outperform
trackers based on on-line boosting. Finally, we demonstrate
the usability of on-line RFs on the task of interactive real-
time segmentation.

1. Introduction
There has been a recent interest in using Random Forests

(RFs) [6] for computer vision problems. RFs have demon-
strated to be better or at least comparable to other state-
of-the-art methods in both classification [6, 4], semantic
segmentation [22], real-time keypoint recognition [14] and
clustering applications [15]. While yielding state-of-the-art
results, RFs possess several properties that make them par-
ticularly interesting for computer vision applications. First,
they are very fast in both training and classification. Second,
they can be easy parallelized, which makes them interesting
for multi-core and GPU implementations [21]. Addition-
ally, RFs are inherently multi-class, therefore they do not
require to build several binary classifiers for a multi-class

problem. Compared to boosting and other ensemble meth-
ods, RFs are also more robust against label noise [6].

Usually random forests are trained in off-line mode, i.e.,
the entire training data is given in advance and the train-
ing and testing phases are separated. However in practice,
training data may not be given in advance but arrives se-
quentially, for instance in tracking applications where pre-
dictions are required on-the-fly. In such situations, learning
algorithms have to be able to work in an on-line mode1. On-
line learning has numerous advantages over off-line meth-
ods: e.g., memory requirements are much lower because
samples do not need to be stored, a huge amount of avail-
able data can be exploited by on-line methods, the training
is usually much faster, off-line methods are not applicable
if the data generation process is on-line or the underlying
distribution changes over time.

RFs are ensembles of randomized decision trees com-
bined using bagging. Hence, for an on-line version one
has to combine on-line bagging [16] and on-line decision
trees with random feature-selection. There exist incremen-
tal methods for single decision trees but they are either
memory intensive, because every node sees and stores all
the data [23], or have to discard important information if
parent nodes change. The recursive nature of decision trees
makes on-line learning a difficult task because due to the
hard splitting rule, errors cannot be corrected further down
the tree. Some methods alleviate this problem by combining
decision trees with ideas from neural networks [2] but have
the disadvantage that they usually lose the O(log n) evalu-
ation time because samples are propagated to all nodes2.

In this paper, we propose a novel on-line algorithm for

1In this work, we distinguish “on-line” from “incremental” learning.
On-line has to discard a sample after learning (no memory) and unlike to
incremental learning is not allowed to store it.

2Additionally, we would like to mention that there exists a method pro-
posed twice by Osman et al. called “On-line Incremental Random Forests”,
ICMV, 2007 as well as Elgawi et al. called “Online Random forests based
on corrfs and corrbe”, OLCV, 2008. We do not cite this method in the
usual way because in contrast as suggested in the title it is not really an on-
line method and most importantly, there exist reasonable suspicions that
the key contributions of the work are taken from other authors e.g., from
[2] without citation.

1



random forests that has neither of the previous problems.
We combine ideas from on-line bagging and extremely ran-
domized forests. This allows us to circumvent the need for
recursive discarding of estimated statistics while still allow-
ing for sample evaluation in O(log n). Additionally, our
algorithm allows for temporal weighting of knowledge by
discarding entire trees (based on their estimated out-of-bag
errors) in fixed time intervals and consecutive growing of
new trees. This increases the adaptivity and can be useful,
for instance, in applications with temporal noise or high ap-
pearance changes during visual tracking.

Additionally, our algorithm can solve multi-class prob-
lems without a need for common binary decompositions,
e.g., 1-vs-all. As it has been discussed by Saffari et al. [19]
such binary decompositions have some drawbacks: 1) The
computational burden is higher since we need to build
several binary classifiers, 2) Such decompositions usually
leads to very unbalanced datasets where the majority of the
classes are from the negative class, 3) Since each binary
classifier is built independently, their real valued outputs
might not be directly comparable. However, our algorithm
is able to build on-line multi-class classifiers and therefore
is not prone to such problems.

We show on standard machine learning problems that
our algorithm performs comparable to common off-line
RFs. Additionally, we demonstrate the suitability of our
method on two well-suited computer vision tasks: First, we
apply ORFs to visual tracking using simple features. Com-
pared to other adaptive tracking-by-detection methods, e.g.,
on-line boosting [12], we show that our algorithm is more
stable and more resistant to occlusions due to higher noise
tolerance and the possibility to forget information by con-
trolled discarding of entire trees. Second, we use ORFs
for real-time interactive segmentation, based on our recent
work presented in [20] and show that ORFs deliver identical
results as common batch RFs, however, without the need of
storing any samples.

In the following Section 2, we shortly review random
forests and then in detail present our on-line algorithm. Sec-
tion 3 delivers several experiments on both machine learn-
ing and tracking tasks. Finally, the paper concludes with
Section 4.

2. On-line Random Forests
Each tree in a forest is built and tested independently

from other trees, hence the overall training and testing pro-
cedures can be performed in parallel. During the training,
each tree receives a new bootstrapped training set generated
by sub-sampling with replacement of the original training
set. We refer to those samples which are not included dur-
ing the training of a tree as the Out-Of-Bag (OOB) samples
of that tree. These samples can be used to compute the Out-
Of-Bag-Error (OOBE) of the tree as well as the ensemble

which is an low-biased estimate of the generalization er-
ror [5].

The tests at each decision node of the tree are selected
by first creating a set of random tests and then picking the
best among them according to some quality measurement
(e.g., information gain or Gini index). The trees are usually
grown to their full size without pruning.

We denote the tth tree of the ensemble as f(x, θt) :
X → Y , where θt is a random vector capturing the vari-
ous stochastic elements of the tree (such as the randomly
subsampled training set or selected random tests at its de-
cision nodes). For notation brevity, we usually represent a
tree as ft(x) = f(x, θt). We also denote the entire forest as
F = {f1, · · · , fT }, where T is the number of trees in the
forest. We can write the estimated probability for predicting
class k for a sample as

p(k|x) =
1
T

T∑
t=1

pt(k|x), (1)

where pt(k|x) is the estimated density of class labels of the
leaf of the tth tree where x falls. The final multi-class deci-
sion function of the forest is defined as

C(x) = arg max
k∈Y

p(k|x). (2)

Breiman [7] defined the classification margin of a la-
beled sample (x, y) as

ml(x, y) = p(y|x)−max
k∈Y
k 6=y

p(k|x). (3)

It is obvious that for a correct classification ml(x, y) > 0
should hold. Therefore, the generalization error is given by

GE = E(X,Y )(ml(x, y) < 0), (4)

where the expectation is measured over the entire distribu-
tion of (x, y). It has also been shown by Breiman [7] that
this error has an upper bound in form of

GE ≤ ρ̄1− s2

s2
, (5)

where ρ̄ is the mean correlation between pairs of trees in
the forest 3 and s is the strength of the ensemble (i.e., the
expected value of the margin over the entire distribution).
In other words, for a low generalization error the individual
trees should be highly independent and have high accuracy.

2.1. On-line Learning

The original RF algorithm as described above is de-
signed to learn in batch or off-line mode, i.e., each tree is

3The correlation is measured on how much similar their predictions are.



trained on a full sub-set of labeled samples drawn from X .
To make the algorithm operate in on-line mode, there are
two main questions to be answered: 1) How to perform bag-
ging in on-line mode? 2) How to grow random trees on-the-
fly? We discuss the proposed solutions to these questions in
next sections.

2.1.1 On-line Bagging

For the bagging part, we use the method proposed by Oza et
al. [16] where the sequential arrival of the data is modeled
by a Poisson distribution. Each tree ft(x) is updated on
each sample k times in a row where k is a random number
generated by Poisson(λ) and λ is usually set to a constant
number, in our case equal to one. Oza proved convergence
of this method to off-line bagging.

2.1.2 On-line Random Decision Trees

Each decision node in a tree contains a test in form of
g(x) > θ. These tests usually contain two main parts: 1)
a randomly generated test function, g(x) which usually re-
turns a scalar value, 2) a threshold θ which based on the
random feature decides the left/right propagation of sam-
ples. In off-line mode, RFs select randomly a set of such
tests and then pick the best according to a quality measure-
ment. If the threshold is also chosen randomly, the resulting
RF is usually refered to Extremely Randomized Forest [11].

In on-line mode, we grow extremely randomized trees
by generating the test functions and thresholds randomly.
During growing of a randomized tree, each decision node
randomly creates a set of tests and picks the best according
to a quality measurement. Usual choices for quality mea-
sures are the entropy (L(Rj) = −

∑K
i=1 p

j
i log(pji )) or the

Gini index (L(Rj) =
∑K
i=1 p

j
i (1 − pji )), where pji is the

label density of class i in node j and K is the number of
classes. Computing such quality measures depends mainly
on the estimation of the label densities, which can be per-
formed in on-line mode.

More specifically, when a node is created it creates a set
of N random tests S = {(g1(x), θ1), . . . , (gN (x), θN )}.
This node then starts to collect the statistics of the samples
falling in it. It also maintains the statisitcs of the splits made
with each test in S. Denote by pj = [pj1, . . . , p

j
K ] the statis-

tics of class labels in node j. For a random test s ∈ S, two
sets of statistics are also collected: pjls = [pjls1 , . . . , pjlsK ]
and pjrs = [pjrs1 , . . . , pjrsK ] corresponding to the statistics
of samples falling into left (l) and right (r) partitions ac-
cording to test s.

The gain with respect to a test s can be measured as:

∆L(Rj , s) = L(Rj)−
|Rjls|
|Rj |

L(Rjls)−
|Rjrs|
|Rj |

L(Rjrs),

(6)

where Rjls and Rjrs are the left and right partitions made
by the test s and |.| denotes the number of samples in a
partition. Note that ∆L(Rj , s) ≥ 0. A test with higher
gain, produces better splits of the data with respect reducing
the impurity of a node. Therefore, when splitting a node, the
test with highest gain is chosen as the main decision test of
that node.

When operating in off-line mode, the decision node has
access to all the data falling to that node, and therefore has a
more robust estimate of these statistics, compared to a node
operating in on-line mode. In on-line mode, the statistics
are gathered over time, therefore, the decision when to split
depends on 1) if there has been enough samples in a node to
have a robust statistics and, 2) if the splits are good enough
for the classification purpose. Because, the statistics of the
subsequent children nodes are based on this selection and
since the errors in this stage cannot be corrected further
down the tree when we already made a decision, we need
to develop a method which can tell the node when it is ap-
propriate to perform a split.

Therefore, we propose the following non-recursive strat-
egy for on-line learning of the random decision trees: A
newly generated tree starts with only one root node with a
set of randomly selected tests. For each test in the node
we gather the statistics on-line. We introduce two hyper-
parameters: 1) the minimum number of samples a node
has to see before splitting α, 2) the minimum gain a split
has to achieve β. Thus, a node splits when |Rj | > α and
∃s ∈ S : ∆L(Rj , s) > β.

After a split occured, we propagate the pjls and pjrs to
the subsequent newly generated left and right leaf nodes,
respectively. This way, a new node starts already with the
knowledge of its parent nodes, and therefore, can also per-
form classification on-the-fly even without observing a new
sample.

Note that this tree-growing strategy is similar to that of
evolving trees (ETrees) [17]. An ETree is a tree-structed
self-organizing map (SOM) used in many data analysis
problems. In particular, in ETrees each node counts the
number of observations seen so far and splits the node after
a constant threshold has been exceeded. Another similar ap-
proach to ours is that of a Hoeffding tree [10]. A Hoeffding
tree is also a growing decision tree, where the split decision
is made on the Hoeffding bound which theoretically guar-
antees that with probability 1−ρ the true statistical average

of a random variable r is r̂− ε with ε =
√

ln(1/ρ)
2n , where n

is the number of observations performed and r̂ is the current
estimate of the random variable.

Although both the ETree and the Hoeffding tree would
definately also be a useful choice for our splitting criterion,
we believe that our approach, i.e., continuously measuring
the info-gain of a potential split, fits better to the inherent
nature of decision trees.



2.1.3 On-line Adaptation

For some applications, such as tracking, the distribution of
samples might change over time. Therefore, it is required
to have temporal knowledge weighting that allows unlearn-
ing old information. If the algorithm is operating in such
a scenario, we allow our forest to discard the entire tree.
Note that the Poisson process of on-line bagging leaves out
some trees from being trained on a sample. Therefore, we
can estimate the OOBEt of each tree on-line. Based on
this estimate, we propose to discard trees randomly from
the ensemble where the probability of discarding a tree de-
pends on its out-of-bag-error. Since in an ensemble of trees
the impact of a single tree is relatively low, discarding one
tree usually does not harm the performance of the entire
forest. However, doing this continuously ensures adaptivity
throughout time.

The entire on-line RF algorithm is depicted in Algo-
rithm 1.

Algorithm 1 On-line Random Forests
Require: Sequential training example 〈x, y〉
Require: The size of the forest: T
Require: The minimum number of samples: α
Require: The minimum gain: β

1: // For all trees
2: for t from 1 to T do
3: k← Poisson(λ)
4: if k > 0 then
5: // Update k times
6: for u from 1 to k do
7: j = findLeaf(x).
8: updateNode(j, 〈x, y〉).
9: if |Rj | > α and ∃s ∈ S : ∆L(Rj , s) > β then

10: Find the best test:
sj = arg maxs∈S ∆L(Rj , s).

11: createLeftChild(pjls)
12: createRightChild(pjrs)
13: end if
14: end for
15: else
16: Estimate OOBEt ← updateOOBE(〈x, y〉)
17: end if
18: end for
19: Output the forest F .

3. Experiments

The purpose of the experiments is to compare the perfor-
mance of the novel on-line algorithm with its off-line coun-
terpart on standard machine learning data sets and demon-

strate its suitability on the task of visual object tracking 4.

3.1. Machine Learning

We use the DNA, g50c, Letter, Mushrooms, SatIm-
age, and USPS datasets from the Semi-Supervised Bench-
marks [9] and LibSVM repository [8]. A summary of these
sets is presented in Table 1. For these experiments, we set
the number of trees in the forest to be 100, and we select 10
random features and thresholds as decision tests. We set the
α = 0.1 ∗ Ntrain and β = 0.1 for the on-line random for-
est. Additionally, like other on-line learning methods, we
continue the training process of the on-line random forest
when we reach the end of the dataset by shuffling the data
and repeating the whole process for 10 times. Also note
that for all datasets, we use the multi-class RF. For sanity
check we also report results obtained with on-line boosting
for feature selection [12]. For on-line boosting, we used 50
selectors with 10 decision stumps in each selector. Each de-
cision stump gathers the mean of the positive and negative
samples and puts the classification threshold in mid-point
of these two means. Also for on-line boosting we perform
a 1-vs-all classification for multi-class problems.

We repeat these experiments 5 times and report the aver-
age and standard deviation of the classification error in Ta-
ble 1. As it can be seen from this table, the on-line method
achieves results that are very close to the off-line random
forest. Figure 1 compares the classification error of the off-
line and on-line trained RF when the number of training
samples are changing on the USPS dataset. We can see that
the with increasing the number of samples, the on-line RF
slowly converges to the performance of the off-line RF. This
effect shows the success of the on-line training. Additi-
nally, on-line random forests consistently outperform on-
line boosting on all datasets. The poor performance of the
on-line boosting can be attributed to the facts that on-line
boosting is only able to operate on the binary classification
problems, and therefore, is not able to capture the whole
distribution of the multi-class feature space while training
in on-line mode.

3.2. Tracking

In this experiment, we evaluated our on-line random
forests on various publicly available tracking scenarios and
compared it to a state-of-the-art tracker based on on-line
boosting [12]. Since the main purpose of this experiment is
the comparison of the two on-line algorithms for the track-
ing task, we only use simple Haar-features, did not imple-
ment any rotation and scale search and avoid any other en-
gineering methods, although these things should definitely
help improving the tracking results. Please note that [12]

4Source code is available under www.ymer.org/amir/software/online-
random-forests



Dataset # Train # Test # Class # Feat. Off-line RF On-line RF OAB

DNA 1400 1186 3 180 0.109± 0.006 0.112± 0.008 0.173± 0.01

Letter 15000 5000 26 16 0.097± 0.014 0.104± 0.008 0.263± 0.023

Mushrooms 6000 2124 2 112 0.010± 0.008 0.012± 0.013 0.013± 0.001

SatImage 3104 2000 6 36 0.113± 0.005 0.118± 0.004 0.257± 0.11

USPS 7291 2007 10 256 0.078± 0.001 0.086± 0.005 0.224± 0.015

Table 1. Data sets used for the machine learning experiments, and the average classification error on the test set.

Figure 1. Classification error with respect to the ratio of labeled samples for off-line (blue) and on-line training (red dashed) with increasing
number of training samples on USPS dataset. As can be seen, with increasing number of training samples the on-line learner converges to
the off-line performance.

partly present better results than reported here which comes
from the fact that they also used HOG-features and local
binary patterns.

For all experiments we used 100 trees, a maximum
tree-depth of 5 and used nodes with 10 random features,
α = 100, and β = 0.1. Note, however, that changing
these numbers does not change the final results significantly.
For the on-line boosting, we used 50 selectors with each
150 features. Both on-line boosting and our method run in
real-time. However, since on-line random forests are in-
herently parallel, we also ported the algorithm onto a com-
mon NVidia GPU which allowed for an additional 10-times
speed up leaving future space for additional algorithmus
that might help improving the tracking accuracy.

3.2.1 Datasets

Our datasets consist of four publicly available sequences
presenting various types of lighting, pose, scale and ap-
pearance changes. The first “Occluded Face” was taken

from [1] 5. Then, we took the famous “David Indoor” and
“Sylvester” sequences from Ross et al. [18] and “Rotating
Girl” from [3]. All sequences are grey-scale and resized to
320 x 240 pixels.

For the public datasets, we give detailed analyses and
comparisons in Figure 2 and depict some representative re-
sults in in Figure 3. For further detailed tracking results we
refer the reader to the supplementary material.

As can be seen, our method leads to more stable tracking
results, while being highly adaptive to appearance changes.
Especially when it comes to occlusion or object disappear-
ance our method has advantages to on-line boosting due its
increased noise tolerance.

3.2.2 Discussion

The complicated task in tracking using an on-line detector is
to continuously self-train an appearance model while avoid-

5Please note that we do not compare to [1], because it uses much better
features and our focus lies on the learning algorithm



(a) Sylvester Girl (b)

(c) David (d) Occluded face
Figure 2. Comparison of ORFs with OAB on four state-of-the-art tracking sequences. As can be seen, our method significantly outperforms
boosting on all sequences.

ing wrong updates that may cause drifting. The experiments
suggest that our on-line RF algorithm is a promising choice
for such a task due to the following reasons: First, in super-
vised learning tasks RFs have shown to achieve similar re-
sults as other popular learning algorithms such as boosting
or SVMs. Our algorithm converges to the off-line version
and, thus, is able to learn state-of-the-art appearance mod-
els. Second, RFs have shown to be more robust to noise, i.e.,
wrong updates, which favours their usage in self-learning
tasks where noisy samples occur inherently. Our algorithm
also allows for unlearning knowledge which further makes
it more robust to outliers. Third, tracking typically suf-
fers from the stability-plasticity-dilemma [13] which means
a stable model should be learned while still being highly
adaptive. If the model is too inertial it cannot cope with ap-
pearance changes. If the model is too flexible it increases
the potential risk of drifting. Although our algorithm suf-
fers from the same dilemma, it seems to provide an inher-
ent compromise that other algorithms do not have. To put
it more precisely, the freezing of body nodes increases the
model stability and fixes knowledge while on-line updat-
ing of leaf nodes is sufficient to achieve state-of-art on-line
adaptivity. This is also confirmed by former off-line studies

of Breiman who reports that the inner structure of the forest
(on the decision node level) matters far less than the final
decisions done by the leaf nodes.

3.3. Interactive Segmentation

In this experiment, we applied our algorithm to the task
of interactive segmentation. In interactive segmentation,
one wants to semi-automatically separate a foreground re-
gion from the background with the help of user input. Re-
cently, Santner et al. [20] showed that this task can be
performed effectively using Random Forest to train a dis-
criminative prior model. This model is then plugged into
a weighted Total Variation based segmentation algorithm.
Both the RF and the segmentation are implemented on a
GPU. However, after each user input usually the model has
to be retrained from scratch. Hence, exchanging the off-line
RF with an on-line learner can further speed-up the pro-
cess in order to increase user convenience. In the following,
we will thus give some representative results for interactive
segmentation using the approach proposed in [20] and our
on-line random forests with 100 trees and depth 15.

As can be seen in Figure 4, our method is able to deliver
high quality segmentation results. Please note that the re-



Figure 3. Comparison of ORFs and OAB on four public sequences.

Figure 4. Interactive segmentation results using on-line random forests and a Total Variation based segmentation algorithm.

sults in fact are identical to the off-line model and are thus
skipped here. For further details about the approach we re-
fer the reader to [20].

4. Conclusion

This paper introduced a novel on-line random forest al-
gorithm. Therefore, we combined on-line bagging, random
feature selection and a novel tree-growing method that al-
lows for on-line building of decision trees. Experiments on



machine learning data show that the method is converging
to its off-line counterpart. Additionally, we demonstrated
the usability of our method on the task of visual tracking
and interactive image segmentation. Our method is quite
stable, runs in real-time and is easy to implement.

In future work we plan to provide a formal proof of con-
vergence for our method. Furthermore, we want to apply
the algorithm to additional computer vision applications.

Acknowledgment
This work was supported by the Austrian Joint Research

Project Cognitive Vision under projects S9103-N04 and
S9104-N04 and the Austrian Science Fund (FWF P18600),
by the FFG projects AUTOVISTA (813395) and EVis
(813399) under the FIT-IT programme.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-

based tracking using the integral histogram. In Proc. CVPR,
2006.

[2] J. Basak. Online adaptive decision trees: Pattern classifica-
tion and function approximation. Neural Comput., 18:2062–
2101, 2004.

[3] S. Birchfield. Elliptical head tracking using intensity gradi-
ents and color histograms. In Proc. CVPR, 1998.

[4] A. Bosch, A. Zisserman, and X. Munoz. Representing
shape with a spatial pyramid kernel. In Proceedings of
the ACM International Conference on Image and Video Re-
trieval (CIVR), pages 401–408, 2007.

[5] L. Breiman. Out-of-bag estimates. Technical report, 1996.
[6] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, October 2001.
[7] L. Breiman. Random forests. Machine Learning, 2001.
[8] C. C. Chang and C. J. Lin. Libsvm: a library for support

vector machines, 2001.
[9] O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised

Learning. Cambridge, MA, 2006.
[10] P. Domingos and G. Hulten. Mining high-speed data streams.
[11] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized

trees. In Machine Learning, volume 63, pages 3–42, 2006.
[12] H. Grabner and H. Bischof. On-line boosting and vision. In

Proc. CVPR, volume 1, pages 260–267, 2006.
[13] S. Grossberg. Competitive learning: From interactive acti-

vation to adaptive resonance. Neural networks and natural
intelligence, pages 213–250, 1998.

[14] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-
time keypoint recognition. In Proc. CVPR, volume 2, pages
775–781, 2005.

[15] F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative vi-
sual codebooks using randomized clustering forests. In Ad-
vances in Neural Information Processing Systems 19, pages
985–992, 2006.

[16] N. Oza and S. Russell. Online bagging and boosting. In
Proceedings Artificial Intelligence and Statistics, pages 105–
112, 2001.

[17] J. Pakkanen, J. Iivarinen, and E. Oja. The evolving tree—
a novel self-organizing network for data analysis. Neural
Process. Lett., 2004.

[18] D. Ross, J. Lim, and M. Yang. Adaptive proballistic visual
tracking with incremental subspace update. In Proc. ECCV,
volume 2, pages 470–482, 2004.

[19] A. Saffari, C. Leistner, and H. Bischof. Regularized multi-
class semi-supervised boosting. In IEEE Conference on
Computer Vision and Pattern Recogntion, 2009.

[20] J. Santner, M. Unger, T. Pock, C. Leistner, A. Saffari, and
H. Bischof. Interactive texture segmentation using random
forests and total variation. In Proceedings of the British Ma-
chine Vision Conference (BMVC), London, UK, September
2009. to appear.

[21] T. Sharp. Implementing decision trees and forests on a gpu.
In ECCV, pages 595–608, 2008.

[22] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton
forests for image categorization and segmentation. In Com-
puter Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8, 2008.

[23] E. Utgoff, N. Bergman, and J. Clouse. Decision tree induc-
tion based on efficient tree restructuring. Machine Learning,
1997.


