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Abstract. Many learning tasks for computer vision problems can be
described by multiple views or multiple features. These views can be
exploited in order to learn from unlabeled data, a.k.a. “multi-view learn-
ing”. In these methods, usually the classifiers iteratively label each other
a subset of the unlabeled data and ignore the rest. In this work, we pro-
pose a new multi-view boosting algorithm that, unlike other approaches,
specifically encodes the uncertainties over the unlabeled samples in terms
of given priors. Instead of ignoring the unlabeled samples during the
training phase of each view, we use the different views to provide an ag-
gregated prior which is then used as a regularization term inside a semi-
supervised boosting method. Since we target multi-class applications, we
first introduce a multi-class boosting algorithm based on maximizing the
mutli-class classification margin. Then, we propose our multi-class semi-
supervised boosting algorithm which is able to use priors as a regular-
ization component over the unlabeled data. Since the priors may contain
a significant amount of noise, we introduce a new loss function for the
unlabeled regularization which is robust to noisy priors. Experimentally,
we show that the multi-class boosting algorithms achieves state-of-the-
art results in machine learning benchmarks. We also show that the new
proposed loss function is more robust compared to other alternatives.
Finally, we demonstrate the advantages of our multi-view boosting ap-
proach for object category recognition and visual object tracking tasks,
compared to other multi-view learning methods.

1 Introduction

In recent years, the development and design of classification algorithms has led
to significant progress in various computer vision domains. In most applications
supervised learning algorithms are applied. Usually, these methods require large
amounts of training samples along with their class labels in order to train a
classification function that yields low prediction errors. In practice, the class
labels are provided by a human labeler. As the tedious hand labeling cannot take
pace with the growing amount of data, e.g., digital images, web sites, research
has started to focus on semi-supervised learning (SSL) methods [1, 2] that can
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learn from a small set of labeled data and simultaneously a huge amount of
unlabeled data.

This paper deals with a special case of SSL called multi-view learning [3,
4]. In multi-view learning (MVL), the data can be expressed by several views or
multiple features. For each view a classifier is trained on some labeled data. Then
the classifiers iteratively train each other on the unlabeled data. The underlying
assumption of MVL is that the unlabeled data can be exploited in a way that en-
forces the selection of hypotheses that lead to an agreement among the classifiers
on the unlabeled data while minimizing the training error on labeled data [5,
6]. Overall, this leads to an increased classification margin and thus lower gen-
eralization errors. MVL is especially interesting for many computer vision tasks
as multiple views are often naturally provided. For instance, in object detection
and categorization different features can be considered as different views [7, 8].
Multi-view learning can also lead to more stable tracking results [9, 10]. Also im-
ages collected from the web naturally provide different views, because additional
to the visual data text is also frequently provided [11].

Current multi-view methods work by primarily exchanging the information
via label predictions on a subset of the unlabeled data. However, this ignores
the uncertainty in each estimated label and ignores the information that each
view has over the entire set of unlabeled data. In this paper, we propose a novel
multi-view boosting algorithm that, on the one hand, performs MVL in the
classical sense; i.e., the classifiers provide each other labels for some selected
unlabeled samples. On the other hand, however, we regularize each classifier on
the rest of the unlabeled samples in a way that it encourages the agreement
between the views. In our algorithm, we use an aggregated prior that is set
up by the corresponding views; i.e., the iteratively trained classifiers serve each
other as priors in order to exploit the rest of the unlabeled samples. However,
since the priors can be wrong, we also propose a robust loss function for the
semi-supervised regularization which can handle noisy priors. Additionally, most
previous MVL methods mainly deal with two-classifier scenarios and are thus
mainly co-training variants. Our method is general enough to incorporate not
only two, but even an arbitrary number of views.

2 Multi-View Boosting with Priors

In the following sections, we first introduce the concept of multi-view learning
with priors. Next, we explain how we can develop multi-class semi-supervised
boosting which uses priors provided from multiple views as a regularization term.
Finally, we show how robustness can be incorporated into the learning algorithm
in terms of proper loss functions.
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2.1 Multi-View Learning with Priors

Assume we have a multi-class semi-supervised classification task where the prob-
lem domain can be split into V different views 1. Let x = [xT

1 | · · · |xT
V ]T be a data

sample which is constructed from V different views, each expressed by Dv-dim
feature vector xv ∈ RDv . In multi-view learning, we train a classifier per view
fv(xv) : RDv → RK where K is the number of classes and F = {fv}Vv=1 is the set
of the classifiers. Let pv(k|xv) be the posterior estimate for classifying sample xv

in k-th class by the v-th learner. The goal of multi-view learning is to produce a
set of classifiers which have low mis-classification rates over the labeled samples
while having a high consensus over the unlabeled samples. One can express these
goals as the following optimization problem

F∗ = arg min
F

∑
(x∈Xl,y)

`(x, y;F) + γ
∑
x∈Xu

d(x;F). (1)

The first term expresses the loss `(·) for the labeled samples where we have the
true class label y, while the last term is a measure of the agreement of views
over the unlabeled samples, and γ steers the effect of the unlabeled samples over
the entire optimization problem. In this work, we propose to use the posterior
estimates for defining the loss over the unlabeled samples. Assume we have a
function (p‖q) for measuring the divergence between two probabilities p and
q. Using this divergence measure, we express the unlabeled loss as d(x;F) =∑V

v=1 dv(x;F) with

dv(x;F) = (pv(xv)‖ 1

V − 1

∑
s6=v

ps(xs)), (2)

where pv(xv) = [pv(1|xv), · · · , pv(K|xv)]T . This loss function measures the di-
vergence of the posterior estimates by computing the distance of each view
to the average estimate of all other views. For example, if we use (p‖q) =∑K

k=1(p(k|x) − q(k|x))2 the last term will measure the variance over different
views (the proof is omitted due to lack of space). As it will be shown later, we
use the Jensen-Shannon Divergence as (p‖q) in our algorithm because of its
robustness to noise. We will also refer to

qv(k|xv) =
1

V − 1

∑
s6=v

ps(k|xs), ∀v ∈ {1, · · · , V }, k ∈ Y (3)

as the prior for the v-th view. In order to observe the advantages gained by us-
ing this approach over the traditional multi-view learning where the consensus
is only encouraged by iterative labeling of the unlabeled data, we propose the
following algorithm:

1 For clarity, we always use the co-training settings [3] where the data is represented
by different views, while the algorithm can be applied to multiple-learners scenario
as well [4].
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1. For each view independently, optimize Eq. (1) by using Eq. (2) and using the
Eq. (3) as the priors.

2. Label a subset of unlabeled samples and add them to the labeled set.
3. Compute the posteriors and update the priors for each view.
4. If stopping condition is not satisfied, proceed to step 1, otherwise stop.

If we set γ = 0 in this procedure, then we obtain a classical multi-view learning
algorithm, similar to co-training [3]. Therefore, by observing the performance
of both of these algorithms, one can see the gain obtained by incorporating the
priors. For the second step where we label some unlabeled samples, we use the
following approach: 1) Each view proposes the N highest confident samples to
be included in the labeled set. 2) If there are disagreements over the label of a
sample between some of the views, we let the proposing views to vote with their
confidence for the label of this sample, and we select the resulting class which
has the highest aggregated confidence. Again, if we would have only two views,
this would be equivalent to the original co-training algorithm [3]. In the following
sections, we will develop a semi-supervised multi-class boosting algorithm which
can be used to solve the first step of this algorithm.

2.2 Multi-Class Boosting

Let Xl = {(x, y)|x ∈ RD, y ∈ {1, · · · ,K}} to be the set of i.i.d. labeled training
examples from an unknown probability distribution P (y,x). Suppose we are
given a set of unlabeled samples Xu = {x|x ∈ RD} which are also sampled
i.i.d. from the marginal distribution P (x) =

∑
y∈Y P (y,x). With X we refer

to the union of both labeled and unlabeled data samples. The data sample x is
represented as a D-dimensional feature vector and its label for a K-class problem
y is coming from the set of labels Y = {1, . . . ,K}. Boosting can be considered
as a meta-learning algorithm, which accepts another learning algorithm (often
known as base or weak learner) and constructs a new function class out of it,
i.e., by constructing additive models in form of

f(x;β) =

T∑
t=1

αt g(x;θt), (4)

where f(x) = [f1(x), · · · , fK(x)]T is the multi-class classifier2, β = [α|θ] is
the collection of model parameters, α are the parameters of boosting algorithm,
θ = {θt}Tt=1, and θt represents the parameters of the t-th base learner g(x;θt) ∈
G : RD → RK . Without loss of generality, we require the following symmetry
condition: ∀x :

∑
k∈Y fk(x) = 0. Many machine learning algorithms rely on the

notion of margin, popularized by support vector machines (SVMs). For a K-class
problem, the multi-class margin can be described as

m(x, y; f) = fy(x)−max
k 6=y

fk(x). (5)

2 When the context is clear, we interpret f(x;β) and f(x) as the same representation
for a classifier.



Multi-view Boosting with Priors 5

Note that for a correct classification via the decision rule c(x) = arg max
k∈Y

fk(x),

the margin should be positive m(x, y; f) > 0. In other words, a negative mar-
gin would result in a mis-classification. In this work, we introduce a boosting
algorithm which relies on maximizing the true multi-class margin. This is ac-
complished by minimizing a loss function which uses the multi-class margin. In
details, our boosting algorithm minimizes the following empirical risk

Remp(β) =
∑

(x,y)∈Xl

`(x, y;β), (6)

where `(·) is a loss function. Since our learning strategy is based on functional
gradient descent technique, it is possible to use a lot of different loss functions
here [12]. The usual choices are Exponential loss [13], Logit loss [14], and Savage
loss [15]. Figure 1(a) plots the shape of these loss functions with respect to the
margin of an example. As it has been shown in previous studies, in the presence
of label noise, Savage and Logit loss perform significantly better than exponential
loss [14, 15]. Since in this work, the multi-view algorithm might introduce noise
into the labeled set, we use the Savage loss function for the supervised loss, i.e.,
`(x, y; f) = 1

(1+e2m(x,y;f))2
.

2.3 Semi-Supervised Boosting with Robust Loss Functions

We now focus on developing the multi-class semi-supervised boosting algorithms
based on the concept of learning from priors [16, 17]. Assume we are given a prior
probability in form of q(·|x), e.g. Eq. (3). We model the posterior estimates of
the model by a multi-nomial logistic regression model defined as

p(k|x;β) =
efk(x;β)∑
j∈Y e

fj(x;β)
, (7)

where p(k|x;β) is the posterior probability of assigning sample x to the k-th
class, estimated by a model parameterized by β.
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Fig. 1. (a) Common loss functions used for supervised boosting methods. (b, c) Di-
vergence measures used for prior regularization with two different priors: (b) q+ = 0.5
and (c) q+ = 0.75.
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We formulate the semi-supervised learning as an optimization problem with
two goals: 1) the model should attain low mis-classification errors on the labeled
data (e.g., by means of maximizing the margin), 2) the model should be able to
match the prior probability over the unlabeled training samples. From an em-
pirical risk minimization perspective, these goals can be written as the following
risk functional

Remp(β) =
∑

(x,y)∈Xl

`(x, y;β) + γ
∑
x∈Xu

(x, q;β), (8)

where  is a loss function which measures the deviations of the model from
prior for a given sample x, and γ tunes the effect of semi-supervised regulariza-
tion. Since the goal of the regularization in Eq. (8) is to measure the deviations
between two probabilities, it is natural to use loss functions which measure the
divergence between two given distributions. In this work, we propose the Jensen-
Shannon Divergence for the regularization term in Eq. (8). The Jensen-Shannon
divergence for measuring the deviations of the model from the prior can be
expressed as

(x, q;β) =
1

2
(DKL(q‖m) +DKL(p‖m)), (9)

where DKL(·‖·) is the Kullback-Leibler Divergence, m = 1
2 (p + q). Figure 1(b)

plots the shape of the Kullback-Leibler Divergence (KL), which has been used
previously by Saffari et al. [17] for developing a multi-class semi-supervised
boosting algorithm, together with the Jensen-Shannon Divergence (JS) for a
binary problem when the prior is 0.5 for both classes. Figure 1(c) shows the
same loss functions when the prior is 0.75 for the positive class. By comparing
these loss functions to the supervised loss functions in Figure 1(a), one can see
that KL resembles a behavior similar to the Logit loss while JS is very similar
to the Savage loss function. Therefore, we could expect the JS loss function to
be more robust when faced with noisy priors; i.e., the prior is wrong about the
label of an unlabeled sample.

2.4 Learning with Functional Gradient Descent

Given the loss functions from previous sections, the learning process for boosting
is defined by the Eq. (8). This requires finding the parameters of the base learners
θ together with their weights α. Finding a global solution for this problem
is hard, therefore, many boosting algorithms adopt an approximate solution
called stagewise additive modeling [14]. One of the commonly used techniques
is the functional gradient descent method [18]. This is a generalization of the
traditional gradient descent method to the space of functions. In details, at the t-
th iteration of boosting, we find the steepest descent direction as −∇Remp(βt−1),
where ∇ is the gradient operator. Then the optimization problem for learning
t-th weak learner can be written as

θ∗t = arg max
θt

〈−∇Remp(βt−1),g(.;θt)〉, (10)
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where 〈, 〉 is the inner product operator. Since we have a risk which has labeled
and unlabeled samples, we need to compute the gradients for two different loss
functions.

Gradients for Labeled Samples Using the chain rule, we can write the k-th
element of the gradient vector ∇Remp(βt−1) as 3

∂Remp(βt−1)

∂fk(x)
=
∂`(x, y;βt−1)

∂m(x, y; f)

∂m(x, y; f)

∂fk(x)
. (11)

Note that the margin term includes a max operator, therefore, the derivatives
of the margin can be written as

∂max
j 6=y

fj(x)

∂fk(x)
= I(k 6= y)

I(k ∈ Sy(f(x))

|Sy(f(x))|
, (12)

where I is the indicator function, and Sy(f(x)) = {k|fk(x) = max
j 6=y

fj(x))} is the

set of classes which are the closest to the target class y. By using these results,
we compute the gradients of the margin as

∂m(x, y; f)

∂fk(x)
= I(k = y)− I(k 6= y)

I(k ∈ Sy(f(x))

|S(f(x))|
. (13)

Now we only need to find the derivatives of the loss function with respect to the
margin term, which for the Savage loss can be written as

∂`(x, y;βt−1)

∂m(x, y; f)
= − 4e2m(x,y;ft−1)

(1 + e2m(x,y;ft−1))3
. (14)

Gradients for Unlabeled Samples The Jensen-Shannon divergence for semi-
supervised part can be written as 4

(x, q;β) ≈H(p,m) +H(q,m)−H(p) =

=− 2
∑
j∈Y

m(j|x;β) logm(j|x;β) +
∑
j∈Y

p(j|x;β) log p(j|x;β). (15)

where H(·, ·) is the cross-entropy between two distributions and H(·) is the
entropy. Note that since H(q) is fixed and does not depend on the model, it
is dropped from this equations. We will need to compute the gradients of the
posterior estimates in this equation, therefore, first we develop this term. We

3 For notational brevity, we simply write ∂`(x,y;f)
∂fk(x)

instead of the more correct form
∂`(x,y;f)
∂fk(x)

|f(x)=ft−1(x).
4 Note that we drop the 1

2
multiplier of the Eq. (9) as it can be incorporated into γ.
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write the gradients of the Eq.(7) as

∂p(j|x;β)

∂fk(x)
=

I(k = j)efj(x)
∑K

i=1 e
fi(x) − efj(x)efk(x)

(
∑K

i=1 e
fi(x))2

= (16)

=
efj(x)∑K
i=1 e

fi(x)
(I(k = j)− efk(x)∑K

i=1 e
fi(x)

) = p(j|x;β)(I(k = j)− p(k|x;β)).

Using this result, we compute the gradients of the prior regularization term
as

∂(x, q;β)

∂fk(x)
=p(k|x;β)

(
log

p(k|x;β)

m(k|x;β)
−
∑
j∈Y

p(j|x;β) log
p(j|x;β)

m(j|x;β)

)
= p(k|x;β)(log

p(k|x;β)

m(k|x;β)
−DKL(p‖m)). (17)

Learning with Multi-Class Base Classifiers Given the gradients of the loss
functions, the learning process of the t-th base classifier in Eq.(10) can be written
as

θ∗t = arg max
θt

−
∑
x∈X

∑
k∈Y

∂Remp(βt−1)

∂fk(x)
gk(x;θt). (18)

The solution of this problem will select a base function which has the highest
correlation with the steepest descent direction of the risk. Since we want to use
multi-class base learners, we have to develop a single label and a single weight
for each sample. The following theorem shows the best possible choices for the
weights and pseudo-labels.

Theorem 21 The solution of Eq.(18) using a multi-class classifier c(x;θt) ∈ Y
can be obtained by solving

θ∗t = arg min
θt

∑
x∈X

wxI(c(x) 6= ŷ) (19)

where

wx = max
k∈Y
−
∂Remp(βt−1)

∂fk(x)
and ŷx = arg max

k∈Y
−
∂Remp(βt−1)

∂fk(x)
(20)

are the weight and the pseudo-label for the sample x, respectively.

Proof. The proof is similar to the one presented by Saffari et al. [17].

The following lemmas show that for labeled and unlabeled samples, the
weight is positive or zero and the chosen label for the labeled samples is the
true class label. Note that this is an important step in boosting, as the derived
weights should always be positive for all the samples.
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Lemma 1. For the labeled samples, the pseudo-label given in Eq.(20) is the true
class label and the sample weight is positive.

Proof. From Eq. (13) and Eq. (14) we have that ∀k 6= y : − ∂Remp(βt−1)

∂fk(x)
< 0 and only

for the target class − ∂Remp(βt−1)

∂fy(x)
> 0. This also means that the pseudo-label is the

true class.

Lemma 2. For the unlabeled samples, the sample weight given in Eq.(20) is
positive or zero.

Proof. First we show that the sum of the gradients for an unlabeled sample over
different classes is always zero. Note that

−
∑
k∈Y

∂Remp(βt−1)

∂fk(x)
=− γ

∑
k∈Y

p(k|x;β)(log
p(k|x;β)

m(k|x;β)
−DKL(p‖m)) =

=γ(DKL(p‖m)−DKL(p‖m)) = 0. (21)

Since the sum of the negative of the gradients is zero, therefore, either all the
gradients are equal to zero, or if there are some non-zero gradients, then their maximum
over different classes is positive, as it is not possible that the sum of a set of negative
terms is zero. Therefore,

wx = max
k∈Y
−
∂Remp(βt−1)

∂fk(x)
≥ 0. (22)

3 Experiments

3.1 Multi-Class Boosting Experiments

We compare the performance of the proposed multi-class boosting algorithm
with other state-of-the-art methods on a set of multi-class machine learning
benchmark datasets obtained from UCI repository. In these experiments, we
compare with the following multi-class classifiers: Random Forests (RF) [19],
three multi-class formulations of AdaBoost namely SAMME [20], AdaBoost.ECC [21],
and the recent algorithm of AdaBoost.SIP [22]5. As the last algorithm, we also
compare with the multi-class support vector machine algorithm. For Random
Forests, we train 250 randomized trees. For the SVM we use the RBF kernel
and perform model selection by a grid search for selecting the kernel width σ
and capacity parameter C. For our GBoost algorithm, we use 5 extremely ran-
domized trees as weak learners, and set the number of weak learners T = 50
and fix the shrinkage factor to ν = 0.05 for all the experiments. We repeat the
experiments for 5 times and report the average test error.

The results over DNA, Letter, Pendigit, and USPS datasets are shown in
Table 1. As it can be seen, our algorithm achieves results comparable to other
multi-class classifiers. The best performing method is the SVM with RBF ker-
nel. However, our algorithm achieves these results without any need for model

5 For these algorithms we report the results presented in [22].
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Dataset/Method GBoost RF SVM SAMME [22] AdaBoost.ECC [22] AdaBoost.SIP [22]
DNA 0.0582 0.0683 0.0559 0.1071 0.0506 0 .0548
Letter 0.0265 0.0468 0 .0298 0.4938 0.2367 0.1945
Pendigit 0 .0387 0.0496 0.0360 0.3391 0.1029 0.0602
USPS 0 .0524 0.0610 0.0424 N/A N/A N/A

Table 1. Classification error on machine learning benchmark datasets. The bold-face
shows the best performing method, while the italic font shows the second best.
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Fig. 2. Classification error for (a) COIL and (b) USPS dataset with noisy priors.

selection (we use a fixed setting for all the experiments in this section and the
next two sections), and is considerably faster during both training and testing.
For example, for the Letter dataset with 15000 training and 4000 samples, our
unoptimized Python/C++ implementation6 finishes the training and testing in
54 seconds, while the training of the SVM using Shogun LibSVM interface [23]
takes around 156 seconds.

3.2 Robustness Experiments

In order to show the increased robustness experimentally, we compare our semi-
supervised boosting algorithm (GPBoost) with the RMSBoost [17] which uses
the Kullback-Leibler divergence. In these experiments, we use the hidden labels
of the unlabeled samples in order to produce a prior and then we introduce
random label noise into these priors and train both semi-supervised boosting
algorithms with the same settings. In order to make the comparison fair, we also
change the supervised loss function of the RMSBoost to Savage loss. For these
experiments, we choose two semi-supervised learning benchmark datasets [1].
The results averaged over 12 splits provided in the dataset for COIL and USPS
datasets are shown in Figure 2. As it can be seen, our algorithm retains lower
test errors compared to the RMSBoost. It should be noted that specially for the
COIL set which is multi-class dataset, the gap is larger from early on.

6
Code is available at http://www.ymer.org/amir/software/multi-class-semi-supervised-boosting/
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3.3 Object Category Recognition

We evaluate various multi-view semi-supervised boosting algorithms on Cal-
tech101 object category recognition task. This dataset represent a challenging
task for the semi-supervised learners, since the number of classes is large and the
number of training samples per class is rather low. For these experiments, we
randomly choose up to 80 images from each class and label {5, 10, 15, 20, 25, 30}
images for each of them. We use the rest of the samples as the test set. Since
many of the classes do not have enough images to form a separate unlabeled
set, we resort to the transductive settings where the test set is used as the unla-
beled set. We repeat this procedure 5 times and report the average classification
accuracy per each class.

For feature extraction, we use the precomputed dense SIFT-based bag-of-
words and PHOG features from Gehler and Nowozin [24] to form different views.
In details, for BOW features, we use a vocabulary of size 300 extracted from
gray level and individual color channels. We use a level-2 spatial histogram to
represent these 2 views (BOW-grey and BOW-Color). Additionally, we use level-
2 PHOG features formed from the oriented (PHOG-360) and unoriented (PHOG-
180) gradients. Therefore, in total we have 4 different views for this dataset.

In these experiments, we use the Random Forests (RF), our supervised multi-
class boosting algorithm (GBoost), multi-view boosting using GBoost as the ba-
sic learners (MV-GBoost), and our multi-view algorithm MV-GPBoost. Addi-
tionally, we extended the AgreementBoost algorithm [6] to cope with multi-class
problems and report the results for this algorithm as well.

If we set the γ = 0 in MV-GPBoost, we will end up in exactly the MV-
GBoost algorithm. Therefore, the performance gains seen here are totally due to
the incorporation of the prior regularization term. The settings for the RFs and
our boosting algorithms is exactly the same settings used for machine learning
benchmark experiments. For the multi-view algorithms, we iterate the learning
process for 10 iterations and label 100 unlabeled samples (1 from each class) in
each iteration. Since RFs and GBoost cannot use the views directly, we concate-
nate the features into a single feature vector.

Figure 3 shows the results for three different settings: (a) only using the two
views provided from BOW features, (b) using two views from PHOG features,
and (c) using all 4 views. The first observation is that the GBoost algorithm
successfully boosts the performance of the random forest and the accuracy gap
can be as high as 5%. Comparing the performance of the GBoost and the MV-
GBoost, we can see that in general the multi-view learning strategy by labeling
a subset of unlabeled samples iteratively, works and there is a clear performance
gain between these two algorithms. However, the highest accuracy is obtained by
MV-GPBoost which has a considerable gap in classification accuracy compared
to the MV-GBoost algorithm. Another observation here is that, as expected, the
combination of all 4 views achieves the highest performance, compared to using
either two views from BOW or PHOGs. Furthermore, the performance of the
AgreementBoost which uses the variance of the classifiers over different views to



12 Robust Multi-View Boosting with Priors

5 10 15 20 25 30
# Labeled Samples

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Cl
as

si
fic

at
io

n 
Ac

cu
ra

cy

BOW

RF
GBoost
AgreementBoost
MV-GBoost
MV-GPBoost

(a) BOW views
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(b) PHOG views
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(c) PHOG and BOW views

Fig. 3. Caltech101 classification accuracy for: (a) BOW, (b) PHOG, and (c) BOW and
PHOG.

Methods - Views BOW PHOG BOW+PHOG
# Labels 15 30 15 30 15 30
SVM 0.5545 0.6415 0.4612 0.5264 0.6123 0.6888
MV-GPBoost 0.5605 0.6805 0.4745 0.5411 0.6496 0.7158

Table 2. Classification accuracy on Caltech101 with kernel SVMs for 15 and 30 labeled
samples per class.

regularize the training process of boosting is not comparable to the performance
of other learning methods.

Similar to [24], when we use χ2 kernels over each of the views and use SVMs
as the weak learners of the boosting classifiers, we improve the classification
accuracy on this dataset. These results are reported in Table 2.

3.4 Object Tracking

Recently, boosting-based methods have achieved high accurate tracking perfor-
mances running in real-time [25]. In these methods, usually an appearance-based
classifier is trained with a marked object at the first frame versus its local back-
ground. The object is then tracked by performing re-detection in the succeed-
ing frames. In order to handle rapid appearance and illumination changes, the
classifiers perform on-line self-updating [26]. However, during this self-updating
process it is hard to decide where to select the positive and negative updates.
If the samples are selected wrongly, slight errors can accumulate over time and
cause drifting. Therefore, recent approaches applied on-line extensions of boost-
ing that can handle the uncertainty in the update process, such as CoBoost [9],
SemiBoost [27] or MILBoost [28]. The main idea of these approaches is to de-
fine a region around the current tracking position and leave it up to the learner
which samples to incorporate as positives or negatives in order to stabilize the
tracking. In the following, we compare our method to the state-of-the-art.

We use eight publicly available sequences including variations in illumina-
tion, pose, scale, rotation and appearance, and partial occlusions. The sequences
Sylvester and David are taken from [29] and Face Occlusion 1 is taken from [30],
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Approach sylv david faceocc2 tiger1 tiger2 coke faceocc1 girl

MV-GPBoost 17 20 10 15 16 20 12 15
CoBoost 15 33 11 22 19 14 13 17
SemiBoost 22 59 43 46 53 85 41 52
MILBoost 11 23 20 15 17 21 27 32

Table 3. Tracking results on the benchmark sequences measured as average center
location errors (in pixels) over 5 runs per sequence. Best performing method is marked
in bold face, while the second best is shown in italic.

respectively. Face occlusion 2, Girl, Tiger1,Tiger2 and Coke are taken from [28].
All video frames are gray scale and of size 320 × 240. We report the tracking
accuracy in terms of average center location error in pixel to the groundtruth.

Since our method is a multi-view approach, it is straight-forward to use
different feature information. However, this would make the comparison to other
methods that are based on single features unfair. So, in the following we report
tracking results only for Haar-features and it should be clear to the reader (also
by looking at previous experiments) that further improvement can be achieved
by adding additional feature queues. In particular, we use 30 selectors with each
30 weak learners. The different views are generated by random sub-sampling
from a large amount of Haar-features. In Table 3 we depict the results for all
tracking sequences, i.e., CoBoost [9], SemiBoost [27] and MILBoost [28]. As can
be seen, MV-GPBoost performs best on five tracking sequences. The resulting
tracking videos can be found in the supplementary material.

4 Conclusions

In this paper, we have introduced a new multi-view boosting algorithm. In con-
trast to previous approaches that select a subset of the unlabeled data and ignore
the rest, we use all unlabeled samples and, we use the different views to provide
an aggregated prior which regularizes a semi-supervised loss function. Since pri-
ors are noisy, we also propose a novel robust loss function for semi-supervised
boosting. Finally, our method is inherently multi-class and can handle more than
two views at the same time. We demonstrated the performance of our method on
machine learning benchmark sets, Caltech-101 object categorization and object
tracking.
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