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Abstract

Online boosting is one of the most successful on-
line learning algorithms in computer vision. While
many challenging online learning problems are in-
herently multi-class, online boosting and its variants
are only able to solve binary tasks. In this paper,
we present Online Multi-Class LPBoost (OMCLP)
which is directly applicable to multi-class problems.
From a theoretical point of view, our algorithm tries
to maximize the multi-class soft-margin of the sam-
ples. In order to solve the LP problem in online
settings, we perform an efficient variant of online
convex programming, which is based on primal-dual
gradient descent-ascent update strategies. We con-
duct an extensive set of experiments over machine
learning benchmark datasets, as well as, on Cal-
tech101 category recognition dataset. We show that
our method is able to outperform other online multi-
class methods. We also apply our method to tracking
where, we present an intuitive way to convert the bi-
nary tracking by detection problem to a multi-class
problem where background patterns which are sim-
ilar to the target class, become virtual classes. Ap-
plying our novel model, we outperform or achieve
the state-of-the-art results on benchmark tracking
videos.

1. Introduction

Online learning is an area of machine learning
concerned with estimation problems with limited ac-
cess to the entire data domain. It is a sequential deci-
sion making task where the objectives for the learner
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are revealed over time. Classical online learning
problems can be formulated as a game between the
learner and an adversary environment (or teacher). In
this repeated game, at any time t the following steps
happen: 1) The environment chooses a new sample
xt ∈ Rd. 2) The learner responds with its predic-
tion ŷt. 3) The environment reveals the label of the
sample yt. 4) The learner suffers the loss `t and up-
dates its model. The goal of the learner is to achieve
a low cumulative loss over time by updating its inter-
nal representation of the problem.

Online learning is an essential tool for learning
from dynamic environments, from very large scale
datasets, or from streaming data sources. It has
been studied extensively in the machine learning
community (for a comprehensive overview we refer
to [5, 25] and references therein). In computer vision,
online learning has been used in applications such as
object recognition [14, 4], object detection [22, 30]
and tracking [8, 16, 13].

Historically, Oza and Russell [21] were the first
to extend the AdaBoost [11] to operate in an online
learning scenario. Their formulation and many vari-
ants have been used in various computer vision ap-
plications [16, 13, 22, 30, 18].

Almost all recent work on online boosting al-
gorithms focus on binary decision problems, while
many interesting problems are inherently multi-class.
These algorithms tackle the multi-class problems by
using a set of decomposed binary tasks, usually ob-
tained by typical approaches like 1-vs.-all, 1-vs.-1,
and error correcting output codes [2]. However, such
approaches have major drawbacks. First, by consid-
ering only the binary sub-problems, the algorithms
often fail to completely capture the true structures
and relations between the classes in the feature space.
In online learning tasks, this problem is even more
severe because the learner only has access to a lim-
ited amount of data. Second, one has to train at least



a number of classifiers equivalent to the number of
classes. For problems with a large number of classes,
such approaches have computational disadvantages.
For an online learning scenario, because of these con-
straints, such approaches might not be applicable.
Third, the commonly used 1-vs.-all approach intro-
duces additional problems, such as producing unbal-
anced datasets or uncalibrated classifiers.

Boosting with convex loss functions is proven to
be sensitive to outliers and label noise [19]. This in-
herent problem of boosting is even more important
in online learning problems where the label given
by the environment might be quite noisy. Hence,
training such a sensitive algorithm in noisy envi-
ronments usually leads to inferior classifiers. Re-
cently, there has been a great effort to remedy this
weakness, e.g. by introducing more robust loss func-
tions [19, 27, 18]. There exists theoretical evidences
that many boosting algorithms are only able to max-
imize the hard-margin [23] or average margin [26]
of data samples. Such problems are addressed in
other learning methods, specially in support vector
machines, by introducing the soft-margins. Fortu-
nately, for offline boosting, there exist a few methods
which are able to use the soft-margins, notably, the
Linear Programming Boosting (LPBoost) [9] and its
variants [28, 29, 12].

Therefore, by formulating the LPBoost for online
multi-class learning problems, we are able to directly
address these inherent weaknesses of online boost-
ing methods. Experimentally, we show that our al-
gorithm in fact holds to these promises and is able to
outperform or at least achieve state-of-the-art results
compared to other online multi-class learning meth-
ods on various pattern recognition and computer vi-
sion tasks. We conduct a set of experiments to com-
pare our method with other online and offline multi-
class learning methods on standard machine learn-
ing benchmarks. Additionally, we apply our method
to the object category classification problem on Cal-
tech101 dataset. As a side effect of having an online
multi-class classifier, we are able to perform multi-
target tracking efficiently and robustly. For single ob-
ject tracking with a complex background, we propose
to formulate the problem as a multi-target tracking by
assigning separate virtual classes for non-target ob-
jects with high similarities to the target, and hence,
improve the tracking results to achieve state-of-the-
art over benchmark videos.

2. Online Multi-Class LPBoost
In this section, we formulate the online multi-

class boosting as a linear programming optimization
problem. We first state the problem and then present
our learning method which is based on a primal-dual
gradient descent-ascent strategy.

In online learning scenarios, the data samples are
presented sequentially. Following the repeated game
analogy of online learning, the goal of the learner is
to achieve a low cumulative loss over time by up-
dating its model incrementally. Let the loss at iter-
ation t be `t, which measures how bad was the pre-
diction of the learner ŷt with respect to the true class
label of the newest sample yt. In our formulation,
we assume that the number of classes is not known
in advance, and the learner should be able to incor-
porate new classes on-the-fly. Since the classes are
presented over time, we do not penalize the learner
when a new class is introduced.

Let Ct ⊆ C be the set of known classes up to time
t and C be the total label set (unknown to the learner).
Also let Kt = |Ct| be the number of known classes
at time t. In our formulation, the learner maintains a
model ft : Rd → RKt which is a mapping from the
input feature space to the multi-class hypothesis do-
main. We represent the confidence of the learner for
the k-th class ft,k(xt) as the k-th element of the out-
put vector ft(xt) = [ft,1(xt), . . . , ft,Kt(xt)]T . The
following decision rule is applied in order to obtain
the classification

ŷt = arg max
k∈Ct

ft,k(xt). (1)

We define the hard margin of a sample xt as

myt
(xt) = ft,yt

(xt)−max
k∈Ct
k 6=yt

ft,k(xt), (2)

which measures the difference between the classifi-
cation confidence of the true class and the closest
non-target class

y′t = arg max
k∈Ct
k 6=yt

ft,k(xt).

Note that based on the decision rule of Eq (1),
myt

(xt) < 0 means a wrong prediction, while a pos-
itive margin means a correct classification.

In this work, we use the hinge loss function

`t(myt
) = I(yt ∈ Ct) max(0, 1−myt

(xt)), (3)

where I(·) is an indicator function, which is intro-
duced so that we do not penalize the model if there



is a novel class introduced. Note that hinge loss is an
upper bound on the miss-classification error

T∑
t=1

I(yt 6= ŷt) ≤
T∑

t=1

`t(myt
), (4)

and hence, its minimization results in minimizing the
miss-classification error rate.

2.1. Multi-Class LPBoost Model

Our learner is a boosting model, i.e. a linear com-
bination of some weak learners (or bases)

ft(xt) =
M∑

m=1

wt,mgt,m(xt), (5)

where gt,m : Rd → RKt is the m-th weak learner,
M represents the number of weak learners, and wt,m

is the weight of m-th base. It is convenient to write
this formulation in a more compact form as

ft(xt) = Gt(xt)wt, (6)

where wt = [wt,1, . . . , wt,M ]T ∈ RM is the weight
vector of all bases and

Gt(xt) = [gt,1(xt), . . . , gt,M (xt)] ∈ RKt × RM

(7)
is the response matrix of all weak learners for all the
known classes. We denoteGt(y, ·) to be the y-th row
of this matrix, and Gt(y,m) to be the element in the
y-th row and the m-th column.

Offline boosting sequentially adds base learners
to the whole model. However, in our online boosting
formulation, the model utilizes a fixed set of online
base learners and updates them sequentially by ad-
justing the weight of a sample.

Let B∆T be a cache with size ∆T . A cache of
size ∆T = 1 will correspond to the case that learner
discards the sample after updating on it. Considering
our boosting model and the loss function presented in
Eq (3), we propose the following regularized multi-
class LPBoost problem to be optimized online

min
wT ,ξ

C
∑

t∈B∆T

∑
k 6=yt

ξt,k + ‖wT ‖1 (8)

s.t. ∀m : wT,m ≥ 0
∀t,∀k 6= yt : ξt,k ≥ 0

∀t,∀k 6= yt :
(
Gt(yt, ·)−Gt(k, ·)

)
wT + ξt,k ≥ 1

where C is the capacity parameter, and slack vari-
ables ξt,k are added to create soft margins for boost-
ing. Note that this formulation is a direct generaliza-
tion of the original formulation of LPBoost [9] to the

multi-class case. Furthermore, if we would share the
slack between all the classes, then it would be closely
related to the multi-class variant of ν-LPBoost pro-
posed in [12]. In an offline scenario, such problems
can be easily solved by standard optimization tech-
niques. However, in the online setting, usually it
is infeasible to solve this problem from scratch for
every new sample added to the system. Therefore,
an incremental solution is desired. Fortunately, due
to convexity of the problem, one can benefit from
previously proposed online convex programming ap-
proaches [33].

2.2. Online Learning

Our online learning method performs primal-dual
gradient descent-ascent iteratively. In detail, we first
convert the problem to its augmented Lagrangian
form [20]. By each new sample, we first perform
a dual ascent, which is equivalent of finding sample
weights for each iteration of training weak learners.
After finishing that step, we do a primal descent over
the weights of weak learners.

The Lagrange dual function of optimization prob-
lem Eq (8) is

D(α,β,d) =
∑

t∈B∆T

∑
k 6=yt

dt,k+ (9)

+ inf
wT ,ξ

( M∑
m=1

(1− αm)wT,m+

+
∑

t∈B∆T

∑
k 6=yt

(C − dt,k − βt,k)ξt,k−

−
∑

t∈B∆T

∑
k 6=yt

dt,k

(
Gt(yt, ·)−Gt(k, ·)

)
wT

)
,

where α,β,d are the Lagrange multipliers of the
constraints. Due to linearity of the inner problem of
Eq (9), for a set of finite solutions the following con-
ditions must hold

∀t, ∀k 6= yt : C − dt,k − βt,k = 0

∀m : 1− αm −
∑

t∈B∆T

∑
k 6=yt

dt,k∆Gt,k(m) = 0,

where ∆Gt,k(m) = Gt(yt,m) − Gt(k,m). Using
the positivity conditions on Lagrange multipliers, we



can derive the dual formulation of Eq (8) as

max
d

∑
t∈B∆T

∑
k 6=yt

dt,k (10)

s.t. ∀m :
∑

t∈B∆T

∑
k 6=yt

dt,k∆Gt,k(m) ≤ 1

∀t, ∀k 6= yt : 0 ≤ dt,k ≤ C.

The vector d, which corresponds to sample weights,
is the dual variable of weights on weak learners. The
first set of constraints are equivalent of edge con-
straints of binary LPBoost. As it can be seen, there
are K − 1 weights per each sample. However, the
weak learners usually accept only one weight per in-
stance. Therefore, we only consider the most vio-
lating edge constraint for each example. This corre-
sponds to finding the non-target class for which the
margin is the smallest: y′t

1. Therefore, we will con-
centrate on the following problem

max
d

∑
t∈B∆T

dt,y′
t

(11)

s.t. ∀m :
∑

t∈B∆T

dt,y′
t
∆Gt,y′

t
(m) ≤ 1

∀t : 0 ≤ dt,y′
t
≤ C.

Optimizing the problem in Eq. (11) with an online
convex programming technique [33], requires a pro-
jection step for finding solutions which are consistent
with the constraints. However, in our case such a step
is expensive to compute; therefore, we formulate its
augmented Lagrangian [20] as

max
wT ,d

∑
t∈B∆T

dt,y′
t
+ (12)

+
M∑

m=1

wT,m(1−
∑

t∈B∆T

dt,y′
t
∆Gt,y′

t
(m)− ζm)−

− 1
2θ

M∑
m=1

(1−
∑

t∈B∆T

dt,y′
t
∆Gt,y′

t
(m)− ζm)2

s.t. ∀m : ζm ≥ 0, wT,m ≥ 0
∀t : 0 ≤ dt,y′

t
≤ C,

by introducing a new set of slack variables ζm and
using θ > 0 as a constant. Note that the value of
slacks can be easily found by computing the deriva-
tives of the objective with respect to them and setting

1Note that this is a limitation imposed by the weak learners.
The following derivations can be easily generalized for all the
weights.

it to zero. This leads to

ζm = max(0, qm),

where qm = 1−
∑

t∈B∆T
dt,y′

t
∆Gt,y′

t
(m)− θwT,m.

Now we follow this procedure over time: when a
new sample arrives, we set its weight to C and up-
date the cache by removing the oldest sample and in-
serting the newest. Then, for training the m-th weak
learner, we compute the sample weights by dual gra-
dient ascent update

∀t : et =dt,y′
t

+ νd

(
1 +

1
θ

m−1∑
j=1
qj<0

qj∆Gt,y′
t
(j)
)

dt,y′
t
←max(0,min(C, et)), (13)

where νd is the dual learning rate. After updating the
sample weight and training the m-th weak learner
according to them, we compute an update for the
weight of this weak learner by a primal gradient de-
scent update

∀m : zm =wT,m − νp

(
1−

∑
t∈B∆T

dt,y′
t
∆Gt,y′

t
(m)

)
wT,m ←max(0, zm), (14)

where νp is the learning rate for the primal. This al-
ternating primal-dual descent-ascent is continued for
all the weak learners.

Discussion Although the update rules presented in
Eq (13) and Eq (14) look complicated, in fact, they
present intuitive learning strategies which are closely
related to the boosting way of learning from data. In
Eq (13), the inner sum shows the total confidence of
the weak learners trained so far with respect to the
classification margin of the current sample. Note that
since qj < 0, for a sample which many of the weak
learners obtain a positive margin, this sum will be a
large negative value. Hence, for such a sample with
large positive margin, the weight will decrease for
the training of the next weak learner. Similarly, for
the update in Eq (14), if a weak learner has a high
weighted average margin over all the samples in the
cache, the inner sum will be high, which will lead to
an increase in its weight. Therefore, the weight of
successful weak learners will increase.

3. Experiments
We evaluate the proposed Online Multi-Class LP-

Boost (OMCLP) algorithm by comparing its perfor-
mance to other online learning algorithms. In the first



two sets of experiments, we mainly compare with
other multi-class online and offline algorithms, while
in last section we will conduct tracking experiments.

3.1. Machine Learning Benchmark

Since there is no other online multi-class boost-
ing algorithm available in literature for comparison,
we convert the recently proposed offline multi-class
boosting algorithm of Zou et al. [34] to online for-
mulation. Based on their formulation, we define a
margin vector based on the current classifier as

∀xt :
K∑

i=1

ft,i(xt) = 0. (15)

We then use a Fisher consistent convex loss func-
tion [34], which guarantees that by training over a
large number of samples the boosting model is able
to recover the unknown Bayes decision rule. For this
work, we experiment with two different loss func-
tions: the exponential loss e−ft,yt (xt) and the Logit
loss log(1+e−ft,yt (xt)). For updating them-th weak
learner, we perform a functional gradient descent as

gt,m(x) = arg max
g

∇`(fm−1
t,yt

(xt))gyt
(xt), (16)

where∇`(fm−1
t,yt

(xt)) is the gradient of the loss func-
tion at them-th stage of boosting. As it will be shown
later, in principle, this is also a novel and successful
online multi-class boosting algorithm. We call this
algorithm Online Multi-Class Gradient Boost (OM-
CGB).

Additionally, we compare with Online Random
Forests (ORF) [24] and the highly successful online
multi-class support vector machine algorithm of Bor-
des et al. [6] named Linear LaRank. Note that both
of these algorithms are inherently multi-class, so they
provide a fair comparison. We also performed ex-
periments with the online AdaBoost formulation of
Oza et al. [21] by training 1-vs-all classifiers. How-
ever, its performance was not comparable to these
baseline methods; therefore, due to lack of space we
omit reporting them. We also compare our method
with the following offline trained multi-class clas-
sifiers: Random Forests [7], three multi-class for-
mulations of AdaBoost namely SAMME [32], Ad-
aBoost.ECC [15], and the recent algorithm of Ad-
aBoost.SIP [31]2. We also compare with the multi-
class support vector machine algorithms of Keerthi et

2For these algorithms we report the results presented in [31].

al. [17] with a linear kernel and the multi-class SVM
from LibSVM with RBF kernel.

The OMCLP and OMCGB use small ORFs with
10 trees as their weak learners and we set M = 10.
ORF when used as a single model uses 100 trees
trained online. For our algorithm, we fix the cache
size to 1 and set νd = θ = 2, νp = 1e−6, and C = 5.
Note that these set of parameters will be used for all
the datasets in this section and the next section. For
offline methods, we use a 5-fold cross-validation to
obtain their hyperparameters.

Table 1 shows the classification error on 4 bench-
mark datasets chosen from the UCI repository. All
the experiments are run for 5 independent runs and
the results are the average classification error on the
held out test set. In order to simulate large scale
datasets, we conduct the experiments in different
number of epochs: each epoch corresponds to seeing
all the data points once in random order. As it can be
seen, our algorithm outperforms other online learn-
ing methods in 6 out of 8 cases and comes very close
to the performance of the best offline methods. An-
other interesting observation is the fact that the per-
formance of the OMCLP at the first epoch is very
close to the performance of the ORF after 10 epochs.
This shows that given a slow converging algorithm
like ORF, we are able to speed up its convergence
rate as well. Our C++ implementation of OMCLP
and OMCGB is freely available from the following
link3.

3.2. Object Category Recognition

Online multi-class learning is essential when deal-
ing with large-scale image databases. For example,
typical image or video search engines often need to
update their internal model when a set of new data
is available. However, rebuilding the entire model is
infeasible in practice. Considering the fact that the
problem of object category recognition is inherently
multi-class, therefore such systems can benefit from
an online multi-class learner.

We evaluate on Caltech101 object category recog-
nition task, which is a challenging task for an online
learner, since the number of classes is large and the
number of training samples per class is small. For
these experiments, we use the Linear LaRank as the
weak learners of the online boosting methods, due to
the fact that ORFs were performing poorly on this
task. We convert the SVM scores of LaRank to prob-

3http://www.ymer.org/amir/software/online-multiclass-
lpboost/



Methods - Dataset DNA Letter Pendigit USPS
# Epochs 1 10 1 10 1 10 1 10
OMCLP 0.0983 0.0565 0.1202 0.0362 0.0747 0.0241 0.1185 0.0809
OMCGB-Log 0.2648 0.0777 0.3033 0.1202 0.1666 0.0599 0.2418 0.1241
OMCGB-Exp 0.1395 0.0616 0.2484 0.0853 0.1282 0.0501 0.1926 0.1103
ORF 0.2243 0.0786 0.2696 0.0871 0.1343 0.0464 0.2066 0.1085
LaRank 0.0944 0.0818 0.5656 0.5128 0.1712 0.2109 0.0964 0.1004

RF 0.0683 0.0468 0.0387 0.0610
MCSVM-Lin 0.0727 0.2575 0.1266 0.0863
MCSVM-RBF 0.0559 0 .0298 0 .0360 0 .0424
SAMME [31] 0.1071 0.4938 0.3391 N/A
AdaBoost.ECC [31] 0 .0506 0.2367 0.1029 N/A
AdaBoost.SIP [31] 0.0548 0.1945 0.0602 N/A

Table 1. Classification error on machine learning benchmark datasets for 1 and 10 epochs. The bold-face shows the best
performing online method, while the italic-font shows the best offline method.

# Train 15 30
# Epochs 1 10 1 10
OMCLP 0.7437 0.6093 0.6672 0.5406
OMCGB 0.7520 0.6226 0.6860 0.5693
ORF 0.8969 0.8265 0.8880 0.8142
LaRank 0.7856 0.6353 0.7205 0.5803

Table 2. Classification error on Caltech101 datasets for 1
and 10 epochs. The bold-face shows the best performing
online method.

abilities via a multinomial logistic regression. All
other settings are the same as experiments presented
in Section 3.1.

We present the results using the standard Cal-
tech101 settings of training on 15 and 30, and testing
on 50 images per class. For feature extraction, we
use the precomputed 360 degree Level2-PHOG fea-
tures from Gehler and Nowozin [12]. Table 2 shows
the results obtained by various online methods, aver-
aged over 5 independent runs on 5 different train and
test splits (total 25 runs per algorithm)4. As it can
be seen, our algorithm performs the best compared
to other methods on this difficult task.

Figure 1(a) shows how the performance varies by
the number of training images per category. As ex-
pected, more training samples help algorithms to im-
prove over time. However, it is notable that our
method consistently obtains lower errors compared
to other algorithms over different amount of labeled
data. Figure 1(b) shows the dynamics of the learners
when the same training data is reshuffled and pre-
sented as new samples. We can see that although all
methods benefit from revisiting the samples, our al-
gorithms makes the most out of the epochs, and as

4We only report the performance of OMCGB-Exp as with
Logit loss the results were similar.
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Figure 1. (a) Classification error on Caltech101 for 1 epoch
(solid) and 10 epochs runs when the number of training
images per class is varying. (b) Classification error over
different number of epochs when using 30 images per cat-
egory for training.

can be seen towards the end of the 10-th epoch, it has
the highest gap to the second best algorithm, OM-
CGB.



(a) Addition of a vir-
tual class

(b) No negative up-
date

(c) Updating a vir-
tual class

Figure 2. Tracking with virtual background classes.

3.3. Tracking with Virtual Classes

Object Tracking is a common application for on-
line learning algorithms in computer vision. Within
this section, we will show the performance of our al-
gorithm in a tracking by detection scenario. When
training a discriminative object detector, the prob-
lem is usually formulated as binary classification. In
tracking, we have usually fast changing, cluttered,
complex background, which has to be described with
a single background model. However, our approach
is to break this binary task into a multi-class problem
and utilize our robust online learner to discriminate
between these classes.

From the classification margin point of view, the
background might have samples which are very close
to the decision boundaries of the target object. These
samples are usually potential false positive detections
during the tracking, specially when there are fast ap-
pearance changes or occlusions. Since, we know
that our classifier can maximize the soft-margin of
data instances, we sample densely from the decision
boundaries of the target class in the feature space for
potential false positive background regions. Then,
each of these background regions is assigned to a
separate virtual class. Hence, our online multi-class
classifier will maximize its margin with respect to
all these classes, while also in image domain it will
keep tracking them as they were indeed target ob-
jects. Since our learner is able to accommodate new
classes on-the-fly, we can keep track of any new ob-
ject entering the scene which might cause possible
confusions. Figure 2 shows this procedure in action:
Figure 2(a) depicts the addition of a virtual back-
ground class, and Figure 2(c) indicates the update of
an existing virtual class5.

We conduct an extensive evaluation of our track-
ing method. Since we want to show that the perfor-
mance gain comes from our robust multi-class clas-
sifier and from the addition of novel virtual back-
ground classes, we only use simple Haar-like Fea-

5Please refer to supplementary material for videos describing
our tracking method in details and its results.

tures without any post-processing. For the evalu-
ation of our tracker we use the detection-criterion
of the VOC Challenge [10], which is defined as
|RT ∩ RGT |/|RT ∪ RGT |, where RT is the track-
ing rectangle and RGT the ground-truth. The advan-
tage of this score is that it truly shows how accu-
rate is the detection of the model, rather than com-
puting the raw distance measure between the tar-
get and background. We measure the accuracy of
a tracker by computing the average detection score
for the entire video. We run each tracker 5 times and
report the median average score. Table 3 lists the
results for several publicly available benchmark se-
quences in comparison to other state-of-the-art track-
ing methods: MILTracker [3], FragTracker [1], and
AdaBoostTracker [13]. In 5 out of 8 videos we out-
perform other methods, while for the remaining 3
videos we are the second best method. Our unop-
timized C++ implementation of OMCLP algorithm
reaches near real-time performance (around 10 to 15
frames/second on average).

Sequence OMCLP MIL [3] Frag [1] OAB [13]
Sylvester 0.67 0.60 0 .62 0.520
Face 1 0 .80 0.60 0.88 0.48
Face 2 0.78 0 .68 0.44 0 .68
Girl 0.64 0.53 0 .60 0.40
Tiger 1 0.53 0 .52 0.19 0.23
Tiger 2 0 .44 0.53 0.15 0.28
David 0.61 0 .57 0.43 0.26
Coke 0 .24 0.33 0.08 0.17

Table 3. Average detection score: bold-face shows the best
method, while italic-font indicates the second best.

4. Conclusions

In this paper, we presented the Online Multi-
Class LPBoost algorithm, which is able to build in
an online setting a robust multi-class boosting model
with maximizing the soft-margin of the data samples.
We solved the optimization problem by performing
a variant of online convex programming technique,
based on primal-dual gradient descent-ascent strat-
egy. Based on an extensive set of experiments, we
showed that our method outperforms the state-of-the-
art on a wide range of applications, such as pattern
recognition tasks, object category recognition tasks,
and object tracking. Our C++ implementation is
freely available online.

Our optimization technique was built on the well-
known online convex programming technique which
has efficient regret bounds. Therefore, we expect that
similar bounds hold for our method as well. We will



present these results in an extended version of this
paper.
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