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Abstract

We present a human action recognition system suitable
for very short sequences. In particular, we estimate His-
tograms of Oriented Gradients (HOGs) for the current
frame as well as the corresponding dense flow field esti-
mated from two frames. The thus obtained descriptors are
then efficiently represented by the coefficients of a Non-
negative Matrix Factorization (NMF). To further speed up
the overall process, we apply an efficient cascaded Linear
Discriminant Analysis (CLDA) classifier. In the experimen-
tal results we show the benefits of the proposed approach
on standard benchmark datasets as well as on more chal-
lenging and realistic videos. In addition, since other state-
of-the-art methods apply weighting between different cues,
we provide a detailed analysis of the importance of weight-
ing for action recognition and show that weighting is not
necessarily required for the given task.

1. Introduction
Human action recognition, in general, is of wide inter-

est in the computer vision community. Typical applications
include visual surveillance, sports analysis, or human com-
puter interaction. Even the general topic is quite compre-
hensive (e.g., different time scales, single person or multiple
persons, etc.) the main scientific interest is in single person
action recognition. In particular, the task can be defined
as recognizing basic actions such as walking, waving, etc.
performed by a single person (also on cluttered and moving
backgrounds).

The simplest way for action recognition is to apply a
single-frame classification method. For instance, Mikola-
jczyk and Uemura [22] trained a vocabulary forest on fea-
ture points and their associated motion vectors to describe
a specific action. However, most classification methods
are based on the analysis of a temporal window around a
specific frame. Bobick and Davis [4] used motion history
images to describe an action by accumulating human sil-
houettes over time. Blank et al. [3] created 3-dimensional

space-time shapes to describe actions. Weinland and Boyer
[31] used a set of discriminative static key-pose exemplars
without any spatial order. Thurau and Hlaváč [30] used
pose-primitives based on HOGs and represented actions as
histograms of such pose-primitives. Even though these ap-
proaches show that shape or silhouettes over time are well
discriminating features for action recognition, the use of
temporal windows or even of a whole sequence implies that
actions are recognized with a specific delay.

Using additional spatio-temporal information such as
optical flow is an obvious extension. Efros et al. [8] intro-
duced a motion descriptor based on spatio-temporal optical
flow measurements. An interest point detector in spatio-
temporal domain based on the idea of Harris point detec-
tor was proposed by Laptev and Lindeberg [17]. They de-
scribed the detected volumes with several methods such as
histograms of gradients or optical flow as well as PCA pro-
jections. Dollár et al. [6] proposed an interest point detec-
tor searching in space-time volumes for regions with sud-
den or periodic changes. In addition, optical flow was used
as a descriptor for the 3D region of interest. Niebles et al.
[23] used a constellation model of bag-of-features contain-
ing spatial and spatio-temporal [6] interest points.

Recent results in the cognitive sciences have led to bi-
ologically inspired vision systems for action recognition.
Jhuang et al. [14] proposed an approach using a hierarchy
of spatio-temporal features with increasing complexity. In-
put data is processed by units sensitive to motion-directions
and the responses are pooled locally and fed into a higher
level. But only recognition results for whole sequences have
been reported. The required computational effort is approx-
imately 2 minutes for a sequence consisting of 50 frames.

A more sophisticated approach was proposed by
Schindler and van Gool [27]. Additionally to motion they
use appearance information, where both, appearance and
motion, are processed in similar pipelines using scale and
orientation filters. In both pipelines the filter responses are
max-pooled and compared to templates. The final action
classification is done by using multiple one-vs-all SVMs.



However, all of these methods can not be applied for
practical applications. They either rely on complex models,
which can not be evaluated in real-time, or they are based
on long-time observations. Thus, if short actions should be
recognized in real-time, such methods can not be applied.
Since there is a need for robust human action recognition
on a short frame level, e.g., in crowded scenes, rapid move-
ments in sport, etc., the goal of this paper is to introduce
an efficient action recognition system that allows for action
recognition on short-frame basis.

For our action recognition system we apply two infor-
mation cues in parallel: appearance and motion. Thus, even
if the appearance is very similar, additionally analyzing the
corresponding motion information can help to discriminate
between two actions; and vice versa. In particular, given a
frame at time t, we compute a dense optical-flow field from
frame t−1 and frame t. Thus, only two frames are required
to estimate a model at time t (i.e., even using two frames we
have a single frame representation).

Similar to [30] and [27] we use HOG descriptors and
NMF to estimate a robust and compact representation. In
addition, due to a GPU-based flow estimation and an effi-
cient data structure for HOGs our system is real-time ca-
pable. Moreover, in contrast to our previous work [21] in-
stead of using an SVM-based classification we use a much
simpler cascaded Linear Discriminant Analysis (CLDA) ap-
proach, which dramatically reduces the computational ef-
fort. However, in the experiments we show that even using
this simplified classification approach state-of-the-art re-
sults can be obtained on typical publicly available datasets.
Moreover, we demonstrate the approach on human action
detection in crowded scenes, where an efficient and fast ac-
tion recognition system is beneficial or even required.

Previous approaches using an appearance and a motion
cue (e.g., [27, 13] applied a general weighting between the
two cues. However, it is obvious that for different actions
different weights might be meaningful. Thus, in addition,
we give a detailed analysis of the importance of weighting
based on Multi Kernel Learning (MKL) [25]. In fact, this
analysis shows that increasing the size of the representa-
tion such that sufficient recognition results can be obtained
decreases the importance of weighting. Hence, in our ap-
proach we do not apply any weighting while still getting
state-of-the-art results!

The paper is organized as follows. First, in Section 2 we
introduce and discuss our new efficient action recognition
system. Next, in Section 3 we analyze the importance of
using weights for action recognition using different cures
and show why, in contrast to existing methods, we do not
use any weighting. In Section 4 we show experimental re-
sults of the proposed method on two publicly available ac-
tion recognition datasets. Finally, in Section 5 we give a
summary and a conclusion of the work!

2. Action Recognition System

In this section, we introduce our action recognition sys-
tem, which is illustrated in Figure 1. In particular, we com-
bine appearance and motion information to enable a frame-
wise action analysis. To represent the appearance, we use
histograms of oriented gradients (HOGs) [5]. To estimate
the motion information, a dense optical flow field is com-
puted between consecutive frames, which is then also rep-
resented by HOGs.

Following the ideas presented in [1, 30] we apply NMF
to reduce the dimensionality of the extracted histograms.
Hence, the actions are described in every frame by NMF
coefficient vectors for appearance and flow, respectively.
Moreover, this provides a more suitable and more effective
representation.

Finally, the frame-wise classification is performed using
a cascaded LDA classifier. In particular, we learn two stages
of LDA classifiers, which are applied consecutively. Most
decisions can already be made in the first stage. Thus, only
the ambiguous samples have to be forwarded to the second
stage. In addition, the computationally very cheap linear
classifier allows a very efficient and fast classification.

Cascaded 
LDA

Figure 1. Overview of the proposed approach: Two representations
are estimated in parallel, for appearance and flow. Both are de-
scribed by HOGs and represented by NMF coefficients, which are
combined to single feature vector. These vectors are then learned
using a cascaded LDA classifier.



2.1. Appearance Features

Given an image It ∈ Rm×n at time step t. To compute
the gradient components gx(x, y) and gy(x, y) for every po-
sition (x, y), the image is filtered by 1-dimensional masks
[−1, 0, 1] in x and y direction [5]. The magnitude m(x, y)
and the signed orientation ΘS(x, y) are computed by

m(x, y) =
√
gx(x, y)2 + gy(x, y)2 (1)

ΘS(x, y) = tan−1 (gy(x, y)/gx(x, y)) . (2)

To make the orientation insensitive to the order of inten-
sity changes, only unsigned orientations ΘU are used for
appearance:

ΘU (x, y) =
{

ΘS(x, y) + π θS(x, y) < 0
ΘS(x, y) otherwise .

(3)

To create the HOG descriptor, the patch is divided into non-
overlapping 10 × 10 cells. For each cell, the orientations
are quantized into 9 bins and weighted by their magnitude.
Groups of 2×2 cells are combined in so called overlapping
blocks and the histogram of each cell is normalized using
the L2-norm of the block. The final descriptor is built by
concatenation of all normalized blocks. The parameters for
cell-size, block-size, and the number of bins may be differ-
ent in literature.

2.2. Motion Features

In addition to appearance we use optical flow. Thus, for
frame t the appearance features are computed from frame
t, and the flow features are extracted from frames t and t−
1. In particular, to estimate the optical dense flow field,
we apply the method proposed in [32], which is publicly
available: OFLib1. In fact, the GPU-based implementation
allows a real-time computation of features.

Given It, It−1 ∈ Rm×n, the optical flow describes the
shift from frame t − 1 to t with the disparity Dt ∈ Rm×n,
where dx(x, y) and dy(x, y) denote the disparity compo-
nents in x and y direction at location (x, y). Similar to the
appearance features, orientation and magnitude are com-
puted and represented with HOG descriptors. In contrast
to appearance, we use signed orientation ΘS to capture
different motion direction for same poses. The orienta-
tion is quantized into 8 bins only, while we keep the same
cell/block combination as described above; but also other
partitions might be applied.

2.3. Feature Representation

To represent the features extracted as described in Sec-
tion 2.1 and Section 2.2 we use Non-negative Matrix Factor-

1http://gpu4vision.icg.tugraz.at/

ization [18]. In contrast to other sub-space methods, Non-
negative Matrix Factorization (NMF) does not allow nega-
tive entries, neither in the basis nor in the encoding. This
makes it highly suitable for sparse encoding. If the under-
lying data can be described by distinctive local information
(such as the HOGs of appearance and flow) the representa-
tion is typically very sparse and can thus be described by
NMF very well.

Formally, NMF can be described as follows. Given a
non-negative matrix V ∈ IRm×n the goal of NMF is to find
non-negative factors W ∈ IRm×r and H ∈ IRr×n that ap-
proximate the original data:

V ≈WH . (4)

Since there is no closed-form solution, both matrices, W
and H, have to be estimated in an iterative way. Therefore,
we consider the optimization problem

min ||V−WH||2
s.t. W,H > 0 , (5)

where ||.||2 denotes the squared Euclidean distance. To
solve the optimization problem Eq. (5) various numerical
methods have be proposed (e.g.,[12, 11, 18]). In particu-
lar, in this work we apply the iterative multiplicative update
rules proposed in [18].

2.4. Classification

For classification the NMF-coefficients obtained for ap-
pearance and motion are concatenated to a final feature vec-
tor. Typically, for that purpose multi-class SVM classifiers
are applied, which implicitly depend on one-vs-all SVMs.
Moreover, it was shown by [30, 1] that for action recogni-
tion tasks the NMF representations of the HOG coefficients
are well linearly separable. Thus, even a simpler and thus
computationally more efficient linear classifier might be ap-
plied for the classification. Thus, to overcome typical multi-
class SVM problems (i.e., calibration problem) and to have
an efficient classifier, instead of a multi-class SVM we use
a cascaded LDA classifier.

2.4.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a linear inherently
multi-class classification method. It was originally intro-
duced by Fisher for two classes [9], but was later extended
for multiple classes by Rao [26]. In particular, LDA com-
putes a classification function

g(x) = W>x , (6)

where W is selected as the linear projection that maximizes
the Fisher-criterion

Wopt = arg max
W

∣∣W>SBW
∣∣∣∣W>SW W
∣∣ , (7)



where SW and SB are the within-class and the between-
class scatter matrices (see, e.g., [7]). The corresponding
optimal solution for this optimization problem is given by
the solution of the generalized eigenproblem

SBw = λSW w (8)

or directly by computing the eigenvectors for S−1
W SB . Since

the rank of S−1
w Sb is bounded by the rank of Sb there are

c−1 non-zero eigenvalues resulting in a (c−1)-dimensional
subspace L = W>X ∈ IR(c−1)×n, which preserves the
most discriminant information. For classification of a new
sample x ∈ IRm the class label ω ∈ {1, . . . , c} is assigned
according to the result of a nearest neighbor classification.
For that purpose, the Euclidean distances d of the projected
sample g(x) and the class centers νi = W>µi in the LDA
space are compared:

ω = arg min
1≤i≤c

d (g(x),νi) . (9)

2.4.2 Cascaded LDA Classifier

Loog et al. [19] showed that for more than two classes max-
imizing the Fisher criterion in Eq. (7) provides only a sub-
optimal solution! In particular, optimizing the Fisher crite-
rion provides an optimal solution with respect to the Bayes
error for two classes, but this can not be generalized for mul-
tiple classes. Nevertheless LDA can be applied for many
practical multi-class problems. This was also confirmed by
theoretical considerations by Martı́nez and Zhu [20]. How-
ever, they showed that increasing the number of classes de-
creases the separability.

Thus, to further improve the classification performance,
we introduce a cascaded approach consisting of two stages.
For the first stage a projection matrix Wc is estimated which
contains all c classes. For a second stage, we estimate
smaller pairwise projection matrices Wij for the classes
i and j. In the recognition stage an unknown sample x
is projected onto Wc by Eq. (6) and is classified using
Eq. (9). If the class label ω is well-defined (i.e., ∀i 6= ω :
d (g(x),νω) << d (g(x),νi) the class label ω is assigned.
Otherwise, the sample x is projected onto Wij , where i and
j are the two best ranked classes, and the class label is fi-
nally assigned based on this local decision.

In this way ambiguous samples can be classified consid-
erable better than using only the global space Wc. How-
ever, as shown in the experiments, most of the samples can
be already classified in the first stage. Hence the overall
computational complexity is only slightly increased.

3. Influence of Weighted Classifiers
Previous action recognition methods applying different

cues such as motion and appearance (e.g., [27, 13]) also

explored the importance of weighting these different cues.
The results showed that selecting the weights in the range
0.4 − 0.6 provide the best results. Moreover, only a global
weighting was considered. However, considering different
actions different weights might be meaningful. For instance
for an action like “running” motion is more important then
for an action like “waving with one hand”. Thus, in the
following we give a detailed evaluation on the importance
and the influence of weighting for action recognition. For
that purpose, given specific actions, we apply Multi Ker-
nel Learning (MKL) to estimate the optimal weights for the
different information cues.

3.1. Multi Kernel Learning

Recently, Multiple Kernel Learning (MKL) [25, 16, 29]
has become a quite popular method to combine data from
multiple information sources. The main idea is to create a
weighted linear combination of the kernels obtained from
each information source. Moreover, in Rakotomamonjy et
al. [25] it was shown that by using multiple kernels instead
of one a more effective decision function can be obtained.
In particular, the kernel K(x,x′) can be considered a con-
vex combination of M basis kernels Kj(x,x′):

K(x,x′) =
M∑

j=1

djKj(x,x′), (10)

where dj ≥ 0 are the weights of the kernels Kj and∑M
j=1 dj = 1. Thus, the decision function g(x) of an SVM

with multiple kernels can be represented as

g(x) =
N∑

i=1

αiyiK(xi,x)− b

=
N∑

i=1

αiyi

M∑
j=1

djKj(xi,x′)− b,
(11)

where xi are the training samples and yi ∈ {−1,+1} are
the corresponding class labels. Hence, when training an
MKL model the goal is to learn both, the coefficients αi

and the weights dm, in parallel.

3.2. Weighted Results

In the following we analyze the importance of each in-
formation source for the classification task considering the
MKL weights, which were estimated for linear kernels us-
ing the MKL method introduced in [25]. In our case, having
only two cues, the convex combination of the basis kernels
in Eq. (10) can be simplified to

K(x,x′) = dmotKmot(x,x′) + dappKapp(x,x′) , (12)

where the subscripts mot and app indicate the motion and
the appearance components, respectively. The thus obtained



results obtained for the standard benchmark datasets de-
scribed in Section 4.1 for 10 and 100 NMF modes are il-
lustrated in Figure 2 and Figure 3, respectively.

(a) (b)
Figure 2. MKL weights using linear kernels for the Weizmann (a)
and the KTH (b) dataset for an NMF representation of 10 modes.

(a) (b)
Figure 3. MKL weights using linear kernels for the Weizmann (a)
and the KTH (b) dataset for an NMF representation of 100 modes.

These results clearly show that the different cues have
different importance for different data; especially, if the rep-
resentation size is quite small (see Figure 2). However, they
also show that increasing the representation size (such that
sufficient classification results can be obtained) the impor-
tance of weights is decreasing (see Figure 3). If the repre-
sentation size is further increased, all weights are reaching
approx. 0.5. Moreover, as can be seen from Figure 7 and
Figure 8, for those actions where the classifications “fail”
the weights are very similar and can thus not help to in-
crease the classification power! Thus, for our approach, we
do not use any weighting at all!

4. Experiments

To show the benefits of the proposed approach, we split
the experiments into two main parts. First, we evaluated
it on publicly available benchmark datasets (i.e., Weizmann
[3] and KTH [28] human action datasets), which are de-
scribed in Section 4.1. We show that even using a recog-
nition system based on short frame basis (i.e., we require
only two frames) competitive results can be obtained. In
addition, to show the computational efficiency, we give an
run-time analysis for our approach. Second, to demonstrate
the generality and the robustness of the approach, we ap-
plied it for more realistic scenarios (i.e., [15]).

4.1. Benchmark Datasets

4.1.1 Weizmann Data Set

The Weizmann human action dataset [3] is a publicly avail-
able2 dataset, that originally contained 81 low resolution
videos (180 × 144) of nine subjects performing nine dif-
ferent actions: running, jumping in place, bending, wav-
ing with one hand, jumping jack, jumping sideways, jump-
ing forward, walking, and waving with two hands. Subse-
quently a tenth action, jumping on one leg, was added [10].
Illustrative examples for each of these actions are shown in
Figure 4.

Figure 4. Examples from the Weizmann human action dataset.

4.1.2 KTH Data Set

The KTH human action dataset3, originally created by [28],
consists of 600 videos (160×120) with 25 persons perform-
ing six human action in four different scenarios: outdoors
s1, outdoors with scale variation s2, outdoors with different
clothes s3, and indoors s4. Illustrative examples for each of
these actions are shown in Figure 5.

Figure 5. Examples from the KTH action recognition dataset.

4.2. Efficient Linear Classifier

First of all, we want to demonstrate the benefits of us-
ing the cascaded LDA classifier (CLDA). For that purpose,
we run action recognition experiments for the Weizmann
database using different NMF representations and analyzed
the classification performance as well as the run-time.

From Figure 6 the advantages of using CLDA instead
of SVM for classification clearly can be seen. Figure 6(a)
shows that the LDA classifier provides worse classification
results compared to the SVM classifier. However, if the
number of NMF basis vectors is increased LDA reaches a
similar performance as SVM. In contrast, CLDA provides

2http://www.wisdom.weizmann.ac.il/ vision/SpaceTimeActions.html
3http://www.nada.kth.se/cvap/actions



(a)

(b)
Figure 6. CLDA vs. SVM for action classification: (a) classifica-
tion results and (b) run-time analysis.

“exactly the same” results as SVM; if the the number of ba-
sis vectors is further increased (i.e., greater than 150) CLDA
even slightly outperforms SVM! However, as can be seen
from Figure 6(b), there are huge differences concerning the
runtime for the classification. In fact, for a number of 250
modes, where all three methods yield a comparable classifi-
cation performance, the LDA classifications are much more
efficient (i.e., on a standard single core PC the classification
time for the whole Weizmann dataset can be reduced from
50s to 0.04s: speed up factor of approx. 1250)!

4.3. Classification results

Next, we demonstrate the proposed method for the Weiz-
mann and the KTH benchmark datasets. Similar to, e.g.,
[30, 27] all experiments were carried out using a leave-one-
out strategy (i.e., we used all individuals except one for
training and evaluated the learned model for the missing
one). In particular, the results for both datasets presented
here were obtained using an NMF representation of 250
modes. The final obtained results compared to other state-

of-the-art methods for the Weizmann dataset as well as the
corresponding confusion matrix for the 10-actions database
are given in Table 1 and in Figure 7, respectively.

method rec.-rate # frames
proposed * 97.0% 2
proposed 94.2% 2
Mauthner et al. [21] 91.3% 2

94.3% 6
Thurau & Hlaváč [30] 70.4% 1

94.4% all
Niebles et al. [23] 55.0% 1

72.8% all
Schindler & v. Gool * [27] 93.5% 2

96.6% 3
99.6% 10

Blank et al. [3] 99.6% all
Jhuang et al. [14] 98.9% all
Ali et al. [2] 89.7% all

Table 1. Recognition rates and number of required frames for dif-
ferent approaches reported for the Weizmann database. The results
marked by * are obtained on the older 9-action data set.

Figure 7. Confusion matrix for the Weizmann dataset.

From the results presented in Table 1 it can be seen that
the proposed method yields competitive results and that it
outperforms other approaches working on short frame ba-
sis4. In particular, using only 2 frames for the 9-actions
and the 10-actions databases recognition results of 97% and
94% are obtained, respectively. Moreover, from the con-
fusion matrix in Figure 7 it can be seen that we get ex-
cellent results but that the overall performance is slightly
“degraded” since the actions “run” and “skip” are confused
very often. This results from the fact that for both actions

4The improvement compared to our previous work in [21] is also the
result of an improved NMF representation.



the appearance as well as the motion information are very
similar. However, when looking at the optimal weights
in Figure 3, it is clear that even using more sophisticated
weights can not help to solve this problem.

For the KTH dataset we run the experiments for s1, s3,
and s4 subsets. Since the s2 subset is mainly dealing with
different scales, which was not considered in this work, no
experiments were run for that dataset. The finally classifica-
tion results for the other datasets are summarized in Table 2.
The corresponding confusion matrix for dataset s1 for our
method is given in Figure 8.

dataset s1 s3 s4
rec.-rate 88.1% 84.1% 88.4%

Table 2. Recognition rates for three different subsets of the KTH
database.

Figure 8. Confusion matrix for the KTH-s1 dataset.

The overall performance compared to other state-of-the-
art methods are given in Table 3. Please note that these re-
sults, in general, can not directly be compared, since all au-
thors apply different data preparation (cropping of videos,
data set selection, scaling, noise suppression, etc.)! In par-
ticular, we run the experiments on the full sequences, did
no preprocessing, and used only a single scale. In fact, av-
eraged over the three used datasets we get a recognition rate
of 87%! Again from the confusion matrix in Figure 8 it can
be seen that only very similar actions are mixed up.

method rec.-rate # frames
proposed 86.9% 2
Niebles et al. [24] 81.5% all
Schindler & 88.0% 2
v. Gool [27] 90.9% 7

92.7% all
Dollár et al. [6] 81.2% all
Jhuang et al. [14] 91.7% all
Schüld et al. [28] 71.7% all

Table 3. Recognition rates and number of required frames for dif-
ferent approaches reported for the KTH database.

4.4. Human Action Detection

Finally, we tested our proposed method for human ac-
tion detection. We therefore choose the challenging dataset
collected by [15], which consists of approximately 20 min-
utes of video material (160×120), acquired using hand-held
cameras. It contains labeled humans performing events of
interest, e.g., pick-up and handwave as well as many pedes-
trians in the background.

We used the Weizmann dataset for training and grouped
the actions into three action sets for bending, walk-
ing/running, and waving/jumping-jack. All detection re-
sults are again achieved on a two frame basis. To handle
scale variations, a HOG pyramid with six different scales
has been used. Please note that we neither applied a global
camera motion compensation nor have we trained an addi-
tional background class. This leads to some false detection
of bending actions on textured background areas. Figure 9
shows eight detection examples for the three action sets and
their corresponding optical flow fields. Red points depicts
walking/running, green points bending and blue points wav-
ing/jumping detections5.

Figure 9. Examples for action detection. First and third column
shows detection results of bending (green), walking (red) and wav-
ing (blue) action. Corresponding optical flow fields are shown in
column two and four.

5. Conclusion

We presented an efficient action recognition sys-
tem based on a single-frame representation combining
appearance-based and motion-based (optical flow) descrip-
tion of the data. Since in the evaluation stage only two con-
secutive frames are required (for estimating the flow), the
method can also be applied for very short sequences. In

5Further results are given in the supplementary material.



particular, we propose to use HOG descriptors for both, ap-
pearance and motion. The thus obtained feature vectors are
represented by NMF coefficients and are concatenated to
learn action models using a cascaded LDA classifier. Since
we apply a GPU-based implementation for optical flow, an
efficient estimation of the HOGs, and a lightweight but very
effective classifier, the method is highly applicable for tasks
where quick and short actions have to be analyzed. The
experiments show that even using this short-time analysis
competitive results can be obtained on standard benchmark
datasets. However, from these results it can also be con-
cluded that similar to [27] by using longer sequences (which
was not the intention this paper) even better results can
be obtained. In addition, we analyzed the importance of
weighting for action recognition and showed that competi-
tive results can be obtained without weighting.
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[11] M. Heiler and C. Schnörr. Learning non-negative sparse im-
age codes by convex programming. In Proc. ICCV, 2005.

[12] P. O. Hoyer. Non-negative matrix factorization with sparse-
ness constraints. J. of Machine Learning Research, 5:1457–
1469, 2004.

[13] N. Ikizler, R. Cinbis, and P. Duygulu. Human action recog-
nition with line and flow histograms. In Proc. ICPR, 2008.

[14] H. Jhuang, T. Serre, L.Wolf, and T. Poggio. A biologically
inspired system for action recognition. In Proc. ICCV, 2007.

[15] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in
crowded videos. In Proc. ICCV, 2007.

[16] G. R. G. Lanckriet, T. d. Bie, N. Cristianini, M. I. Jordan,
and W. S. Noble. A statistical framework for genomic data
fusion. Bioinformatics, 20(16):2626–2635, 2004.

[17] I. Laptev and T. Lindeberg. Local descriptors for spatio-
temporal recognition. In Proc. ICCV, 2003.

[18] D. D. Lee and H. S. Seung. Learning the parts of objects
by non-negative matrix factorization. Nature, 401:788–791,
1999.

[19] M. Loog, R. P. W. Duin, and R. Haeb-Umbach. Multiclass
linear dimension reduction by weighted pairwise fisher cri-
teria. IEEE Trans. PAMI, 23(7):762 – 766, 2001.

[20] A. M. Martı́nez and M. Zhu. Where are linear feature extrac-
tion methods applicable? IEEE Trans. PAMI, 27(12):1934 –
1944, 2005.

[21] T. Mauthner, P. M. Roth, and H. Bischof. Instant action
recognition. In Proc. SCIA, 2009.

[22] K. Mikolajczyk and H. Uemura. Action recognition with
motion-appearance vocabulary forest. In Proc. CVPR, 2008.

[23] J. C. Niebles and L. Fei-Fei. A hierarchical model of shape
and appearance for human action classification. In Proc.
CVPR, 2007.

[24] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learn-
ing human action categories using spatio-temporal words. In
Proc. BMVC, 2006.

[25] A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet.
SimpleMKL. J. of Machine Learning Research, 9:2491–
2521, 2008.

[26] C. R. Rao. The utilization of multiple measurements in prob-
lems of biological classification. Journal of the Royal Statis-
tical Society – Series B, 10(2):159–203, 1948.

[27] K. Schindler and L. van Gool. Action snippets: How many
frames does human action recognition require? In Proc.
CVPR, 2008.
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