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Abstract

In this survey we give a short introduction into appearance-based object recog-
nition. In general, one distinguishes between two different strategies, namely
local and global approaches. Local approaches search for salient regions char-
acterized by e.g. corners, edges, or entropy. In a later stage, these regions
are characterized by a proper descriptor. For object recognition purposes the
thus obtained local representations of test images are compared to the repre-
sentations of previously learned training images. In contrast to that, global
approaches model the information of a whole image. In this report we give
an overview of well known and widely used region of interest detectors and
descriptors (i.e, local approaches) as well as of the most important subspace
methods (i.e., global approaches). Note, that the discussion is reduced to meth-
ods, that use only the gray-value information of an image.

Keywords: Difference of Gaussian (DoG), Gradient Location-Orientation
Histogram (GLOH), Harris corner detector, Hessian matrix detector, Inde-
pendent Component Analysis (ICA), Linear Discriminant Analysis (LDA),
Locally Binary Patterns (LBP), local descriptors, local detectors, Maximally
Stable Extremal Regions (MSER), Non-negative Matrix Factorization (NMF),
Principal Component Analysis (PCA), Scale Invariant Feature Transform
(SIFT), shape context, spin images, steerable filters, subspace methods.
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1 Introduction

When computing a classifier for object recognition one faces two main philoso-
phies: generative and discriminative models. Formally, the two categories can
be described as follows: Given an input x and and a label y then a generative
classifier learns a model of the joint probability p(x, y) and classifies using
p(y|x), which is obtained by using Bayes’ rule. In contrast, a discriminative
classifier models the posterior p(y|x) directly from the data or learns a map
from input to labels: y = f(x).

Generative models such as principal component analysis (PCA) [57], inde-
pendent component analysis (ICA) [53] or non-negative matrix factorization
(NMF) [73] try to find a suitable representation of the original data (by
approximating the original data by keeping as much information as possi-
ble). In contrast, discriminant classifiers such as linear discriminant analysis
(LDA) [26], support vector machines (SVM) [133], or boosting [33] where de-
signed for classification tasks. Given the training data and the corresponding
labels the goal is to find optimal decision boundaries. Thus, to classify an un-
known sample using a discriminative model a label is assigned directly based
on the estimated decision boundary. In contrast, for a generative model the
likelihood of the sample is estimated and the sample is assigned the most
likely class.

In this report we focus on generative methods, i.e., the goal is to repre-
sent the image data in a suitable way. Therefore, objects can be described
by different cues. These include model-based approaches (e.g., [11,12,124]),
shape-based approaches (e.g., ), and appearance-based models. Model-based
approaches try to represent (approximate) the object as a collection of three
dimensional, geometrical primitives (boxes, spheres, cones, cylinders, gen-
eralized cylinders, surface of revolution) whereas shape-based methods rep-
resent an object by its shape/contour. In contrast, for appearance-based
models only the appearance is used, which is usually captured by different
two-dimensional views of the object-of-interest. Based on the applied fea-
tures these methods can be sub-divided into two main classes, i.e., local and
global approaches.

A local feature is a property of an image (object) located on a single point
or small region. It is a single piece of information describing a rather sim-
ple, but ideally distinctive property of the object’s projection to the camera
(image of the object). Examples for local features of an object are, e.g., the
color, (mean) gradient or (mean) gray value of a pixel or small region. For
object recognition tasks the local feature should be invariant to illumination
changes, noise, scale changes and changes in viewing direction, but, in gen-
eral, this cannot be reached due to the simpleness of the features itself. Thus,
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several features of a single point or distinguished region in various forms are
combined and a more complex description of the image usually referred to
as descriptor is obtained. A distinguished region is a connected part of an
image showing a significant and interesting image property. It is usually
determined by the application of an region of interest detector to the image.

In contrast, global features try to cover the information content of the
whole image or patch, i.e., all pixels are regarded. This varies from simple
statistical measures (e.g., mean values or histograms of features) to more so-
phisticated dimensionality reduction techniques, i.e., subspace methods, such
as principle component analysis (PCA) [57], independent component analy-
sis (ICA) [53], or non negative matrix factorization (NMF) [73]. The main
idea of all of these methods is to project the original data onto a subspace,
that represents the data optimally according to a predefined criterion: min-
imized variance (PCA), independency of the data (ICA), or non-negative,
i.e., additive, components (NMF).

Since the whole data is represented global methods allow to reconstruct
the original image and thus provide, in contrast to local approaches, robust-
ness to some extend. Contrary, due to the local representation local methods
can cope with partly occluded objects considerable considerably better.

Most of the methods discussed in this report are available in the Image
Description ToolBox (IDTB)1, that was developed at the Inst. for Computer
Graphics and Vision in 2004–2007. The corresponding sections are marked
with a star ⋆.

The report is organized as follows: First, in Section 2 we give an overview
of local region of interest detectors. Next, in section 3 we summarize com-
mon and widely used local region of interest descriptors. In Section 4, we
discuss subspace methods, which can be considered global object recogni-
tion approaches. Finally, in the Appendix we summarize the necessary basic
mathematics such as elementary statistics and Singular Value Decomposi-
tion.

2 Region of Interest Detectors

As most of the local appearance based object recognition systems work on
distinguished regions in the image, it is of great importance to find such
regions in a highly repetitive manner. If a region detector returns only an
exact position within the image we also refer to it as interest point detector
(we can treat a point as a special case of a region). Ideal region detectors
deliver additionally shape (scale) and orientation of a region of interest. The

1http://www.icg.tugraz.at/research/ComputerVision/IDTB data, December 13, 2007
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currently most popular distinguished region detectors can be roughly divided
into three broad categories:

• corner based detectors,

• region based detectors, and

• other approaches.

Corner based detectors locate points of interest and regions which contain
a lot of image structure (e.g., edges), but they are not suited for uniform
regions and regions with smooth transitions. Region based detectors regard
local blobs of uniform brightness as the most salient aspects of an image and
are therefore more suited for the latter. Other approaches for example take
into account the entropy of a region (Entropy Based Salient Regions) or try
to imitate the human’s way of visual attention (e.g., [54]).

In the following the most popular algorithms, which give sufficient per-
formance results as was shown in , e.g., [31, 88–91,110], are listed:

• Harris- or Hessian point based detectors (Harris, Harris-Laplace, Hessian-
Laplace) [27,43,86],

• Difference of Gaussian Points (DoG) detector [81],

• Harris- or Hessian affine invariant region detectors (Harris-Affine) [87],

• Maximally Stable Extremal Regions (MSER) [82],

• Entropy Based Salient Region detector (EBSR) [60–63], and

• Intensity Based Regions and Edge Based Regions (IBR, EBR) [128–
130].

2.1 Harris Corner-based Detectors⋆

The most popular region of interest detector is the corner based one of Harris
and Stephens [43]. It is based on the second moment matrix

µ =

[
I2x(p) IxIy(p)
IxIy(p) I2y (p)

]
=

[
A B
B C

]
(1)

and responds to corner-like features. Ix and Iy denote the first derivatives of
the image intensity I at position p in the x and y direction respectively. The
corner response or cornerness measure c is efficiently calculated by avoiding
the eigenvalue decomposition of the second moment matrix by
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c = Det(µ)− k × Tr(µ)2 = (AC −B2)− k × (A+ C)2. (2)

This is followed by a non-maximum suppression step and a Harris-corner
is identified by a high positive response of the cornerness function c. The
Harris-point detector delivers a large number of interest-points with sufficient
repeatability as shown , e.g., by Schmid et al. [110]. The main advantage
of this detector is the speed of calculation. A disadvantage is the fact, that
the detector determines only the spatial locations of the interest points. No
region of interest properties such as scale or orientation are determined for
the consecutive descriptor calculation. The detector shows only rotational
invariance properties.

2.2 Hessian Matrix-based Detectors⋆

Hessian matrix detectors are based on a similar idea like Harris-detectors.
They are in principle based on the Hessian-matrix defined in (3) and give
strong responses on blobs and ridges because of the second derivatives used [91]:

Mh =

[
Ixx(p) Ixy(p)
Ixy(p) Iyy(p)

]
, (3)

where Ixx and Iyy are the second derivatives of the image intensity I at
position p in the x and y direction respectively and Ixy is the mixed derivative
in x and y direction of the image.

The selection criterion for Hessian-points is based on the determinant
of the Hessian-matrix after non-maximum suppression. The Hessian-matrix
based detectors detect blob-like structures similar to the Laplacian operator
and shows also only rotational invariance properties.

2.3 Scale Adaptations of Harris and Hessian Detectors⋆

The idea of selecting a characteristic scale disburdens the above mentioned
detectors from the lack in scale invariance. The properties of the scale space
have been intensely studied by Lindeberg in [78]. Based on his work on scale
space blobs the local extremum of the scale normalized Laplacian S (see
(4)) is used as a scale selection criterion by different methods (e.g., [86]).
Consequently in the literature they are often referred as Harris-Laplace or
Hessian-Laplace detectors. The standard deviation of Gaussian smoothing
for scale space generation (often also termed local scale) is denoted by s:

S = s2 × |(Ixx(p) + Iyy(p))| (4)
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The Harris- and Hessian-Laplace detectors show the same properties as
their plain pendants, but, additionally, they have scale invariance properties.

2.4 Difference of Gaussian (DoG) Detector⋆

A similar idea is used by David Lowe in his Difference of Gaussian detector
(DoG) [80,81]. Instead of the scale normalized Laplacian he uses an approx-
imation of the Laplacian, namely the Difference of Gaussian function D, by
calculating differences of Gaussian blurred images at several, adjacent local
scales sn and sn+1:

D(p, sn) = (G(p, sn)−G(p, sn+1)) ∗ I(p) (5)

G(p, sn) = G((x, y), sn) =
1

2πs2
e−(x2+y2)/2s2 (6)

In (5) G is the variable-scaled Gaussian of scale s (see also (6)), I is the
image intensity at x, y-position p and, ∗ denotes the convolution operation.
The Difference of Gaussians can be calculated in a pyramid much faster then
the Laplacian scale space and show comparable results. The principle for
scale selection is nearly the same as for the Harris-Laplace detector. An ac-
curate key point localization procedure, elimination of edge responses by a
Hessian-matrix based analysis and orientation assignment with orientation
histograms completes the carefully designed detector algorithm. The Differ-
ence of Gaussians (DoG) detector shows similar behavior like the Hessian-
detector and therefore detects blob-like structures. The main advantage of
the DoG detector is the obtained scale invariance property. Obviously this
is penalized by the necessary effort in time.

2.5 Affine Adaptations of Harris and Hessian Detectors⋆

Recently, Mikolajczyk and Schmid [87] proposed an extension of the scale
adapted Harris and Hessian detector to obtain invariance against affine trans-
formed images. Scientific literature refers to them asHarris-Affine orHessian-
Affine detectors depending on the initialization points used. The affine adap-
tation is based on the shape estimation properties of the second moment
matrix. The simultaneous optimization of all three affine parameters spatial
point location, scale, and shape is too complex to be practically useful. Thus,
an iterative approximation of these parameters is suggested.

Shape adaptation is based on the assumption, that the local neighborhood
of each interest point x in an image is an affine transformed, isotropic patch
around a normalized interest point x∗. By estimating the affine parameters
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represented by the transformation matrix U, it is possible to transform the
local neighborhood of an interest point x back to a normalized, isotropic
structure x∗:

x∗ = Ux . (7)

The obtained affine invariant region of interest (Harris-Affine or Hessian-
Affine region) is represented by the local, anisotropic structure normalized
into the isotropic patch. Usually, the estimated shape is pictured by an
ellipse, where the ratio of the main axes is proportional to the ratio between
the eigenvalues of the transformation matrix.

As Baumberg has shown in [6] that the anisotropic local image structure
can be estimated by the inverse matrix square root of the second moment
matrix µ calculated from the isotropic structure (see (1)), (7) changes to

x∗ = µ− 1
2x. (8)

Mikolajczyk and Schmid [87] consequently use the concatenation of iter-
atively optimized second moment matrices µ(k) in step k of the algorithm, to
successively refine the initially unknown transformation matrix U(0) towards
an optimal solution:

U(k) =
∏
k

µ(− 1
2
)(k)U(0) . (9)

In particular, their algorithm is initialized by a scale adapted Harris or
Hessian detector to provide an approximate point localization x(0) and initial
scale s(0). The actual iteration loop (round k) consists of the following four
main steps:

1. Normalization of the neighborhood around x(k−1) in the image domain
by the transformation matrix U(k−1) and scale s(k−1).

2. Determination of the actual characteristic scale s∗(k) in the normalized
patch.

3. Update of the spatial point location x∗(k) and estimation of the actual
second moment matrix µ(k) in the normalized patch window.

4. Calculation of the transformation matrix U according to (9).

The update of the scale in step 2 is necessary, because it is a well known
problem, that in the case of affine transformations the scale changes are in
general not the same in all directions. Thus, the scale detected in the image
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domain can be very different from that in the normalized image. As the
affine normalization of a point neighborhood also slightly changes the local
spatial maxima of the Harris measure, an update and back-transformation of
the location x∗ to the location in the original image domain x is also essential
(step 3).

The termination criterion for the iteration loop is determined by reaching
a perfect isotropic structure in the normalized patch. The measure for the
amount of isotropy is estimated by the ratio Q between the two eigenvalues
(λmax, λmin) of the µ-matrix. It is exactly 1 for a perfect isotropic structure,
but in practise, the authors allow for a small error ϵ:

Q =
λmax

λmin

≤ (1 + ϵ) . (10)

Nevertheless, the main disadvantage of affine adaptation algorithms is the
increase in runtime due to their iterative nature, but as shown in , e.g., [91]
the performance of those shape-adapted algorithms is really excellent.

2.6 Maximally Stable Extremal Regions⋆

Maximally Stable Extremal Regions [82] is a watershed-like algorithm based
on intensity value - connected component analysis of an appropriately thresh-
olded image. The obtained regions are of arbitrary shape and they are de-
fined by all the border pixels enclosing a region, where all the intensity val-
ues within the region are consistently lower or higher with respect to the
surrounding.

The algorithmic principle can be easily understood in terms of thresh-
olding. Consider all possible binary thresholdings of a gray-level image. All
the pixels with an intensity below the threshold are set to 0 (black), while
all the other pixels are set to 1 (white). If we imagine a movie showing all
the binary images with increasing thresholds, we would initially see a to-
tally white image. As the threshold gets higher, black pixels and regions
corresponding to local intensity minima will appear and grow continuously.
Sometimes certain regions do not change their shape even for set of different
consecutive thresholds. These are the Maximally Stable Extremal Regions
detected by the algorithm. In a later stage, the regions may merge and form
larger clusters, which can also show stability for certain thresholds. Thus,
it is possible that the obtained MSERs are sometimes nested. A second set
of regions could be obtained by inverting the intensity of the source image
and following the same process. The algorithm can be implemented very ef-
ficiently with respect to runtime. For more details about the implementation
we refer to the original publication in [82].
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The main advantage of this detector is the fact, that the obtained regions
are robust against continuous (an thus even projective) transformations and
even non-linear, but monotonic photometric changes. In the case a single
interest point is needed, it is usual to calculate the center of gravity and take
this as an anchor point , e.g., for obtaining reliable point correspondences. In
contrast to the detectors mentioned before, the number of regions detected is
rather small, but the repeatability outperforms the other detectors in most
cases [91]. Furthermore, we mention that it is possible to define MSERs also
on even multi-dimensional images, if the pixel values show an ordering.

2.7 Entropy Based Salient Region detector⋆

Kadir and Brady developed a detector based on the grey value entropy

HF (s, x) = −
∫

p(f, s,x)× log
2
(p(f, s,x))df (11)

of a circular region in the image [61,62] in order to estimate the visual saliency
of a region.

The probability density function for the entropy p is estimated by the
grey value histogram values (f , the features) of the patch for a given scale s
and location x. The characteristic scale S is select by the local maximum of
the entropy function (HF ) by

S =

{
s| δ
δs

HF (s,x) = 0,
δ2

δs2
HF (s,x) ≺ 0

}
. (12)

In order to avoid self similarity of obtained regions, the entropy function
is weighted by a self similarity factor WF (s,x), which could be estimated
by the absolute difference of the probability density function for neighboring
scales:

WF (s,x) = s

∫ ∣∣∣∣ δδsp(f, s,x)
∣∣∣∣df . (13)

The final saliency measure YF for the feature f of the region F , at scale
S and location x is then given by Equation (14

YF (S,x) = HF (S,x)×WF (S,x), (14)

and all regions above a certain threshold are selected. The detector shows
scale and rotational invariance properties. Recently, an affine invariant ex-
tension of this algorithm has been proposed [63]. It is based on an exhaustive
search through all elliptical deformations of the patch under investigation.

8



It turns out that the main disadvantage of the algorithm is its long runtime
- especially for the affine invariant implementation [91].

2.8 Edge Based and Intensity Based Regions

Tuytelaars et al. [128–130] proposed two completely different types of detec-
tors. The first one, the so called edge based regions detector (EBR), exploits
the behavior of edges around an interest point. Special photometric quanti-
ties (I1, I2) are calculated and work as a stopping criterion following along
the edges. In principle, the location of the interest point itself (p) and the
edge positions obtained by the stopping criterion (p1,p2) define an affine
frame (see Figure 1(a)). For further details on the implementation see [128]
or [130]. The main disadvantage of this detector is the significant runtime.
In particular it is faster than the EBSR detector but takes more time than
all the other detectors mentioned so far.

(a) (b)

Figure 1: Principle of edge base regions (a) and intensity based regions (b)
taken from [130].

The second one, the so called intensity based region detector, explores
the image around an intensity extremal point in the image. In principle, a
special function of image intensities f = f(I, t) is evaluated along radially
symmetric rays emanating from the intensity extreme detected on multiple
scales. Similar to IBRs, a stopping criterion is defined, if this function goes
through a local maximum. All the stopping points are linked together to
form an arbitrary shape, which is in fact often replaced by an ellipse (see
Figure 1(b)). The runtime performance of the detector is much better than
for EBRs, but worse than the others mentioned above [91].
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2.9 Summary of Common Properties

Table 1 summarizes the assigned category and invariance properties of the
detectors described in this section. Furthermore we give a individual rating
with respect to the detectors runtime, their repeatability and the number of
detected points and regions (number of detections). Note, that those rat-
ings are based on our own experiences with the original binaries provided
by the authors (MSER, DoG, EBSR) and the vast collection of implementa-
tions provided by the Robotics Research Group at the University of Oxford2.
Also the results from extensive evaluations studies in [31, 91] are taken into
account.

detector assigned invariance runtime repeat- number of
category ability detections

Harris corner none very short high high

Hessian region none very short high high

Harris-Lap.. corner scale medium high medium

Hessian-Lap. region scale medium high medium

DoG region scale short high medium

Harris-Affine corner affine medium high medium

Hessian-Affine region affine medium high medium

MSER region projective short high low

EBSR other scale very long low low

EBR corner affine very long medium medium

IBR region projective long medium low

Table 1: Summary of the detectors category, invariance properties and in-
dividual ratings due to runtime, repeatability and the number of obtained
regions.

2http://www.robots.ox.ac.uk/∼vgg/research/affine/detectors.html, August 17, 2007
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3 Region of Interest Descriptors

In this section we give a short overview about the most important state of
the art region of interest descriptors. Feature descriptors describe the region
or its local neighborhood already identified by the detectors by certain in-
variance properties. Invariance means, that the descriptors should be robust
against various image variations such as affine distortions, scale changes, il-
lumination changes or compression artifacts (e.g., JPEG). It is obvious, that
the descriptors performance strongly depends on the power of the region de-
tectors. Wrong detections of the region’s location or shape will dramatically
change the appearance of the descriptor. Nevertheless, robustness against
such (rather small) location or shape detection errors is also an important
property of efficient region descriptors.

One of the simplest descriptors is a vector of pixel intensities in the region
of interest. In this case, cross-correlation of the vectors can be used to cal-
culate a similarity measure for comparing regions. An important problem is
the high dimensionality of this descriptor for matching and recognition tasks
(dimensionality = number of points taken into account). The computational
effort is very high and thus, like for most of the other descriptors, it is very
important, to reduce the dimensionality of the descriptor by keeping their
discriminative power.

Similar to the suggestion of Mikolajczyk in [90], all the above mentioned
descriptors can roughly be divided into the following three main categories:

• distribution based descriptors,

• filter based descriptors and

• other methods.

The following descriptors will be discussed more detailed:

• SIFT [17,80,81],

• PCA-SIFT (gradient PCA) [65],

• gradient location-orientation histograms (GLOH), sometimes also called
extended SIFT [90],

• Spin Images [72],

• shape context [9],

• Locally Binary Patterns [97],

11



• differential-invariants [68,109],

• complex and steerable filters [6, 20, 32,107], and

• moment-invariants [92,129,132].

3.1 Distribution-based descriptors

Distribution-based methods represent certain region properties by (some-
times multi-dimensional) histograms. Very often geometric properties (e.g.,
location, distance) of interest points in the region (corners, edges) and local
orientation information (gradients) are used.

3.1.1 SIFT descriptor⋆

One of the most popular descriptors is the one developed by David Lowe
[80, 81]. Lowe developed a carefully designed combination of detector and
descriptor with excellent performance as shown in , e.g., [88]. The detec-
tor/descriptor combination is called scale invariant feature transform (SIFT)
and consists of a scale invariant region detector - called difference of Gaussian
(DoG) detector (Section 2.4) - and a proper descriptor often referred to as
SIFT-key.

The DoG-point detector determines highly repetitive interest points at
an estimated scale. To get a rotation invariant descriptor, the main orienta-
tion of the region is obtained by a 36 bin orientation histogram of gradient
orientations within a Gaussian weighted circular window. Note, that the par-
ticular gradient magnitudes m and local orientations ϕ for each pixel I(x, y)
in the image are calculated by simple pixel differences according to

m =
√
(I(x+ 1, y)− I(x− 1, y))2 + (I(x, y + 1) + I(x, y − 1))2

ϕ = tan−1((I(x, y + 1) + I(x, y − 1))/(I(x+ 1, y)− I(x− 1, y)) .
(15)

The size of the respective window is well defined by the scale estimated
from the DoG point detector. It is possible, that there is more than one
main orientation present within the circular window. In this case, several
descriptors on the same spatial location - but with different orientations -
are created.

For the descriptor all the weighted gradients are normalized to the main
orientation of the circular region. The circular region around the key-point
is divided into 4 × 4 not overlapping patches and the histogram gradient
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orientations within these patches are calculated. Histogram smoothing is
done in order to avoid sudden changes of orientation and the bin size is
reduced to 8 bins in order to limit the descriptor’s size. This results into
a 4 × 4 × 8 = 128 dimensional feature vector for each key-point. Figure 2
illustrates this procedure for a 2× 2 window.

Figure 2: Illustration of the SIFT descriptor calculation partially taken from
[81]. Note, that only a 32 dimensional histogram obtained from a 2× 2 grid
is depicted for a better facility of illustration.

Finally, the feature vector is normalized to unit length and thresholded
in order to reduce the effects of linear and non-linear illumination changes.

Note that the scale invariant properties of the descriptor are based on
the scale invariant detection behavior of the DoG-point detector. Rotational
invariance is achieved by the main orientation assignment of the region of
interest. The descriptor is not affine invariant itself. Nevertheless it is possi-
ble to calculate SIFT on other type of detectors, so that it can inherit scale
or even affine invariance from them (e.g., Harris-Laplace, MSER or Harris-
Affine detector).

3.1.2 PCA-SIFT or Gradient PCA

Ke and Sukthankar [65] modified the DoG/SIFT-key approach by reduc-
ing the dimensionality of the descriptor. Instead of gradient histograms on
DoG-points, the authors applied Principal Component Analysis (PCA) (see
Section 4.2) to the scale-normalized gradient patches obtained by the DoG
detector. In principle they follow Lowe’s approach for key-point detection
They extract a 41 × 41 patch at the given scale centered on a key-point,
but instead of a histogram they describe the patch of local gradient orienta-
tions with a PCA representation of the most significant eigenvectors (that is,
the eigenvectors corresponding to the highest eigenvalues). In practice, it was
shown, that the first 20 eigenvectors are sufficient for a proper representation
of the patch. The necessary eigenspace can be computed off-line (e.g., Ke and
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Sukthankar used a collection of 21.000 images). In contrast to SIFT-keys, the
dimensionality of the descriptor can be reduced by a factor about 8, which
is the main advantage of this approach. Evaluations of matching examples
show that PCA-SIFT performs slightly worse than standard SIFT-keys [90].

3.1.3 Gradient Location-Orientation Histogram (GLOH)

Gradient location-orientation histograms are an extension of SIFT-keys to
obtain higher robustness and distinctiveness. Instead of dividing the patch
around the key-points into a 4 × 4 regular grid, Mikolajczyk and Schmid
divided the patch into a radial and angular grid [90], in particular 3 radial
and 8 angular sub-patches leading to 17 location patches (see Figure 3). The
idea is similar to that used for shape context (see Section 3.1.5). Gradient
orientations of those patches are quantized to 16 bin histograms, which in
fact results in a 272 dimensional descriptor. This high dimensional descriptor
is reduced by applying PCA and the 128 eigenvectors corresponding to the
128 largest eigenvalues are taken for description.

Figure 3: GLOH patch scheme

3.1.4 Spin Images⋆

Spin images have been introduced originally by Johnson and Hebert in a 3-D
shape-based object recognition system for simultaneous recognition of multi-
ple objects in cluttered scenes [56]. Lazebnik et al. [72] recently adapted this
descriptors to 2D-images and used them for texture matching applications.

In particular they used an intensity domain spin image, which is a 2
dimensional histogram of intensity values i and their distance from the center
of the region d - the spin image histogram descriptor (see Figure 4). Every
row of the 2 dimensional descriptor represents the histogram of the grey
values in an annulus distance d from the center.

Finally a smoothing of the histogram is done and a normalization step
achieves affine illumination invariance. Usually a quantization of the intensity
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(a) (b)

Figure 4: Sample patch (a) and corresponding spin image (b) taken from [72].

Figure 5: Histogram bins used for shape context.

histogram in 10 bins and 5 different radial slices is done thus resulting in a 50
dimensional descriptor [90]. The descriptor is invariant to in-plane rotations.

3.1.5 Shape Context

Shape context descriptors have been introduced by Belongie et al. [9] in
2002. They use the distribution of relative point positions and corresponding
orientations collected in a histogram as descriptor. The primary points are
internal or external contour points (edge points) of the investigated object or
region. The contour points can be detected by any edge detector, e.g., Canny-
edge detector [18], and are regularly sampled over the whole shape curve. A
full shape representation can be obtained by taking into account all relative
positions between two primary points and their pairwise joint orientations. It
is obvious that the dimensionality of such a descriptor heavily increases with
the size of the region. To reduce the dimensionality a coarse histogram of
the relative shape sample points coordinates is computed - the shape context.
The bins of the histogram are uniform in a log− polar2 space (see Figure 5)
which makes the descriptor more sensitive to the positions nearby the sample
points.

Experiments have shown, that 5 bins for radius log(r) and 12 bins for the
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angle Θ lead to good results with respect to the descriptor’s dimensionality
(60). Optional weighting the point contribution to the histogram with the
gradient magnitude has shown to yield improved results [90].

3.1.6 Locally Binary Patterns

Locally binary patterns (LBP) are a very simple texture descriptor approach
initially proposed by Ojala et al. [97]. They have been used in a lot of
applications (e.g., [2, 44, 123, 139]) and are based on a very simple binary
coding of thresholded intensity values.

In their simplest form they work on a 3× 3 pixel neighborhood (p1...p8)
and use the intensity value of the central point I(p0) as reference for the
threshold T (see Figure 6(a)).

(a) (b) (c) (d)

Figure 6: (a) Pixel neighborhood points and (b) their weights W for the
simplest version of locally binary patterns. Some examples for extended
neighborhoods: (c) r = 1.5, N = 12 and (d) r = 2.0, N = 16

.

The neighborhood pixels pi for i = 1...8 are then signed (S) according to

S(p0, pi) =

{
1, [I(pi)− I(p0)] >= 0
0, [I(pi)− I(p0)] < 0

}
(16)

and form a locally binary pattern descriptor value LBP (p0) by summing
up the signs S, which are weighted by a power of 2 (weight W (pi)) (see
Figure 6(b)).Usually the LBP values of a region are furthermore combined
in a LBP-histogram to form a distinctive region descriptor:

LBP (p0) =
8∑

i=1

W (pi)S(p0,pi) =
8∑

i=1

2(i−1)S(p0,pi) . (17)

The definition of the basic LBP approach can be easily extended to in-
clude all circular neighborhoods with any number of pixels [98] by bi-linear
interpolation of the pixel intensity. Figure 6(c) and Figure 6(d) show some
examples for such an extended neighborhood (r = 1.5/2.0 and N = 12/16).
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Locally Binary Patterns are invariant to monotonic gray value trans-
formations but they are not inherently rotational invariant. Nevertheless
this can be achieved by rotating the neighboring points clockwise so many
times, that a maximal number of most significant weight times sign products
(W × S) is zero [98].

Partial scale invariance of the descriptors can be reached in combination
with scale invariant detectors. Some preliminary unpublished work [120] in
our group has shown promising results in an object recognition task.

3.2 Filter-based Descriptors

3.2.1 Differential-Invariants⋆

Properties of local derivatives (local jets) are well investigated (e.g., [68]) and
can be combined to sets of differential operators in order to obtain rotational
invariance. Such a set is called differential invariant descriptor and has been
used in different applications (e.g., [109]). One of the big disadvantages
of differential invariants is, that they are only rotational invariant. Thus,
the detector has to provide sufficient information if invariance against affine
distortions is required.

Equation (19) shows an example for such a set of differential invariants
(S3) calculated up to the third order. Note that the components are written
using the Einstein or Indicial notation and ϵ is the antisymmetric epsilon
tensor (ϵ12 = −ϵ21 = 1 and ϵ11 = −ϵ22 = 0). The indices i, j, k are the
corresponding derivatives of the image L in the two possible image dimensions
(x, y). For example

LiLijLj = LxLxxLx + LxLxyLy + LyLyxLx + LyLyyLy . (18)

where, e.g., Lxy = (Lx)y is the derivative in y-direction of the image deriv-
ative in x-direction (Lx). The stable calculation is often obtained by using
Gaussian derivatives:

S3 =



L
LiLi

LiLijLj

Lii

LijLij

ϵij (LjklLiLkLl − LjkkLiLlLl)
LiijLjLkLk − LijkLiLjLl

−ϵijLjklLiLkLl

LijkLiLjLk


(19)
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3.2.2 Steerable and Complex Filters⋆

Steerability depicts the fact, that it is possible to develop a linear combina-
tion of some basis-filters, which yield the same result, as the oriented filter
rotated to a certain angle. For example, Freeman and Adelson [32] devel-
oped such steerable filters of different types (derivatives, quadrature filters
etc.). A set of steerable filters can be used to obtain a rotational invariant
region descriptor.

Complex filters is an umbrella term used for all filter types with complex
valued coefficients. In this context, all filters working in the frequency domain
(e.g., Fourier - transformation) are also called complex filters.

A typical example for the usage of complex filters is the approach from
Baumberg [6]. In particular, he used a variant of the Fourier-Mellin trans-
formation to obtain rotational invariant filters. A set of complex valued
coefficients (uX

n,m, see (20)) is calculated and a normalization is done divid-
ing the complex coefficients by a unit length complex number proportional
to uX

0,k:

uX
n,m =

∫
dn

drn
Gσ(r) e

imθ JX(r, θ) r dr dθ (20)

JX(r, θ) = IX(r cos θ + x0, r sin θ + y0) . (21)

The polar coordinates (r, θ) are defined with respect to the image patch
center located at (x0, y0) and Gσ(r) is a Gaussian with standard deviation
σ. IX is the intensity of the corresponding color component X.

Another prominent complex filter approach has been introduced by Schaf-
falitzky and Zisserman [107]. They apply a bank of linear filters derived from
the family

Km,n(x, y) = (x+ iy)m(x− iy)nGσ(x, y) , (22)

where Gσ(x, y) is a Gaussian with standard deviation σ. K0,0 is the
average intensity of the region and the diagonal filters holding the property
m−n < const are orthogonal. The diagonal filters are ortho-normalized and
their absolute values are taken as invariant features of the image patch.

As an example for the use of complex, steerable filters we mention the
approach presented by Carneiro and Jepson [20]. They use a complex rep-
resentation A(ρ, ϕ) of steerable quadrature pair filters (g, h) from [32] and
tuned them to a specific orientation (θ) and scale (σ):
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g(x, σ, θ) = G2(σ, θ) ∗ I(x)
h(x, σ, θ) = H2(σ, θ) ∗ I(x)

A(ρ, ϕ) = ρ(x, σ, θ)eiϕ(x,σ,θ) = g(x, σ, θ) + ih(x, σ, θ) .
(23)

In particular, the feature vector Fn,r,p(x) of an interest point consist of a
certain number of filter responses n calculated at the interest point location
x, and on equally spaced circle points of radius r around them (p partitions).
The direction of the first circle point is given by the main orientation of the
center pixel.

3.3 Other Methods

3.3.1 Cross-Correlation

Cross-correlation is a very simple method based on statistical estimation of
the similarities between image intensities or color components around an
interest point. The real descriptor is only the linearized vector of pixel inten-
sities or individual color components in a certain window around a detected
interest point.

The matching for such simple region descriptors is done by calculating
the cross-correlation between pairs of descriptors. The similarity score sa,b
between the respective pixel intensities Ia, Ia in the local window a or b
around an interest point is given by

sa,b =

∑N
i=1 [(Ia(i)− µa)(Ib(i)− µb)]√∑N

i=1 (Ia(i)− µa)
2
√∑N

i=1 (Ib(i)− µb)
2
. (24)

The descriptor’s dimensionality is the number of pixels N in the region
the descriptor is calculated from. Note, the size of the region of interest
is usually determined by the detector itself. If this is not the case (e.g.,
for Harris-Points) an exhaustive search over a lots of varying interest point
neighborhoods is necessary.

The biggest disadvantage of cross-correlation is its high computational
effort, especially, if an exhaustive search is required. Furthermore it is obvious
that a simple vector of image intensities shows no invariance to any image
transformation. Invariance properties can only be achieved by normalization
of the patches based on the invariance properties of the region detector itself.

3.3.2 Moment Invariants⋆

Generalized intensity and color moments have been introduced by Van Gool
in 1996 [132] to use the intensity (see (25)) or multi-spectral (see (26)) nature
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of image data for image patch description:

Mu
pq =

∫ ∫
Ω

xpyq [I(x, y)]u dxdy (25)

Mabc
pq =

∫ ∫
Ω

xpyq [R(x, y)]a [G(x, y)]b [B(x, y)]c dxdy . (26)

The moments implicitly characterize the intensity (I), shape or color
distribution (R,G,B are the intensities of individual color components) for
a region Ω and can be efficiently computed up to a certain order (p+ q) and
degree (u respectively a+b+c). xp and yp are powers of the respective image
coordinates in the patch. Combinations of such generalized moments are
shown to be invariant to geometric and photometric changes (see ,e.g., [92]).
Combined with powerful, affine invariant regions based on corners and edges
(see, e.g., [129]) they form a very powerful detector-descriptor combination.

For completeness we mention that Mikolajczyk and Schmid [90] use gra-
dient moments in their extensive evaluation study about various descriptors.
The gradient moments are calculated by

Mu
pq =

∫ ∫
Ω

xpyq [Id(x, y)]
u dxdy , (27)

where Id(x, y) is the image gradient in the direction of d at the location
(x, y) in the image patch.

3.4 Summary of Common Properties

In Table 2 we summarize a few common properties of the descriptors men-
tioned in this section. Besides the assignment to one of our selected categories
(dist = distribution based, filter = filter based approach) we consider the ro-
tational invariance property, mention the descriptors dimensionality and give
an individual rating with respect to the descriptors performance.

Among the most popular types of invariance against geometrical distor-
tions (rotation, scale change, affine distortion) we considered only the ro-
tational invariance in our summary, because invariance against geometrical
distortions is the task of the precedent detector. It should provide a ro-
tational, scale or affine normalized patch the descriptor is calculated from.
Nevertheless, as the most common scale adaptation and affine normalization
techniques (see Section 2.3 and 2.5) provide a normalized patch defined up to
an arbitrary rotation, the descriptors invariance against rotation is however
crucial.
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descriptor assigned rotational dimensionality performance
category invariance

SIFT distrib. no high (128) good

PCA-SIFT distrib. no low (20) good [36]

GLOH distrib. no high (128) good

Spin images distrib. yes medium (50) medium

Shape context distrib. no1) medium (60) good [36]

LBP distrib. no1) very high (256) - 4)

Differential Inv. filter yes low (9) bad [8]

Steerable Filters filter yes low medium [8]

Complex Filters filter yes low3) (15) bad

Cross correlation other no very high2) (N) medium [81]5)

Color moments other yes low (18) - 4)

Intensity moments other yes low - 4)

Gradient moments other yes low (20) medium

Table 2: Summary of the descriptors category, rotational invariance property,
dimensionality of the descriptors and an individual performance rating based
on the investigations in [88, 90]. Legend: 1) in the proposed form, 2) N is
the number of samples in the patch, 3) implementation similar to [107], 4) no
comparable results, 5) unstable results.

The descriptors dimensionality is very important, because the dimen-
sionality of the descriptor heavily influences the complexity of the matching
process (runtime) and the memory requirements for storing the descriptors.
We divide the descriptors into three main categories with respect to the di-
mensionality (low, medium, high) and furthermore denote the dimensionality
of the original implementation by the authors in parentheses. Nevertheless
we mention, that for most of the descriptors the dimensionality can be con-
trolled by certain parameterizations (e.g., for PCA-SIFT it is possible to
select an arbitrary number of significant dimensions with respect to the de-
sired complexity).

The individual performance ratings are based on the evaluation work of
Mikolajczyk and Schmid [88,90]. In general, an appraisal of various descrip-
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tors is much more difficult than the personal review we did for the detec-
tor approaches. This is, because the descriptors can not be evaluated on
their own, it is only possible to compare certain detector-descriptor com-
binations. Thus it is difficult to separate the individual influences and an
excellent performing descriptor may show worse results in combination with
an inappropriate, poor performing detector. The authors in [90] tackled that
problem and did an extensive evaluation on different scene types and various
detector-descriptor combinations. Thus, we refer to their results and rate
the descriptors with our individual performance rankings (good, medium,
bad). Please note that Mikolajczyk and Schmid did their evaluations on
re-implementations of the original descriptors with occasionally differing di-
mensionality. We denote them in squared brackets behind our rating.

4 Subspace Methods

4.1 Introduction

In this section we discuss global appearance-based methods for object recog-
nition. In fact, the discussion is reduced to subspace methods. The main
idea for all of these methods is to project the original input images onto a
suitable lower dimensional subspace, that represents the data best for a spe-
cific task. By selecting different optimization criteria for the projected data
different methods can be derived.

4.2 Principal Component Analysis

Principal Component Analysis (PCA) [57] also known as Karhunen-Loève
transformation (KLT) 3 [64,79] is a well known and widely used technique in
statistics. It was first introduced by Pearson [100] and was independently re-
discovered by Hotelling [48]. The main idea is to reduce the dimensionality
of data while retaining as much information as possible. This is assured by
a projection that maximizes the variance but minimizes the mean squared
reconstruction error at the same time.

Due to its properties PCA can be considered a prototype for subspace
methods. Thus, in the following we give the derivation of PCA, discuss
the properties of the projection, and show how it can be applied for image
classification. More detailed discussions are given by [24,57,83,116].

3Most authors do not distinguish between PCA and KLT. In fact, it can be shown that
for mean normalized data both methods are identical [36]. As for most applications the
data is assumed to be mean normalized without loss of generality both terms may be used.
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4.2.1 Derivation of PCA

Pearson [100] defined PCA as the linear projection than minimizes the squared
distance between the original data points and their projections. Equiva-
lently, Hotelling considered PCA as an orthogonal projection that maximizes
the variance in the projected space. In addition, PCA can be viewed in a
probabilistic way [106, 125] or can be formulated in context of neural net-
works [24,96]. Hence, there are different ways to define PCA but, finally, all
approaches yield the same linear projection.

In the following we give the most common derivation based on maximizing
the variance in the projected space. Given n samples xj ∈ IRm and let
u ∈ IRm with

||u|| = uTu = 1 (28)

be an orthonormal projection direction. A sample xj is projected onto u by

aj = uTxj . (29)

The sample variance in the projected space can be estimated by

S2 =
1

n− 1

n∑
j=1

(aj − ā) , (30)

where ā is the sample mean in the projected space. From

x̄ =
1

n

n∑
j=1

xj (31)

we get

ā = uT x̄ . (32)

Thus, the sample variance in the projected space is given by

S2 =
1

n− 1

n∑
j=1

(aj − ā) =
1

n− 1

n∑
j=1

(
uTx− uT x̄

)
= uTCu , (33)

where

C ∈ IRm×m =
1

n− 1

n∑
j=1

(xj − x̄) (xj − x̄)T (34)
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is the sample covariance matrix of X = [x1, . . . ,xn] ∈ IRm×n.
Hence, to maximize the variance in the projected space, we can consider

the following optimization problem:

maxuTCu
s.t. uTu = 1 .

(35)

To compute the optimal solution for (35) we apply a Lagrange multiplier:

f(u, λ) = uTCu+ λ
(
1− uTu

)
. (36)

By partial deviation of (36) with respect to u

∂f(u, λ)

∂u
= 2Cu− 2λu = 0 (37)

we get

Cu = λu . (38)

Hence, the maximum for the Lagrange multiplier is obtained if λ is an
eigenvalue and u is an eigenvector ofC. A complete basis4 U = [u1, . . . ,un−1]
can be obtained by computing a full eigenvalue decomposition (EVD)

C = UΛUT . (39)

Alternatively, from (28) and (33) it can be seen that there is a strong re-
lationship between the optimization problem (35) and the Rayleigh quotient

R (u) =
uTCu

uTu
, (40)

which is maximized if u is an eigenvector of C. Moreover, if u is an eigen-
vector and λ is an eigenvalue of C we get

R (u) =
uTCu

uTu
=

uTλu

uTu
= λ . (41)

Each eigenvector u of C is projected onto its corresponding eigenvalue λ.
Hence, the variance described by the projection direction u is given by the
eigenvalue λ.

Other derivation based on the maximum variance criterion are given in,
e.g., [13, 57]. Contrary, equivalent derivations obtained by looking at the

4One dimension is lost due to the mean normalization. Hence, the complete basis
consists only of n− 1 basis vectors.
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mean squared error criterion are given, e.g., by Diamantaras and Kung [24] or
by Duda et al. [26]. While Diamantaras and Kung discuss the derivation from
a statistical view by estimating the expected reconstruction error, Duda et al.
give a derivation, that is similar to that in the original work of Pearson [100],
who was concerned to find lines and planes, that best fit to a given set of
data points. For a probabilistic view/derivation of PCA see [106,125].

4.2.2 Batch Computation of PCA⋆

For batch methods, in general, it is assumed that all training data is given
in advance. Thus, we have a fixed set of n observations xj ∈ IRm organized
in a matrix X = [x1, . . .xn] ∈ IRm×n. To estimate the PCA projection we
need to solve the eigenproblem for the (sample) covariance matrix C of X.
Therefore, we first have to estimate the sample mean

x̄ =
1

n

n∑
j=1

xj (42)

and the mean normalized data X̂ = {x̂1, . . . , x̂n}, where

x̂j = xj − x̄ . (43)

Then, the sample covariance matrix C ∈ IRm×m is calculated by

C =
1

n− 1
X̂X̂

T
. (44)

Solving the eigenproblem for C yields the eigenvectors uj and the cor-
responding eigenvalues λj sorted in decreasing order. The whole projection
basis (subspace) is given by

U = [u1, . . . ,un−1] ∈ IRm×n−1 . (45)

One degree of freedom is lost due to the mean normalization. Hence,
the dimension of U is reduced by one. As most information is captured
within the first eigenvectors corresponding to the greatest eigenvalues usually
only k < n− 1 eigenvectors are used for the projection. The algorithm is
summarized more formally in Algorithm 1.

4.2.3 Efficient Batch PCA⋆

The dimension of the covariance matrix directly depends on m, the num-
ber of rows of A, which may be quite large for practical applications (e.g.,
when the data vectors represent images). Thus, the method described above
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Algorithm 1 Batch PCA

Input: data matrix X
Output: sample mean vector x̄, basis of eigenvectors U, eigenvalues λj

1: Compute sample mean vector:

x̄ =
1

n

n∑
j=1

xj

2: Normalize input images:
x̂j = xj − x̄

X̂ = [x̂1, . . . , x̂n]
3: Compute covariance matrix:

C =
1

n− 1
X̂X̂

T

4: Compute eigenvectors uj and eigenvalues λj of C:
U = [u1, . . . ,un−1]

is not feasible for solving the eigenproblem for large matrices due to mem-
ory requirement and computational costs. But due to the properties of the
covariance matrix there exist more efficient methods to estimate the PCA
projection matrix (e.g., [94]). It is well known (see Appendix C.6), that for
any matrix A the matrix products AAT and ATA share the same non-zero
eigenvalues. Let u and λ be an eigenvector and an eigenvalue of ATA. Thus,
we have

ATAu = λu . (46)

By left multiplying both sides of (46) with A we get

AAT (Au) = λ (Au) . (47)

Hence, λ is also an eigenvalue of AAT ; the corresponding eigenvector is given
by Au. To further ensure that the eigenbasis has unique length the thus ob-
tained eigenvectors have to be scaled by the square root of the corresponding
eigenvalue.

Let

Ğ =
1

n− 1
X̂

T
X̂ (48)

or re-written

Ğ =
1√
n− 1

X̂
T 1√

n− 1
X̂ (49)
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be the scaled Gram matrix5 of X̂. Solving the eigenproblem for Ğ yields the
eigenvalues λ̆j and the eigenvectors ŭj. Hence, from (47) and (49) we get
that the eigenvalues λj and the eigenvectors uj of the covariance matrix C
are given by

λj = λ̆j

uj =
1√

n− 1
√
λj

X̂ŭj .
(50)

If X̂ has (much) more rows than columns, i.e., n < m, which is often the
case for practical applications, Ğ ∈ IRn×n is a much smaller matrix than C ∈
IRm×m. Thus, the estimation of the eigenvectors is computationally much
cheaper and we get a more efficient method. The thus obtained algorithm is
summarized more formally in Algorithm 2.

Algorithm 2 Efficient Batch PCA

Input: data matrix X
Output: sample mean vector x̄, basis of eigenvectors U, eigenvalues λj

1: Compute sample mean vector:

x̄ =
1

n

n∑
j=1

xj

2: Normalize input images:
x̂j = xj − x̄

X̂ = [x̂1, . . . , x̂n]
3: Compute Gram matrix:

Ğ =
1

n− 1
X̂

T
X̂

4: Compute eigenvectors ŭj and eigenvalues λ̆j of Ğ

5: Determine eigenvalues of C:
λj = λ̆j

6: Determine eigenvectors of C:

uj =
1√

n− 1
√

λj

X̂ŭj

U = [u1, . . . ,un−1]

5For the definition of the Gram matrix, its properties, and its relation to the covariance
matrix see Appendix Appendix A and Appendix C.6, respectively.
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4.2.4 PCA by Singular Value Decomposition⋆

For symmetric and positive semi-definite matrices Singular Value Decompo-
sition (SVD) and Eigenvalue Decomposition (EVD) become equivalent (see
Appendix C.6). As the covariance matrix is a positive and semi-definite
matrix SVD may be applied to compute the EVD. But still the matrix mul-

tiplications X̂X̂
T
or X̂

T
X̂ have to be performed, respectively. To even avoid

these matrix multiplications we can apply SVD directly on the mean nor-
malized data matrix X̂ to compute the eigenvectors ui ∈ IRm of the sample
covariance matrix C.

Consider the SVD6 of the mean normalized sample matrix X̂ ∈ IRm×n:

X̂ = UΣVT . (51)

Then, the SVD of X̂X̂
T
is given by

X̂X̂
T
= UΣVT V︸ ︷︷ ︸

Im×m

ΣTUT = UΣΣTUT . (52)

From (51) and (52) it is clear that the left singular vectors of X̂ and X̂X̂
T
are

identical. In addition, the left singular vectors of X̂X̂
T
are also the eigenvec-

tors of X̂X̂
T
and the squared singular values σ2

j of X̂ are the eigenvalues λj

of X̂X̂
T
. Hence, we can apply SVD on X̂ to estimate the eigenvalues and the

eigenvectors of X̂X̂
T
. The algorithm using this SVD approach to compute

the PCA projection matrix is summarized more formally in Algorithm 3.
For our application we use this implementation of PCA for two reasons:

(a) the computation of SVD is numerically often more stable than the com-
putation of the EVD and (b) since there exist several incremental extensions
of SVD this approach can simply be adapted for on-line learning.

4.2.5 Projection and Reconstruction

If the matrix U ∈ IRm×n−1 was calculated with any of the methods discussed
above it can be used to project data onto the lower dimensional subspace.
Thus, given an input vector x ∈ IRm the projection a ∈ IRn−1 is obtained by

a = UT x̂ , (53)

where x̂ = x− x̄ is the mean normalized input data. Hence, the j-th element
of the projected data a = [a1, . . . , an−1] is obtained by computing the inner
product of the mean normalized input vector x̂ and the j-th basis vector uj:

6A detailed discussion on SVD is given in Appendix Appendix C.
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Algorithm 3 SVD PCA

Input: data matrix X
Output: sample mean vector x̄, basis of eigenvectors U, eigenvalues λj

1: Compute sample mean vector:

x̄ =
1

n

n∑
j=1

xj

2: Normalize input images:
x̂j = xj − x̄

X̂ = [x̂1, . . . , x̂n]
3: Compute left singular vectors ŭj and singular values σj

4: Compute eigenvalues λj of C:

λj =
σ2
j

n−1

5: Compute eigenvectors uj C:
uj = ŭj

U = [u1, . . . ,un−1]

aj = uT
j x̂ =

⟨
uT
j , x̂

⟩
=

m∑
i=1

ui,jxi . (54)

Once the projection a was estimated the original data can be recon-
structed by

x = Ua+ x̄ =
n−1∑
j=1

ajuj + x̄ . (55)

As finally shown by (41) the variance of the j-th principal axis uj is
equal to the j-th eigenvalue λj. Thus, most information is covered within the
eigenvectors according to the largest eigenvalues. To illustrate this, Figure 7
shows a typical example of the accumulated energy (a) and the decreasing
size of the eigenvalues (b). The energy can be considered the fraction of
information, that is captured by approximating a representation by a smaller
number of vectors. Since this information is equivalent to the sum of the
corresponding eigenvalues the thus defined accumulated energy describes the
accuracy of the reconstruction.

Hence, it is clear, that usually only k, k < n, eigenvectors are needed to
represent a data vector x to a sufficient degree of accuracy:
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Figure 7: Most reconstructive information is captured by the larges eigen-
values: (a) accumulated energy (variance) and (b) decreasing eigenvalues.

x̃ = Uka+ x̄ =
k∑

j=1

ajuj + x̄ . (56)

A measurement for the quality of the reconstruction is the squared re-
construction error:

ϵ = ||x− x̃||2 =

∣∣∣∣∣
∣∣∣∣∣
n−1∑
j=1

ajuj + x̄−

(
k∑

j=1

ajuj + x̄

)∣∣∣∣∣
∣∣∣∣∣
2

=

=

∣∣∣∣∣
∣∣∣∣∣

n−1∑
j=k+1

ajuj

∣∣∣∣∣
∣∣∣∣∣
2

=
n−1∑

j=k+1

a2j .

(57)

Hence, the squared reconstruction error is equal to the squared coefficients
of the discarded eigenvectors. Since these are usually not known the expected
error can be described by the expected value of the discarded variance, which
is given by

E [ϵ] =
n−1∑

j=k+1

λj . (58)

4.2.6 PCA for Image Classification

PCA was introduced to Computer Vision by Kirby and Sirovich [66] and
became popular since Turk and Pentland [127] applied it for face recognition.
Therefor, images are considered to be high dimensional vectors and a given
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image I of size h× w is arranged as a vector x ∈ IRm, where m = hw. More
formally this was discussed by Murase and Nayar [95] in the field of object
recognition and pose estimation. From [95] it is clear that high dimensional
image data can be projected onto a subspace such that the data lies on a lower
dimensional manifold, which further reduces the computational complexity
for a classification task. Other approaches use PCA as a pre-processing
step to reduce the dimensionality first (e.g., [7, 53]) or use PCA to extract
features and to perform a different learning algorithm to compute a classifier
(e.g., [55]).

In the following, we consider PCA directly a method for image classifi-
cation. Given a set of n templates xj ∈ IRm, j = 1, . . . , n, representing the
object. Then, an unknown test sample y can be classified by simply tem-
plate matching. Therefor, the correlation between the test sample y and the
templates xj is analyzed:

ρ =
xT
j y

||xj|| ||y||
> θ . (59)

If the correlation is above some threshold θ for at least one template xj

a match is found. Assuming normalized images ||xj|| = ||y|| = 1 we get
||xj − y||2 = 2− 2xT

j y. Hence, we can apply a simpler criterion based on the
sum-of-squared differences:

||xj − y||2 < θ . (60)

Clearly, this is not feasible if n and m are quite large due to the expected
computational costs and the memory requirements. Thus, it would be desir-
able to have a lower dimensional representation of the data. In fact, PCA
provides such a lower dimensional approximation.

Assuming that a subspace Uk = [u1, . . . ,uk] and the sample mean x̄ were
estimated from the training samples xj. Let ŷ = y − x̄ and x̂j = xj − x̄
be the mean normalized unknown test sample and the mean normalized j-th
template and a = UT

k x̂j and b = UT
k ŷ be the corresponding projections onto

the subspace Uk. From (56) we get that ŷ and x̂j can be approximated by a
linear combination of the basis Uk. Since Uk is an orthonormal basis we get

||x̂j − ŷ||2 ≈

∣∣∣∣∣
∣∣∣∣∣

k∑
j=1

ajuj −
k∑

j=1

bjuj

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣

k∑
j=1

(aj − bj)uj

∣∣∣∣∣
∣∣∣∣∣
2

= ||a− b||2 .

(61)
Thus, it is clear that we can compute the matching on the projected PCA

subspace instead on the original image space:
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||a− b||2 < θ . (62)

Once we have obtained the projection b = [b1, . . . , bk] we can reconstruct
the image using (56) and determine the reconstruction error

ϵk = ||y− ỹ||2 . (63)

Alternatively, we can perform the classification by thresholding this error [75].
To illustrate this consider the following example. An object, a soft toy, was
learned form 125 different views. Examples of these views and the first five
eigenimages of the resulting representation are shown in Figure 8.
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Figure 8: PCA Learning: A lower-dimensional representation is obtained
from input images showing different views of the object.

The results for the recognition task (using only 10 eigenimages) are shown
in Figure 9 and Table 3, respectively. From Figure 9 it can be seen that the
reconstruction for the learned object is satisfactory while it completely fails
for the face. More formally, Table 3 shows that the mean squared and the
mean pixel reconstruction error differ by a factor of approximately 100 and
10, respectively. In addition, also considering the distance in the subspace
shows the lower-dimensional representation for the learned object is much
closer to the trained subspace.

(a) (b)

Figure 9: Test images and its reconstruction: (a) an object representing the
learned object class (soft toy); (b) an object not representing the learned
object class (face).
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mean squared error mean pixel error min. distance
devil 3.77e+005 4.99 32.65
face 2.12e+007 47.11 1629.11

Table 3: Mean squared error, mean pixel error and minimum distance to
subspace for the learned object class (devil) and an unknown object (face).

4.2.7 Robust PCA⋆

In general, when analyzing real-world data one is confronted with unreliable
data, e.g., errors in measurement or missing data. Hence, robust methods [42,
51] are needed. The same applies for visual learning (e.g., parts of the object
of interest are occluded or pixels are unreliable due to camera noise). When
addressing robustness in field of learning one has to distinguish between
robustness in the evaluation stage and robustness in the learning stage.

For the first case it is assumed that the samples in the learning stage are
undisturbed. Hence, in the evaluation stage unreliable data can be recon-
structed from the previously learned model (e.g., [14, 75, 104]). In contrast
robust learning, i.e., learning from unreliable data, is a more difficult prob-
lem, since there is no previous knowledge, that can be used to estimate
outliers. Several methods have been proposed to robustly extract the prin-
cipal axes in the presence of outliers [126,136]. Other approaches use robust
M-estimator [126] or are based on the EM formulation of PCA [106,117,125].

In the following, we will summarize the sub-sampling-based approach of
Leonardis and Bischof [75]. It was originally indented for the recognition
stage only, but as shown in Section 4.2.8 if a sufficient starting model is
available it can also be applied for incremental robust learning.

The main idea is that the coefficients a = [a1, . . . , ak] for a mean normal-
ized sample x̂ can be approximately estimated from a smaller subset of pixels
by solving an overdetermined linear system. If the subset does not contain
outliers this estimate is an accurate approximation for the true values. To
ensure robustness the coefficients are estimated in an iterative process. First,
a subset of pixels x̂⋆ is randomly selected and the coefficients a⋆ are computed
by solving an overdetermined system. Next, the images is reconstructed and
those pixels with the greatest reconstitution error are discarded. This steps
are iterated until a pre-defined number of remaining pixels is reached.

Since not all random initializations would produce good results several
different hypotheses are generated as described above. Finally, the best one
is chosen. The selection is done based on the reconstruction error of the
compatible points or more formally using the MDL principle [75].

To illustrate the benefits of robust object recognition consider the follow-

33



ing example. First, a PCA representation was learned from undisturbed im-
ages and then the reconstruction error7 for both, the standard and the robust
approach, was analyzed when the portion of noise (occlusion) is increased.
As can be seen in Figure 10 the reconstruction error is continuously growing
for the standard approach while the performance of the robust method stays
the same even for 25% occlusion.
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Figure 10: Robust PCA in evaluation stage: smaller reconstruction error
when applying the robust method for corrupted data.

4.2.8 Incremental PCA⋆

Not all input data may be given in advance (e.g., receiving data from a video
stream) and huge data sets can not be processed by the standard batch
methods due to memory constraints. To solve these problems different incre-
mental PCA approaches have been proposed that are based on incremental
SVD-updating (e.g., [16, 21, 40, 94]). Recently even robust and incremen-
tal [77, 118] approaches have been proposed. In contrast to batch methods
for incremental learning the current representation is updated whenever a

7The reconstruction error was computed from the undisturbed original images. Al-
ternatively, the distance between the learned eigenspace and the projected shape may be
used as measurement (which will yield similar curves).
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new data vector is available. In the following we discuss the incremental
PCA method, that was proposed in [118].

Assuming that an eigenspace was already built from n images, at step
n + 1 the current eigenspace can be updated in the following way: First,
the new image x is projected in the current eigenspace U(n) and the image
is reconstructed: x̃. The residual vector r = x − x̃ is orthogonal to the
current basis U(n). Thus, a new basis U′ is obtained by enlarging U(n)

with r. U′ represents the current images as well as the new sample. Next,
batch PCA is performed on the corresponding low-dimensional space A′ and
the eigenvectors U′′, the eigenvalues λ′′ and the mean µ′′ are obtained. To
update the subspace the coefficients are projected in the new basis A(n+1) =
U′′T (A′ − µ′′1) and the subspace is rotated: U(n+1) = U′U′′. Finally, the
mean µ(n+1) = µ(n) + U′µ′′ and the eigenvalues λ(n+1) = λ′′ are updated.
In each step the dimension of the subspace is increased by one. To preserve
the dimension of the subspace the least significant principal vector may be
discarded [41]. The method is summarized more detailed in Algorithm 4.

To obtain an initial model, the batch method may be applied to a smaller
set of training images. Alternatively, to have a fully incremental algorithm,
the eigenspace may be initialized using the first training image x: µ(1) = x,
U(1) = 0 and A(1) = 0.

To illustrate the benefits of the incremental approach we trained and
evaluated models using different PCA algorithms (batch, “iterated batch”8

and incremental) on a representative data set containing 85 images of size
320 × 240 pixels. Figure 11(a) shows, as expected, that the reconstruction
error is decreasing if the number of training images is increased. But, in
addition, Figure 11(a) reveals that the reconstruction error is similar for
both, the incremental and the ”iterated batch” method. Thus, there is only
a non-essential loss of accuracy when using the incremental approach. But as
can be seen in Figure 11(b) there are huge differences in the computational
costs9 for the different methods. In fact, compared to the “iterated batch” the
computational costs of the incremental method are only approximately 1/40!
The results for the whole training set containing 85 images are summarized
in Table 4.

This method can easily be extended in a robust manner, i.e., corrupted
input images may be used for incrementally updating the current model. To
achieve this, outliers in the current image are detected and replaced by more
confident values: First, an image is projected to the current eigenspace using

8A full batch PCA is applied on all currently available images whenever a new image
arises.

9The learning times were obtained by evaluating the training in MATLAB on a 3GHz
machine.
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Algorithm 4 Incremental PCA

Input: mean vector µ(n), eigenvectors U(n), coefficients A(n), input image x
Output: mean vector µ(n+1), eigenvectors U(n+1), coefficients A(n+1),

eigenvalues λ(n+1)

1: Project image x to current eigenspace:
a = U(n)T

(
x− µ(n)

)
2: Reconstruct image:

x̃ = U(n)a+ µ(n)

3: Compute residual vector:
r = x− x̃

4: Append r as new basis vector to U:

U′ =
(
U(n) r

||r||

)
5: Determine the coefficients in the new basis:

A′ =

(
A(n) a
0 ||r||

)
6: Perform PCA on A′ and obtain the mean µ′′, the eigenvectors U′′ and

the eigenvalues λ′′.
7: Project coefficients to new basis:

A(n+1) = U′′T (A′ − µ′′1)
8: Rotate subspace:

U(n+1) = U′U′′

9: Update mean:
µ(n+1) = µ(n) +U′µ′′

10: Update eigenvalues:
λ(n+1) = λ′′

the robust approach (see Section 4.2.7) and the image is reconstructed. Sec-
ond, outliers are detected by pixel-wise thresholding (based on the expected
reconstruction error) the original image and its robust reconstruction. Fi-
nally, the outlying pixel values are replaced by the robustly reconstructed
values.

The benefits of using this robust extension of the incremental approach
is illustrated in Figure 12. For this purpose we used learned a shape model
for a data set containing binary shapes of a bathing toy (i.e., an octopus).
First, we trained an initial model using only 15 clean shapes to get a con-
sistent starting model. Later on, the training is continued from corrupted
data, where we have randomly added black and white bars occluding 25%
of the image. By adding these shapes the non-robust model gets more and
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Figure 11: Incremental PCA approach: (a) incremental PCA performs simi-
lar as incremental batch PCA, (b) incremental PCA is computationally much
cheaper than incremental batch PCA.

method computation time
incremental PCA 4.72s

batch PCA 6.55s
iterated batch PCA 205.38s

Table 4: Performance evaluation.

more corrupted (see (Figure 12(c) for the first 5 eigenimages) while a sta-
ble model is estimated by using the robust approach (see Figure 12(a) for
the first 5 eigenimages). Examples of (robust) reconstructions are shown in
Figure 12(b) (robust eigenspace) and Figure 12(d) (non-robust eigenspace),
respectively.

4.3 Non-negative Matrix Factorization⋆

Non-negative matrix factorization (NMF) was originally proposed to model
physical and chemical processes [99,115]. Later it was introduced by Lee and
Seung [73] in Computer Vision for object representation. In contrast to PCA,
non-negative matrix factorization does not allow negative entries whether in
the basis nor in the encoding. As a result we obtain additive basis vectors
mostly representing local structures. Thus, if the underlying data can be
described by distinctive local information the representation may be sparse.

Formally, NMF can be described as follows. Given a non-negative matrix
(i.e., a matrix containing vectorized images) V ∈ IRm×n the goal of NMF is
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(a) (b)

(c) (d)

Figure 12: Robust incremental vs. plain incremental approach: (a)
eigenspace obtained by robust incremental learning from noisy data, (b) test
image (“over-segmented”) and its reconstruction from robust eigenspace, (c)
eigenspace obtained by incremental learning from noisy data, (d) test image
(“under-segmented”) and its reconstruction from non-robust eigenspace.

to find non-negative factors W ∈ IRn×r and H ∈ IRr×m, that approximate
the original data:

V ≈WH . (64)

As two factors have to be estimated there does not exist a closed-form
solution. Thus, both matrices, W andH, have to be estimated in an iterative
way. Therefore, we consider the optimization problem

min ||V−WH||2
s.t. W,H > 0 ,

(65)

where ||.||2 denotes the squared Euclidean Distance. The optimization prob-
lem (65) can be iteratively solved by the following update rules:

Ha,j ← Ha,j

[
WTV

]
a,j[

WTWH
]
a,j

Wi,a ←Wi,a

[
VHT

]
i,a[

WHHT
]
i,a

,

(66)

where [.] denote that the multiplications and divisions are performed element
by element. A more detailed derivation and description of the algorithm, also
applying different objective functions, is given in [74,134]10.

10MATLAB implementations for these different methods can be found at
http://journalclub.mit.edu/jclub/publication?com id=2;publication id=21 (March 28,
2007).
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To speed up the convergence and to ensure a global minimum (the opti-
mization problem is not convex neither for W nor for H) there were several
extensions proposed, e.g., [45, 50], that additionally consider sparsity con-
straints and re-formulate the problem to a convex optimization problem.

4.4 Independent Component Analysis⋆

Independent Component Analysis (ICA) was originally introduced by Hérault,
Jutten, and Ans [1, 46, 47] in the field of neurophysiology. But it became
widely known and popular method not until it was introduced in signal
processing for blind source separation, i.e., separation of mixed audio sig-
nals [22, 59]. This problem problem is often described by the task of identi-
fying a single speaker in a group of speakers (“cocktail-party problem”).

Thus, the goal is to express a set of n random variables x1, . . . , xn as a
linear combination of n statistically independent random variables sj:

xj = aj,1s1 + · · ·+ aj,nsn, for all j (67)

or written in matrix notation

x = As , (68)

where x = [x1, . . . , xn]
T , s = [s1, . . . , sn]

T , and A is the matrix containing
the coefficients ai,j. The goal of ICA is to estimate the original components
si or, equivalently, the coefficients ai,j. By definition, the random variables
si are mutually independent and the mixing matrix is invertible. Based on
this constraints the ICA problem can be formulated [19] as

u = Wx = WAs . (69)

To compute these projections/mixing matrices several objective function
were developed, that take into account the independence, e.g., based on
the kurtosis, negentropy or mutual information. But for practical computa-
tions only computationally efficient methods such as InfoMax11 [8] and Fast
ICA12 [52] should be applied. For a more detailed discussion on theory and
application of ICA see [53].

To apply ICA for object recognition (face recognition) Bartlett et al. [5,25]
proposed two architectures. For architecture I the images are considered to

11A MATLAB implementation can be found at:
ftp://ftp.cnl.salk.edu/pub/tony/sep96.public (March 29th, 2007)

12A MATLAB and C++ implementation can be found at:
http://www.cis.hut.fi/projects/ica/fastica/ (March 29th, 2007)
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be a linear mixture of statistically independent basis images. In contrast,
for architecture II the goal is to find statistically independent coefficients
representing the input data. Therefore, the input data has to be transposed.
For both architectures PCA is applied as a pre-processing step. In addition,
whitening (see, e.g., [34,52]) can be used to further reduce the computational
complexity.

4.5 Canonical Correlation Analysis⋆

Canonical Correlation Analysis (CCA) was first introduced by Hotelling [49].
The goal is to find pairs of directions, that yield the maximum correlation
between two random variables.

Formally, given two mean normalized random variables x̃ = x − x̄x and
ỹ = y−x̄y CCA is defined as the problem of finding a set of two basis vectors
wx and wy such that the correlation between the projections x = WT

xx and
y = WT

y y is maximized. These are obtained by maximizing the correlation
coefficient

ρ =
E [xy]√

E [x2] E [y2]
=

E
[
wT

xxy
Twy

]√
E [wT

xxx
twx] E

[
wT

y yy
Twy

] . (70)

For practical computation we can re-write (70) by directly using the
within-class covariance matrices Cxx and Cyy and the between-class covari-
ance Cxy:

ρ =
wT

xCxywy

wT
xCxxwxwT

yCyywy

. (71)

The maximum ρ with respect to wx and wy is the maximum canonical
correlation. The projections ontowx andwy, i.e., x and y are called canonical
factors. To efficiently estimate the optimal solution and thus to obtained the
canonical factors Borga [15] re-formulated the original optimization problem
such that the canonical factors can be estimated from the Rayleigh quotient.
A more efficient and numerical more stable solution was proposed by Melzer
et al. [84], who applied SVD decomposition on the input data. Detailed
discussions on derivation and calculation of CCA can be found in [15,83].

4.6 Linear Discriminant Analysis⋆

If the training set is labeled, this additional information can also be used
for subspace learning. To enable a more efficient classification the goal of
Linear Fisher Discriminant Analysis (LDA) [30] is to maximize the distance
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between cluster centers. More formally, let {x1, . . . ,xn} be n samples, where
each sample belongs to one of c classes {X1, . . . , Xc}. LDA computes a clas-
sification function g(x) = WTx, where W is selected as the linear projection
that minimizes within-class scatter

SB =
c∑

j=1

nj (x̄j − x̄) (x̄j − x̄)T (72)

whereas it maximizes the between-class scatter

SW =
c∑

j=1

∑
xk∈Xj

(xk − x̄j) (xk − x̄j)
T , (73)

where x̄ is the mean over all samples, x̄j is the mean over class j, and nj

is the number of samples in class j. In fact, this projection is obtained by
maximizing the Fisher-criterion

Wopt = argmax
W

∣∣WTSBW
∣∣∣∣WTSWW
∣∣ . (74)

The optimal solution for this optimization problem is given by the solution
of the generalized eigenproblem

SBw = λSWw (75)

or directly by computing the eigenvectors for S−1
W SB.

The rank of S−1
W SB is most c−1. Thus, for many practical application this

matrix is singular and the eigenproblem can not be solved. This is referred
as the small sample size problem. To overcome this problem several solutions
were proposed, e.g, [7,69,140]. Moreover, there are several extensions of the
standard approach such as robust classification [29], incremental LDA [131],
or 2D representations (see Section 4.7.2).

4.7 Extensions of Subspace Methods

4.7.1 Kernel Subspace Methods

All of the methods discussed in the previous sections are linear. But they
can easily be extended in a non-linear way. Therefor the input vectors are
first projected onto a high-dimensional space by a non-linear mapping and
then a linear methods is applied in this high dimensional space. For efficient
computation the kernel trick (see, e.g., [23]) can be applied. Given a kernel-
function
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k (x,y) = Φ (x)T Φ (y) (76)

and an algorithm, that can be formulated by using dot-products only in the
high dimensional space. Then, we can replace the dot-products in the high
dimensional space by kernel functions in the original lower-dimensional input
space, i.e., all operations can directly be performed in the input space. Thus,
for several linear subspace methods a kernel extension was proposed. These
include Kernel PCA [112], Kernel LDA [113], Kernel ICA [4], Kernel CCA
[84], and Kernel NMF [138]. More detailed discussions on kernel methods
can be found in [23,111,114].

4.7.2 2D Subspace Methods⋆

For subspace methods usually the input images are vectorized and saved as
one-dimensional vector in a matrix. As images, i.e., gray-value images, can
naturally be seen as a matrix, it is straight forward to extend existing meth-
ods from a vector-based representation to a matrix representation. Hence,
recently several authors proposed 2D methods for PCA (e.g., [70, 137]) and
LDA (e.g., [70, 76]), but the same ideas can also be applied for other sub-
space methods. As advantages the authors argue that due to the matrix
representation local structure information can be modeled in a more suitable
way. Moreover, especially if the number of samples is quite large for PCA the
computation of the covariance matrix is cheaper since the row-rank is much
smaller. For LDA for the same reason the small sample size problem does
not appear. But as a disadvantage, the encoding size, i.e., the representation
in the subspace, is enlarged.

4.7.3 Binary Subspace Methods⋆

Subspace methods can be used to model shape models, e.g., by Active Shape
Models [35], that are represented by binary data. It is clear that binary
data can not be represented well by a model, that was developed for gray-
value images. For instance, for PCA a Gaussian distribution of the data
is assumed. Thus, inspired by the ideas of probabilistic PCA [125] binary
PCA approaches were proposed [108, 141]. The main idea is to replace the
Gaussian distribution in the probabilistic approach by a Bernulli distribution,
that represents binary data more conveniently. Hence, a better model for
binary images is obtained. But, as a disadvantage, an iterative process has
to be run for both, the training and the evaluation.
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Appendix A Statistical Definitions

When working on (even simple) statistics one faces different definitions for the
same parameters and data describing matrices. The reason for this confusion
is that many authors do not distinguish between theoretic parameters defined
by the distribution and parameters, that were estimated from the data (see
Section Appendix B). Thus, in the following we give the exact definition of
the most important statistical parameters.

Mean

(a) Let X be a continuous random variable and fX be a probability density
function, then the mean or expected value of X is given by

µ = E[X] =

∫ ∞

−∞
xfX(x)dx . (77)

(b) Let X be a discrete random variable and X be a finite set, then the
expected value µ = E[X] is given by

µ = E[X] =
∑
xj∈X

xjP (X = xj) . (78)

Sample Mean

Given n observations x1, . . . , xn, then the sample mean as an estimate for
the true mean, the expected value, is estimated by

x̄ =
1

n

n∑
j=1

xj . (79)

Variance

Let X be a random variable, then the variance or the second central moment
of X is defined by

σ2 = Var[X] = E
[
(X − E[X])2

]
= E

[
X2
]
− E [X]2 = E

[
X2
]
− µ2 . (80)

Sample Variance
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Given n observations x1, . . . , xn and the sample mean x̄, then the sample
variance as an estimate for the true variance is estimated by

s2 =
1

n− 1

n∑
j=1

(xj − x̄)2 . (81)

If the true mean µ is known this estimate can be replaced by

s2 =
1

n

n∑
j=1

(xj − µ)2 . (82)

For larger n, in particular if n → ∞ the difference vanishes. But for
smaller n it is important to choose the correct estimate for the variance (see
Appendix Appendix B)!

Covariance Matrix

Given a matrix X ∈ IRm×n of n observations xj ∈ IRm and let µ = E (X) be
the expected value of X. Let

x̂j = xj − µ (83)

be the mean normalized (centered) observations and X̂ = {x̂1, . . . , x̂n}.
Then, the covariance matrix Σ of X is defined by

Σ = E
[
X̂X̂

T
]
. (84)

Following (79) it can be computed by

Σ =
1

n
X̂X̂

T
. (85)

Sample Covariance Matrix

Given a matrix X ∈ IRm×n of n observations xj ∈ IRm and the sample mean
vector x̄ estimated by (79). Let

x̂j = xj − x̄ (86)

be the mean normalized (centered) observations and X̂ = {x̂1, . . . , x̂n}.
Then, the sample covariance matrix of X is defined by

C =
1

n− 1
X̂X̂

T
. (87)
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Scatter Matrix

Given a matrix X ∈ IRm×n of n observations xj ∈ IRm and x̂j estimated
either by (83) or (86). Then, the scatter matrix is given by

S = X̂X̂
T
. (88)

In fact, the scatter matrix can be considered the (sample) covariance matrix
without the pre-multiplied norming factor 1

n
or 1

n−1
. Thus, for technical

reasons often the scatter matrix is addressed instead of the covariance matrix.
Considering the eigenproblem, the same eigenvectors are obtained and the
eigenvalues differ only by the pre-multiplied factor.

Autocorrelation Matrix

Given a matrix X ∈ IRm×n of n observations xj ∈ IRm. Then, the autocorre-
lation matrix is given by

Ŝ =
1

n
XXT . (89)

If the columns of the matrix X are mean normalized the autocorrelation
matrix of X becomes the covariance matrix of X.

Gram Matrix

Given matrix X ∈ IRm×n of n observations xj ∈ IRm. Then the Gram matrix
is the matrix of all possible inner products of X, i.e.,

gi,j = xT
i xj , (90)

or written in matrix notation:

G = XTX ∈ IRn×n . (91)

The Gram matrix can not be considered a statistical description of data.
But due to its structure, in particular if the data is centered, important
characteristics of the covariance matrix can be derived from the Gram matrix.

Appendix B Statistical Parameter Estimation

For many theoretic discussion it is assumed that the parameters of a dis-
tribution are known, which is usually not the case in practice. Thus, these
parameters have to be estimated from a set of given samples. In the fol-
lowing we will discuss how to obtain good estimates for the expected value
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µ = E [x], i.e., the sample mean, and the variance σ2 = E [x2]−E [x]2, i.e., the
sample variance. The quality of a estimate is characterized by two criteria,
the unbiasedness and the consistency.

Definition 1: An estimator Θ is an unbiased estimator for the parameter θ
if

E [Θ] = θ . (92)

Definition 2: A sequence of estimators Θn for the parameter θ is said to be
consistent if

lim
n→∞

P [|Θn − θ| ≥ ε] = 0, ∀ε > 0 . (93)

This condition ensures that the sequence of estimators Θn converges to the
true value θ if the number of samples is increased.

Theorem 1: Let xj be independent identical distributed random variables
with E [xj] = µ and Var [xj] = σ2. Then,

(a) the sample mean

x̄ =
1

n

n∑
j=1

xj (94)

is an unbiased and consistent estimate for the expected value µ

(b) and the sample variance

s2 =
1

n− 1

n∑
j=1

(xj − x̄)2 (95)

is an unbiased estimate for the variance σ2.

Proof.

(a) To prove the unbiasedness of the sample mean we need to show that the
expected value of the sample mean x̄ is the expected value µ. Therefore,
we consider the linearity of the expected value:

E [x̄] = E

[
1

n

n∑
j=1

xj

]
=

1

n

n∑
j=1

E [xj] =
1

n

n∑
j=1

µ = µ . (96)
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To prove the consistency we first estimate the variance of the sample
mean:

Var [x̄] = Var

[
1

n

n∑
j=1

xj

]
=

1

n

n∑
j=1

Var [xj] =
σ2

n
. (97)

From Chebyshev’s inequality we get

P [|x̄− E [x̄]| ≥ ε] ≤ 1

ε2
Var [x̄] =

σ2

nε2
→ 0, for n→∞ . (98)

Hence, we have proved that x̄ is a consistent and unbiased estimate for
µ.

(b) The expected value for s2 is given by

E
[
s2
]
= E

[
1

n− 1

n∑
j=1

(xj − x̄)2
]

. (99)

Due to the linearity of the expected value we can re-write (99) to

1

n− 1

n∑
j=1

E
[
(xj − x̄)2

]
=

=
1

n− 1

n∑
j=1

(
E
[
x2
j

]
− 2E [xjx̄] + E

[
x̄2
])

=

=
1

n− 1

n∑
j=1

(
µ2 + σ2 − 2

n
E

[
xj

n∑
k=1

xk

]
+ µ2 +

σ2

n

)
=

=
1

n− 1

n∑
j=1

(
2µ2 +

(
1 +

1

n

)
σ2 − 2

n
E
[
x2
j

]
− 2

n

∑
j ̸=k

E [xjxk]

)
=

=
1

n− 1

n∑
j=1

(
2µ2 +

(
1 +

1

n

)
σ2 − 2

n

(
µ2 + σ2

)
− 2

n− 1

n
µ2

)
=

=
1

n− 1

n∑
j=1

(
n− 1

n
σ2 − 2

n
µ2 +

2

n
µ2

)
= σ2 .

(100)

Hence, we get that E [s2] = σ2 and that s2 is an unbiased estimate for
σ2.
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From Theorem 1 (2) it is clear that for practical applications, where the
expected value is estimated from the data, (81) should be used to estimate
the sample variance. In fact, the the sum of squared differences should be
pre-multiplied by 1

n−1
rather than by 1

n
. The same also applies in case of the

covariance matrix! For a more detailed discussion on parameter estimation
see, e.g., [34, 119].

Appendix C Singular Value Decomposition

C.1 Introduction

In this section, we discuss the main properties of SVD and its application
in Computer Vision. Here, SVD is often used to solve the eigenproblem
for the covariance matrix or, in robust statistics, to solve overdetermined
systems of equations. As the underlying data represents (gray-value) images
the discussion is reduced to real-valued matrices.

Singular Value Decomposition (SVD) is a powerful and thus widely used
method in Linear Algebra. Starting in the second half of the 19th cen-
tury several authors (Beltrami [10], Jordan [58] and Sylvester [122]) co-
discovered SVD for real, square and non-singular matrices. Later Autonne [3]
and Eckart and Young [28] extended it to complex matrices and to rectan-
gular matrices, respectively. But it took until the 1970s when Golub and
Kahan [37] and Golub and Reinsch [38] developed algorithms, that are suit-
able for practical use. In fact, most of the modern SVD-algorithms are based
on the method of Golub and Reinsch13. More general discussions (overview of
methods and application in engineering) are given in [67,121], for numerical
details see [39,102].

C.2 Eigenvalue Decomposition

Given a square matrix A ∈ IRn×n, a scalar λ ∈ IR is an eigenvalue of A if
there exists a vector v ∈ IR, v ̸= 0 such that

Ax = λx, (101)

where x is referred to as eigenvector. More precisely, x is a right eigenvector
if Ax = λx and a left eigenvector if xTA = λxT . Usually, by eigenvector a

13The method is based on a Householder transform followed by a QR decomposition.
Most newer SVD implementation just use a more efficient variant for the QR decomposi-
tion.
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right eigenvector is meant. The total set of eigenvalues λ(A) = {λ1, . . . , λn}
is called the spectrum of A.

To compute the eigenvalues λi and the eigenvectors xi (101) is re-written
as

(A− λI)x = 0 , (102)

which is a homogeneous linear system. From Cramer’s Theorem (see, e.g.,
[71]) we get that a homogeneous system has a non-trivial solution x ̸= 0 if
the determinant of the coefficients is zero:

det(A− λI) =

∣∣∣∣∣∣∣∣∣
a11 − λ a12 · · · a1n
a21 a22 − λ · · · a2n
...

...
...

an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣ = 0 . (103)

By developing (103) we obtain a polynomial

p(λ) = α0 + α1λ+ . . .+ αn−1λ
n−1 + αnλ

n = 0 (104)

of n-th order in λ, which is referred to as the characteristic polynomial of A.
Hence, the eigenvalues λi of A can be estimated by computing the roots of
the characteristic polynomial p(λ). For larger n direct computation of the
determinant is not appropriate. Thus, a numerical approximation is used
to solve (103). Once the eigenvalues λi are determined the corresponding
eigenvectors xi can be computed by solving (102), which can simply be done
by a Gauss elimination.

When developing (103) we get the following special coefficients (see [85]
for a proof):

α0 = det(A),
αn−1 = (−1)n−1(a11 + . . .+ ann), and
αn = (−1)n.

(105)

From (105) we get the trace of a matrix A

tr(A) =
n∑

j=1

ajj (106)

, which can also be determined by

tr(A) =
n∑

j=1

λj . (107)
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Moreover, the determinant of a matrix A is determined by

det(A) =
n∏

j=1

λj . (108)

Considering the solution of the characteristic polynomial we can define
the multiplicity of an eigenvalue. If the eigenvalue λ is root of order ma of the
characteristic polynomial ma(λ) is called the algebraic multiplicity of λ. On
the other hand mg(λ), which is defined as the number of linearly independent
eigenvectors corresponding to λ, is referred as to the geometric multiplicity
of λ. In general, mg(λ) ≤ ma(λ). If mg(λ) < ma(λ) the eigenvalue λ is
said to be a defective eigenvalues. A matrix having at least one defective
eigenvalues is referred as to defective matrix. This is important as only non-
defective matrices are diagonalizable, which is important for many numerical
computations.

Theorem 2: Given a diagonalizable matrix A ∈ IRm×m there exist a non-
singular matrix T such that

A = TΛT−1 , (109)

where Λ = diag(λ1, . . . , λn). The decomposition (109) is also referred to as
eigenvalue decomposition (EVD).

Proof. For a proof see, e.g., [39].

C.3 Singular Value Decomposition

Theorem 3: If A is a real m×n-matrix, then there exist two orthogonal
matrices

U ∈ IRm×m = (u1, . . . , um) and V ∈ IRn×n = (v1, . . . , vn)

such that
A = UΣVT , (110)

where

Σ ∈ IRm×n =

[
S 0
0 0

]
and

S ∈ IRm×m = diag(σ1, . . . , σp), p = min{m,n}
with
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σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 .

The decomposition (110) is referred as to Singular Value Decomposition
(SVD).

Proof. A proof can be found in [39].

Remark 1: The diagonal elements σi of Σ are referred to as singular values.
The vectors ui and vi are the ith left singular vector and the ith right singular
vector, respectively. The left singular vectors are the orthogonal eigenvectors
of ATA and the right singular vectors are the orthogonal eigenvectors of
AAT . Thus, the singular values σi of A are the positive square roots of
ATA. A proof/derivation can be found in [85].

Remark 2: Theorem 3 also holds for complex matrices: If A ∈ Cm×n,
then there exist two unitary matrices14 U ∈ Cm×m and V ∈ Cn×n and a
pseudo-diagonal matrix Σ ∈ IRm×n such that A = UΣVH .

Remark 3: By comparing the columns of AV = UΣ and ATU = VΣT it
is easy to verify that

Avj = σiuj

ATuj = σivj

}
j = 1, . . . , p . (111)

C.4 Applications of SVD

Since there exist computational efficient algorithms SVD is widely applied
for many different tasks. These include

• computing the Moore-Penrose Inverse,

• numerically estimating the rank of a matrix,

• solving a linear system in the least square sense,

• approximating a matrix by a matrix of lower rank,

• solving the eigenproblem for real symmetric matrices, and

• orthogonalizing matrices.

14A matrix A ∈ Cm×n is unitary if AHA = AAH = In. AH denotes the Hermitian
matrix of A.
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In fact, when looking at the source code of many MATLAB routines, e.g.,
to compute the pseudo inverse (pinv), to orthogonalize a matrix (orth) or to
compute the rank of a matrix (rank) it can be seen that all of these methods
implicitly call the SVD sub-routine.

C.5 Pseudoinverse

A pseudoinverse can be seen as a generalization of an inverse of a matrix for
singular and rectangular matrices. Given a matrix A ∈ IRm×n. A matrix
A+ ∈ IRnxm is a pseudoinverse of A if

AA+A = A
A+AA+ = A+ .

(112)

From this definition many possible pseudo inverses may be estimated. In
fact, the general defined pseudoinverse is not unique. The class of pseudo
inverses defined by (112) is known as matrix 1-inverse. A particular type of
pseudoinverses is the Moore-Penrose Inverse [93, 101]. The Moore-Penrose
Inverse A† of a matrix A is the unique solution, that fulfills the four Penrose
equations [39,85]:

AA†A = A(
AA†)T = AA†

A†AA† = A†(
A†A

)T
= A†A .

(113)

From (112) and (113) it is clear that every Moore-Penrose Inverse is a
pseudoinverse. But this does not hold conversely [103]. Thus, we get:

Theorem 4: Every matrix has a unique Moore Penrose Inverse A†.

Proof. The proof directly follows from the definition (113).

Remark 4: Many authors do not distinguish between (112) and (113).
Thus, usually the term “pseudoinverse” is used even though actually the
unique “Moore-Penrose Inverse” is meant.

Theorem 5: If the inverse of ATA exists then the Moore-Penrose Inverse
is given by

A† =
(
ATA

)−1
AT .

Proof. Consider the linear system

Ax = c .
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To obtain a square matrix we pre-multiply both sides with AT . Hence, we
get

ATAx = ATc

and we can solve the system for x:

x =
(
ATA

)−1
ATc .

In general, similar to the inverse of a matrix the Moore-Penrose Inverse
can be estimated from a matrix decomposition, i.e., from the SVD A =
UΣVT :

A† = UΣ−1VT . (114)

C.6 SVD to Solve EVD

From Remark 1 it is clear that there is a strong relationship between eigen-
values and eigenvectors on the one hand and singular values and singular
vectors on the other hand. In fact, EVD and SVD are equivalent for real
symmetric matrices15.

Theorem 6: For a real symmetric matrix A SVD is equivalent to EVD.

Proof. Let
A = UΣVT (115)

be the SVD of A. Since A is a symmetric matrix, U = V, and we get

A = UΣUT =
n∑

j=1

σjuju
T
j . (116)

By right multiplying the left and the right term of (116) by uj we get
that

Auj = σjuj . (117)

Hence, σj and uj are an eigenvalue and the corresponding eigenvector of
A.

15A matrix A ∈ IRm×m is said to be symmetric if AT = A.
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Since U is an orthogonal matrix, U−1 = UT , and we can re-write (116) as

A = UΣU−1 , (118)

which is equivalent to (109).

Remark 5: From Theorem 6 we get that real symmetric matrices have the
following properties:

(a) All eigenvalues λj are real.

(b) The eigenvectors uj of distinct eigenvalues λj are orthonormal.

(c) The inverse A−1 is a real and symmetric matrix having the same eigen-
vectors as A while the eigenvalues are reciprocal.

Remark 6: Given a matrix A ∈ IRm×n then AAT and ATA

(a) are symmetric positive semi-definite matrices,

(b) have the same rank, and

(c) share the same non-zero eigenvalues.

Proof. Consider the SVD

A = UΣVT . (119)

Then,

AAT = UΣVT V︸ ︷︷ ︸
Im×m

ΣTU = UΣΣTUT (120)

ATA = VΣT UT U︸ ︷︷ ︸
In×n

ΣVT = VΣTΣVT . (121)

Thus, we get that the columns of U are the eigenvectors of AAT . Sim-
ilarly, the columns of V are the eigenvectors of ATA. Additionally, the
non-zero singular values for both matrices are given by σ2

j . Thus, we proved
(b) and (c). The symmetry for both matrices directly follows from the matrix
multiplications. In addition, since all eigenvalues λj = σ2

j ≥ 0 the matrix A
is positive semi-definite and we finally proved (a).
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[46] Jeanny Hérault, Bernard Ans, , and Christian Jutten. Circuits neu-
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Xéme colloque GRETSI, pages 1017–1022, 1985.

[48] Harold Hotelling. Analysis of a complex of statistical variables with
principal components. Journal of Educational Psychology, 24:417–441,
1933.

[49] Harold Hotelling. Relations between two sets of variates. Biometrika,
28:321–377, 1936.

58



[50] Patrik O. Hoyer. Non-negative matrix factorization with sparseness
constraints. Journal of Machine Learning Research, 5:1457–1469, 2004.

[51] Peter J. Huber. Robust Statistics. John Wiley & Sons, 2004.

[52] Aapo Hyvärinen. The fixed-point algorithm and maximum liklihood
estimation for independent component analysis. Neural Processing Let-
ters, 10(1):1–5, 1999.

[53] Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent Com-
ponent Analysis. John Wiley & Sons, 2001.

[54] Laurent Itti and Christof Koch. Computational modeling of visual
attention. Nature Reviews Neuroscience, 2(3):194–203, Mar 2001.

[55] Omar Javed, Saad Ali, and Mubarak Shah. Online detection and clas-
sification of moving objects using progressively improving detectors.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
volume I, pages 696–701, 2005.

[56] Andrew E. Johnson and Martial Hebert. Using spin-images for efficient
multiple model recognition in cluttered 3-d scenes. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 21(5):433–449, 1999.

[57] Ian T. Jolliffe. Principal Component Analysis. Springer, 2002.
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[118] Danijel Skočaj and Aleš Leonardis. Weighted and robust incremental
method for subspace learning. In Proc. IEEE Intern. Conf. on Com-
puter Vision, volume II, pages 1494–1501, 2003.

[119] Tsu-Teh Soong. Fundamentals of Probability and Statistics for Engi-
neers. John Wiley & Sons, 2004.

64



[120] Sabine Sternig. Object recognition with locally binary patterns. Bach-
elor’s Thesis at Graz University of Technology, 2005.

[121] G. W. Stewart. On the early history of the singular value decomposi-
tion. SIAM Review, 35(4):551–566, 2003.

[122] James J. Sylvester. On the reduction of a bilinear quantic of the nth
order to the form of a sum of n products by a double orthogonal sub-
stitution. Messenger of Mathematics, 19:42–46, 1889.

[123] Valtteri Takala, Timo Ahonen, and Matti Pietikainen. Block-based
methods for image retrieval using local binary patterns. In Proc. Scan-
dinavian Conf. on Image Analysis, pages 882–891, 2005.

[124] Michael J. Tarr, Pepper Williams, William G. Hayward, and Isabel
Gauthier. Three-dimensional object recognition is viewpoint depen-
dent. Nature Neuroscience, 1(4):275–277, 1998.

[125] Michael E. Tipping and Chris M. Bishop. Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society B, 61:611–622,
1999.

[126] Fernando de la Torre and Michael J. Black. Robust principal com-
ponent analysis for computer vision. In Proc. IEEE Intern. Conf. on
Computer Vision, volume I, pages 362–369, 2001.

[127] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal
of Cognitive Neuroscience, 3(1):71–86, 1991.

[128] Tinne Tuytelaars and Luc Van Gool. Content-based image retrieval
based on local affinely invariant regions. In Intern. Conf. on Visual
Information and Information Systems, pages 493–500, 1999.

[129] Tinne Tuytelaars and Luc Van Gool. Wide baseline stereo matching
based on local, affinely invariant regions. In Proc. British Machine
Vision Conf., pages 412–422, 2000.

[130] Tinne Tuytelaars and Luc Van Gool. Matching widely separated views
based on affine invariant regions. Intern. Journal of Computer Vision,
1(59):61–85, 2004.
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