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Abstract Recently, Mahalanobis metric learning has gained a considerable inter-
est for single-shot person re-identification. The main idea is to build on an existing
image representation and to learn a metric that reflects the visual camera-to-camera
transitions, allowing for a more powerful classification. The goal of this chapter is
twofold. We first review the main ideas of Mahalanobis metric learning in general
and then give a detailed study on different approaches for the task of single-shot
person re-identification, also comparing to the state-of-the-art. In particular, for our
experiments we used Linear Discriminant Metric Learning (LDML), Information
Theoretic Metric Learning (/TML), Large Margin Nearest Neighbor (LMNN), Large
Margin Nearest Neighbor with Rejection (LMNN-R), Efficient Impostor-based Met-
ric Learning (EIML), and KISSME. For our evaluations we used four different pub-
licly available datasets (i.e., VIPeR, ETHZ, PRID 2011, and CAVIAR4REID). Ad-
ditionally, we generated the new, more realistic PRID 4508 dataset, where we also
provide detailed segmentations. For the latter one, we also evaluated the influence of
using well segmented foreground and background regions. Finally, the correspond-
ing results are presented and discussed.

1 Introduction

Person re-identification has become one of the major challenges in visual surveil-
lance, showing a rather wide range of applications such as searching for criminals
or tracking and analyzing individuals or crowds. In general, there are two main
strategies: single-shot and multi-shot recognition. For the first one, an image pair
is matched: one image given as input and one stored in a database. In contrast, for
multi-shot scenarios multiple images (i.e., trajectories) are available. In this chap-
ter, we mainly focus on the single-shot case, even though the ideas can simply be
extended to the multi-shot scenario.
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Even for humans, person re-identification is very challenging for several rea-
sons. First, the appearance of an individual can vary extremely across a network
of cameras due to changing view points, illumination, different poses, etc. Sec-
ond, there is a potentially high number of “similar” persons (e.g., people wear
rather dark clothes in winter). Third, in contrast to similar large scale search prob-
lems typically no accurate temporal and spatial constraints can be exploited to ease
the task. Having these problems in mind and motivated by the high number of
practical applications there has been a significant scientific interest during the last
years (e.g., [3,7, 11, 14, 16, 22, 26, 28, 29]), and also various benchmark datasets
(e.g., [13,16,28]) have been published.

In general, the main idea is to find a suitable image description and then to per-
form a matching step using a standard distance. For describing images there exist
two different strategies: (a) invariant and (b) discriminative description. The goal
of invariant methods (e.g., [9, 11, 16,27,29]) is to extract visual features that are
both, distinctive and stable under changing viewing conditions between different
cameras. The large intra-class appearance variations, however, make the computa-
tion of distinctive and stable features often impossible under realistic conditions. To
overcome this limitation, discriminative methods (e.g., [3, 14, 16, 28] on the other
hand take advantage of class information to exploit the discriminative information
to find a more distinctive representation. However, as a drawback such methods
tend to overfit to the training data. Moreover, they are often based on local image
descriptors, which might be a severe disadvantage. For instance, a red bag visible in
on view would be very discriminative, however, if it is not visible in the other view
it becomes impossible to re-identify a specific person.

An alternative to these two approaches, also incorporating label information, is
to adopt metric learning for the given task (e.g., [7, 17, 18,20, 21, 31]). Similar to
the idea of inter-camera color calibration (e.g., [25]), using labeled samples transi-
tions in feature space between two camera views can be modeled. Hence, using a
non-Euclidean distance even less distinctive features, which have not to capture the
visual invariances between different cameras, are sufficient for getting considerable
matching results. However, to estimate such a metric, a training stage is necessary,
but once learned, metric learning approaches are very efficient during evaluation,
since additionally to the feature extraction and the matching only a linear projection
has to be computed.

When dealing with person re-identification we have to cope with three main prob-
lems. First, to capture all relevant information often complex, high dimensional fea-
ture representations are required. Thus, widely used metric learners such as Large
Margin Nearest Neighbor (LMNN) [30], Information Theoretic Metric Learning
(ITML) [6], and Logistic Discriminant Metric Learning (LDML) [15] building on
complex optimization schemes run into high computational costs and memory re-
quirements, making them infeasible in practice. Second, these methods typically
assume a multi-class classification problem, which is not the case for person re-
identification. In fact, we are typically given image pairs, so existing methods have
to be adapted. There are only a few methods such as [1, 12] which directly intend
learning a metric from data pairs. Third, we have to deal with a partially ill-posed
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problem. In fact, two images showing the same person might not be similar (e.g.,
due to camera noise, geometry, or different viewpoints: frontal vs. back). On the
other hand, images not showing the same person can be very similar (e.g., in winter
many people wear black/dark gray coats). Thus, for standard methods there is a high
tendency to overfit to the training data yielding insufficient results during testing.

The goal of this chapter is to analyze the applicability of metric learning for
the task of single-shot person re-identification from a more general point of view.
Thus, we first review the main idea of Mahalanobis distance metric learning and
give an overview of selected approaches targeting at the problem of discrimina-
tive metric learning via different strategies. In particular, we selected established
methods applied to diverse visual classification tasks, (i.e., Logistic Discriminant
Metric Learning (LDML) [15], Information Theoretic Metric Learning (ITML) [6],
and Large Margin Nearest Neighbor (LMNN) [30]), as well as approaches that have
been developed in particular for person re-identification (i.e., Large Margin Nearest
Neighbor with Rejection (LMNN-R) [7], Efficient Impostor-based Metric Learning
(EIML) [17], and KISSME [20]).

To show that metric learning is widely applicable, we run experiments on five
different datasets showing different characteristics. Four of them, namely VIPeR,
ETHZ, PRID 2011, and CAVIAR4REID, are publicly available and widely used. For
a more thorough evaluation and as additional contribution we created a new, more
realistic dataset, PRID 4508, where we also provide detailed foreground/background
segmentations. The results are summarized and compared to state-of-the-art results
for the specific datasets. In addition, to have a generative and discriminative baseline
the same experiments were also run using the standard Mahalanobis distance and a
slightly adapted version of Linear Discriminant Analysis (LDA) [10].

The rest of the chapter is organized as follows. First, in Sec. 2 Mahalanobis metric
learning in general is introduced and the approaches used in the study are summa-
rized. Then, in Sec. 3, our specific person re-identification framework consisting of
three stages is presented. In Sec. 4 and 5 we first review the five datasets used for
our study and then present the obtained results. Finally, in Sec. 6 we summarize and
conclude the chapter.

2 Mahalanobis Distance Metric Learning

In this section, we first introduce the general idea of Mahalanobis metric learning
and then give an overview of the approaches used in this study. We selected generic
methods that have shown good performance for diverse visual classification tasks
as well as specific methods that have been developed for the task of person re-
identification. Moreover, to give a more generic analysis, we tried to select methods
tackling the same problem from different points of view: generative data analy-
sis, statistical inference, information theoretic aspect, and discriminative learning.
Additionally, we consider Linear Discriminant Analysis (LDA) and standard Maha-
lanobis metric learning, which can be considered simple baselines. For all methods
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the implementations are publicly available, thus allowing (a) for a fair comparison,
and (b) for easily exchanging the used representation.

2.1 Mahalanobis Metric

Mahalanobis distance learning is a prominent and widely used approach for improv-
ing classification results by exploiting the structure of the data. Given n data points
x; € R™, the goal is to estimate a matrix M such that

dm(x;,X;) = (Xi—Xj)TM(Xi—Xj) ey

describes a pseudo-metric. In fact, this is assured if M is positive semi-definite,
e, M=0.If M= x"! (i.e., the inverse of the sample covariance matrix), the
distance defined by Eq. (1) is referred to as the Mahalanobis distance. An alternative
formulation for Eq. (1), which is more intuitive, is given via

dr(xi,x;) = |IL(x; = x,)| , 2)

which is easily obtained from

(xi—x)) ' M(x; —x;) = (x; — Xj)TE/I_;(Xi —xj) = |Lx—=x)IF. 3
M

Hence, either directly the metric matrix M or the factor matrix L can be estimated
from the data. A discussion on factorization and the corresponding optimality crite-
ria can be found in, e.g., [4, 19].

If additionally for a sample X its class label y(xX) is given, not only the genera-
tive structure of the data but also discriminative information can be exploited. For
many problems (including person re-identification), however, we are lacking class
labels. Thus, given a pair of samples (x;,X;) we break down the original multi-class
problem into a two-class problem in two steps. First, we transform the samples from
the data space to the label agnostic difference space X = {x;; = x; — X}, which is
inherently given by the metric definitions in Egs. (1) and (2). Moreover, X is invari-
ant to the actual locality of the samples in the feature space. Second, the original
class labels are discarded and the samples are arranged using pairwise equality and
inequality constraints, where we obtain the classes same 8 and different D:

8 = {(xi,x))[y(xi) = y(x;)} @)
D = {(xi,x;)y(xi) # y(x))} . )

In our particular case the pair (X;,X;) consists of images showing persons in dif-
ferent camera views, and sharing a label means that the samples x; and x; describe
the same person. In the following, we exemplary discuss different approaches deal-
ing with the problem described above.
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To increase readability we introduce the notation C;; = (x; —X;)(x; —x;) " and
the similarity variable

U y(xi) =v(x))
y,,_{O V(i) £ (%)) - ©

2.2 Linear Discriminant Analysis

Let x; € R™ be a sample and c its corresponding class label. Then, the goal of Linear
Discriminant Analysis (LDA) [10] is to compute a classification function g(x) =
L "x such that the Fisher-criterion

|LTS,L|
L, = argmax

L ma (7)

where S,, and S;, are the within-class scatter and between-class scatter matrices, is
optimized. This is typically realized via solving the generalized eigenvalue problem

SBW = ASWW (8)

or directly by computing the eigenvectors for S;VI Ss.

However, it is known that the Fisher-criterion given by Eq. (7) is only optimal in
Bayes’ sense for two classes (see, e.g., [23]). Thus, if the number of classes (image
pairs in our case) is increasing LDA is going to fail. To overcome this problem, we
can re-formulate the original multi-class objective Eq. (7) to a binary formulation
by using the two classes defined in Eqgs. (4) and (5). In other words, Eq. (7) tries to
minimize the distance between similar pairs and to maximize the distance between
dissimilar pairs.

2.3 Logistic Discriminant Metric Learning

A similar idea is followed by Logistic Discriminant Metric Learning (LDML) of
Guillaumin et al. [15], however, from a probabilistic point of view. Thus, to estimate
the Mahalanobis distance the probability p;; that a pair (x;,X;) is similar is modeled
as

pij = p(yij = 1|x;,x;;M,b) = 6 (b — dm(xi,X;)) , ©)

where 6(z) = (1+exp(—z))~! is a sigmoid function and b is a bias term. As Eq. (9)
is a standard linear logistic model, M can be optimized by maximizing the log-
likelihood
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L(M) =Y yijIn(pij) + (1= i) In(1 = pij). (10)
ij
The optimal solution is then obtained by gradient ascent in direction

AL (M)
oM

=Y (ij—pij)Cij , (1D
ij

where the influence of each pair on the gradient direction is controlled over the

probability. No further constraints, in particular no positive semi-definiteness on M,

are imposed on the problem!

2.4 Information Theoretic Metric Learning

Similarly, Information Theoretic Metric Learning (ITML) was presented by Davis et
al. [6], who regularize the estimated metric M by minimizing the distance to a pre-
defined metric My via an information-theoretic approach. In particular, they exploit
the existence of a bijection between the set of Mahalanobis distances and the set of
equal-mean multivariate Gaussian distributions. Let dy be a Mahalanobis distance,
then its corresponding multivariate Gaussian is given by

1 1
g(XaM) = S exp _7dM(X7.u) ) (12)
z 2
where Z is a normalizing factor, i is the mean, and the covariance is given by M~!.
Thus, the goal is to minimize the relative entropy between M and My arising the
following optimization problem:

min KL(g(x,Mo)||¢(x, M) (13)
S.t.
dm(xi,xj) <u (x;,Xx;) €8 (14)
dwm(xi,x;) > 1 (xi,x;) €D, (15)

where KL is the Kullback-Leibler divergence, and the constraints in Egs. (14) and
(15) enforce that the distances between similar pairs are small while they are large
for dissimilar pairs.

As the optimization problem Egs. (13)-(15) can be expressed via Bregman di-
vergence, starting from My the Mahalanobis distance matrix M can be obtained by
the following update rule:

M1 =M, + M, C;;M; (16)

where 3 encodes both, the pair label and the step size.
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2.5 Large Margin Nearest Neighbor

In contrast, Large Margin Nearest Neighbor (LMNN) metric learning, introduced
by Weinberger and Saul [30], additionally exploits the local structure of the data.
For each instance a local perimeter surrounding the k nearest neighbors sharing the
same label (target neighbors) is established. Samples having a different label that
invade this perimeter (impostors) are penalized. More technically, for a target pair
(x,-,xj) € 8, 1.e, y;j = 1, any sample x; with y; = 0 is an impostor if

1L (x: —x1)[[* < [|L(x; — ;)| + 1. (17)

Thus, the objective is to pull target pairs together and to penalize the occurrence
of impostors. This is realized via the following objective function:

LM) =Y [dw(xi,x;) +B Y (1 —yu)&iu(M) (18)
Ji ]
with
ijt(M) = 1 +dwm(x;,X;) — dm(xi,X;) (19)

and f to be a weighting factor. The first term of Eq. (18) minimizes the distance
between target neighbors x; and x;, indicated by j ~~ i, and the second one denotes
the amount by which impostors invade the perimeter of x; and x;. To estimate the
metric M, gradient descent is performed on the objective function Eq. (18):

AL (M)
oM

=Y Cj+B )Y (Cj—Ci) (20)
i (i,j.1)eEN

where N describes the set of triplets indices corresponding to a positive slack.
LMNN was later adopted for person re-identification by Dikmen et al. [7], who

introduced a rejection scheme not returning a match if all neighbors are beyond a

certain threshold: Large Margin Nearest Neighbor with Rejection (LMNN-R).

2.6 Efficient Impostor-based Metric Learning

Since both approaches described in Sec. 2.5, LMNN and LMNN-R, rely on complex
optimization schemes, in [17] Efficient Impostor-based Metric Learning (EIML)
was proposed that allows for exploiting the information provided by impostors more
efficiently. In particular, Eq. (17) is relaxed to the original difference space. Thus,
given a target pair (x;,X;), a sample X; is an impostor if

[1xi = x> < 1 (xi )17 ey
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To estimate the metric M = L 'L the following objective function has to be min-
imized:
L) = Y LG—xp)P = Y [Lwa (xi—x)|, (22)
(xi.x;)€8 (xi.x)€d

where J is the set of all impostor pairs and

[ —xp |

Wy = e il (23)

is a weighting factor also taking into account how much an impostor invades the
perimeter of a target pair. By adding the orthogonality constraint LL " = I, Eq. (22)
can be re-formulated to an eigenvalue problem:

(Zs —X9)L=AL, 24)
where
1 1
Zg = g Z C,‘j and Zj =T Z Cij (25)
| | (x;,x;)€S | | (xix;)ed

are the covariance matrices for & and J, respectively. Hence, the problem is much
simpler and can be solved efficiently.

2.7 KISSME

The goal of the Keep It Simple and Straightforward MEtric (KISSME) [20] is to ad-
dress the metric learning approach form a statistical inference point of view. There-
fore, we test the hypothesis Hy that a pair (x;,X;) is dissimilar against H; that it is
similar using a likelihood ratio test:

o p(xi,x;|Ho)\ f(xi,x;,60)
5(Xl’xj)_log(P(Xi,XjH1))_log(f(Xan,@l) ’ (26)

where 0 is the log-likelihood ratio, and f(x;,x;,0) is a PDF with the parameter
set 0. Assuming zero-mean Gaussian distributions Eq. (26) can be re-written to

T P12 (55— x) T 2! (xi—x))

8(xi,x;) =log ;@)

\/mexp(*l/Z (xi =x))" Zg " (xi —x;))

where Xg and X, are the covariance matrices of 8 and D according to Eq. (25).
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The maximum likelihood estimate of the Gaussian is equivalent to minimizing
the distances from the mean in a least squares manner. This allows KISSME to find
respective relevant directions for § and D. By taking the log and discarding the
constant terms we can simplify Eq. (27) to

S(xi,xi) = (xi—x;) " I (xi—x;) — (xi —x;) " Zp' (xi —x;)

(xi—x)) " (Zg' = E5" ) (xi —x;) - (28)

Hence, the Mahalanobis distance matrix M is defined by

M= (' -z . (29)

3 Person Re-Identification System

In the following, we introduce the person re-identification system used for our study
consisting of three stages: (1) feature extraction, (2) metric learning, and (3) classifi-
cation. The overall system is illustrated in Fig. 1. During training the metric between
two cameras is estimated, which is then used for calculating the distances between
an unknown sample and the samples given in the database. The three steps are dis-
cussed in more detail in the next sections.

[Feature Extraction ]I:>[ Metric Learning ]I:>[ Classification ]

N Probe Image Gallery Images
'./\" s ° ° ° ° ° °
-'g :E HQE [N
i f

f Small = Distance =) Large

Fig. 1 Person re-identification system consisting of three stages: (1) feature extraction — dense
sampling of color and texture features, (2) metric learning — exploiting the structure of similar and
dissimilar pairs, (3) classification — nearest neighbor search under the learned metric.

3.1 Representation

Color and texture features have proven to be successful for the task of person re-
identification. We use HSV and Lab color channels as well as Local Binary Patterns
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to create a person image representation. The features are extracted from 8x16 rect-
angular regions sampled from the image with a grid of 4x8 pixels, i.e., 50% overlap
in both directions, which is illustrated in Fig. 2. In each rectangular patch we cal-
culate the mean values per color channel, which are then discretized to the range 0
to 40. Additionally, a histogram of LBP codes is generated from a gray value repre-
sentation of the patch. These values are then put together to form a feature vector.
Finally, the vectors from all regions are concatenated to generate a representation

for the whole image.
- Iy
—

Texture I I I

Overlapping Local Global Feature
Regions Features Vector

Fig. 2 Global image descriptor: different local features (HSV, Lab, LBP) are extracted from over-
lapping regions and are then concatenated to a single feature vector.

3.2 Metric Learning

First of all, we run a PCA step to reduce the dimensionality and for noise removal. In
general, this step is not critical (the particular settings are given in Sec. 5), however,
we recognized that for smaller datasets also a lower dimensional representation is
sufficient. During training we learn a Mahalanobis metric M according to Eq. (1).
Once M has been estimated, during evaluation the distance between two samples X;
and x; is calculated via Eq. (1). Hence, additionally to the actual classification effort
only linear projections are required.

3.3 Classification

In person re-identification we want to recognize a certain person across different,
non-overlapping camera views. In our setup, we assume that we have already de-
tected the persons in all camera views, i.e., we do not tackle the detection problem.
The goal of person re-identification now is to find a person image that has been
selected in one view (probe image) in all the images from another view (gallery
images). This is achieved by calculating the distances between the probe image and
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all gallery images using the learned metric, and returning those gallery images with
the smallest distances as potential matches.

4 Re-Identification Datasets

In the following, we give an overview of the datasets used in our evaluations and ex-
plain the corresponding setups. In particular, these are VIPeR [13], PRID 2011 [16],
ETHZ [28], CAVIAR4REID [5], and PRID 450S. The first four (see Fig. 3) are pub-
licly available and widely used for benchmarking person re-identification methods;
the latter one was newly generated for this study.

Although there are other datasets like iLIDS we abstained from using them in
this study. “The” iLIDS dataset was not used since there are at least four differ-
ent datasets available that arbitrarily cropped patches from the huge (publicly not
available!) iLIDS dataset, making it difficult to give fair comparisons.

Fig. 3 Example image pairs from (a) the VIPeR, (b) the PRID 2011, (c) the ETHZ, and (d) the
CAVIAR4REID dataset. The upper and lower row correspond to different appearances of the same
person, respectively.

4.1 VIPeR Dataset

The VIPeR dataset contains 632 person image pairs taken from two different camera
views. Changes of viewpoint, illumination and pose are the most prominent sources
of appearance variation between the two images of a person. For evaluation we
followed the procedure described in [14]. The set of 632 image pairs is randomly
split into two sets of 316 image pairs each, one for training and one for testing. In
the test case, the two images of an image pair are randomly assigned to a probe and
a gallery set. A single image from the probe set is then selected and matched with
all images from the gallery set. This process is repeated for all images in the probe
set.
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4.2 ETHZ Dataset

The ETHZ dataset [28], originally proposed for pedestrian detection [8] and later
modified for benchmarking person re-identification approaches, consists of three
video sequences: SEQ. #1 containing 83 persons (4.857 images), SEQ. #2 contain-
ing 35 persons (1.961 images), and SEQ. #3 containing 28 persons (1.762 images).
All images have been re-sized to 64 x 32 pixels. The most challenging aspects of
this dataset are illumination changes and occlusions. However, as the person images
are captured from a single moving camera, the dataset does not provide a realistic
scenario for person re-identification (i.e., no disjoint cameras, different viewpoints,
different camera characteristics, etc.). Despite this limitation it is commonly used
for person re-identification. We use a single-shot evaluation strategy, i.e., we ran-
domly sample two images per person to build a training pair; and another pair for
testing. The images of the test pairs are then assigned to the probe and the gallery
set.

4.3 PRID 2011 Dataset'

The PRID 2011 dataset consists of person images recorded from two different static
cameras. Two scenarios are provided: multi-shot and single-shot. Since we are fo-
cusing on single-shot methods in this work, we use only the latter one. Typical
challenges on this dataset are viewpoint and pose changes as well as significant dif-
ferences in illumination, background and camera characteristics. Camera view A
contains 385 persons, camera view B contains 749 persons, with 200 of them ap-
pearing in both views. Hence, there are 200 person image pairs in the dataset. These
image pairs are randomly split into a training and a test set of equal size. For eval-
uation on the test set, we followed the procedure described in [16], i.e., camera A
is used for the probe set and camera B is used for the gallery set. Thus, each of the
100 persons in the probe set is searched in a gallery set of 649 persons (all images
of camera view B except the 100 training samples).

4.4 CAVIAR4REID Dataset

The CAVIAR4REID dataset [S5] contains images of 72 individuals captured from
two different cameras in a shopping center, where the original images have been
resized to 128 x 64. 50 of them appear in both camera views, the remaining 22
only in one view. Since we are interested in person re-identification in different
cameras, we only use individuals appearing in both views in our experiments. Each
person is represented by 10 appearances per camera view. Typical challenges on

! The dataset is publicly available under https:/Irs.icg.tugraz.at/download.php.
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this dataset are viewpoint and pose changes, different light conditions, occlusions,
and low resolution. To compare the different methods we use a multi-shot evalua-
tion strategy similar to [2]. The set of 50 persons is randomly split into a training
set of 42 persons, and a test set of 8 persons. Since every person is represented by
10 images per camera view, we can generate 100 different image pairs between the
views of two individuals. During training, we use all possible combinations of pos-
itive pairs showing the same person, and negative pairs showing different persons.
When comparing two individuals in the evaluation stage, we again use all possible
combinations in order to calculate the mean distance between the two persons.

4.5 PRID 450S Dataset>

The PRID 450S dataset builds on PRID 2011, however, is arranged according to
VIPeR by image pairs and contains more linked samples than PRID 2011. In par-
ticular, the dataset contains 450 single-shot image pairs depicting walking humans
captured in two spatially disjoint camera views. From the original images with res-
olution of 720 x 576 pixels, person patches were annotated manually by bounding
boxes with a vertical resolution of 100-150 pixels. To form the ground truth for
re-identification, persons with the same identity seen in the different views were
associated. In addition, for each image instance we generated binary segmentation
masks separating the foreground from the background. Moreover, we further pro-
vide a part-level segmentation® describing the following regions: head, torso, legs,
carried object at torso level (if any) and carried object below torso (if any). The
union of these part segmentations is equivalent to the foreground segment. Exem-
plary images and corresponding segmentations for both cameras are illustrated in
Fig. 4.

Cam a

Cam b

Fig. 4 PRID 450S dataset: Original images (top) and multi-label segmentations (bottom) for both
camera views.

2 The dataset is publicly available under https:/Irs.icg.tugraz.at/download.php.

3 The more detailed segmentations were actually not used for this study, but as they could be
beneficial for others they are also provided.
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5 Experimental Results

In the following, we give a detailed study on metric learning for person re-
identification using the framework introduced in Sec. 4. In particular, we compare
the methods discussed in Sec. 2 using the datasets presented in Sec. 4, where all
methods get exactly the same data (training/test splits, representation). The results
are presented in form of CMC scores [29], representing the expectation of find-
ing the true match within the first r ranks. In particular, we plot the CMC scores
for the different metric learning approaches and additionally provide tables for the
first ranks, where the best scores are given in boldface, respectively. If available,
also comparisons to state-of-the-art methods are given. The reported results are av-
eraged over 10 random runs. Regarding the number of PCA dimensions, we use
100 dimensions for VIPeR and CAVIAR4REID, 40 for PRID 2011, PRID 450S and
ETHZ SEQ. #1, and 20 for ETHZ SEQ. #2 and SEQ. #3.

5.1 Dataset Evaluations

The first experiment was carried out on the VIPeR dataset, which can be considered
the standard benchmark for single-shot re-identification scenarios. The CMC curves
for the different metric learning approaches are shown in Fig. 5(a). It can be seen
that besides LDA and LDML, which either have too weak discriminative power or
are overfitting to the training data, all approaches significantly improve the classifi-
cation results over all rank levels. In addition, we provide these results compared to
state-of-the-art methods (i.e., ELF [14], SDALF [9], ERSVM [26], DDC [16], PS [5],
PRDC [31], and PCCA [24]) in Table 1. As for many methods timings are available,
these are also included in the table. The results show that metric learning boosts the
performance of the originally quite simple representation and finally yields compet-
itive results; however, at dramatically reduced computational complexity.

Matching Rate (%)
Matching Rate (%)

KISSME|

- KISSME
——EIML : b ; Pl ——EIML
LMNN 65 . : LMNN

LMNN-R LMNN-R
ITML

IT™L

Euclidean Euclidean
T T T

I i i i I i I I I I I
0 10 20 30 40 50 60 70 80 90 100 1 2 3 4 5 6 7
Rank Rank

(a) VIPeR. (b) ETHZ (SEQ. #1).

Fig. 5 CMC curves for (a) VIPeR and (b) ETHZ SEQ. #1.
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Method |r=1{10|20|50(100| f1ain
KISSME [20]| 27 [70|83|95| 99 | 0.1 sec
EIML [17] | 22 |63(79(93]| 99| 0.3 sec
LMNN [30] | 17 |54{69({87[96 | 2 min
LMNN-R [7]] 13 [50[65|86| 95| 45 min
ITML [6] 13 |54(73[91] 98 | 25 sec
LDML [15] | 6 [24]|35]|54| 72| 0.8 sec
Mahalanobis | 16 [54(72|89( 96 |0.001 sec
LDA 7 (25|37|61| 79| 0.1 sec
Euclidean 7 |24|34(55| 73 -
ELF [14] 12 |43|60|81| 93 | 5 hours
SDALF [9] | 20 |50{65(85| — -
ERSVM [26]] 13 [50{67|85|94 | 13 min
DDC [16] 19 [52{65|80| 91 -
PS [5] 22 |57(71(87| - -
PRDC [31] | 16 |54|70(87| 97 | 15 min
PCCA [24] | 19 |65|80| — | — -

Table 1 CMC scores (in [%]) and average training times per trial for VIPeR.

Next, we show results for ETHZ, another widely used benchmark, containing
trajectories of persons captured from a single camera. Thus, the image pairs show
the same characteristics and metric learning has only little influence. Nevertheless,
the CMC curves in Fig. 5(b) for SEQ. #1, where metric learning has the largest
impact, reveal that a performance gain of more than 5% can be obtained over all
ranks. The decrease of LMNN can be explained by the evaluation protocol, which
generates impostors resulting in an overfitting model.

SEQ. #1 SEQ. #2 SEQ. #3
Method 1[2(3|4(5|6|7|1[2]|3[4|5]|6|7|1(2|3[4|5]|6|7
KISSME [20]]76|83|86(88|90({90|91]|69|79{83|86|89(90]|91]83|91|93|95({96|98|98
EIML [17] |80|85(88|89(90(91|92|74(83|87|90({91|92|93(90(94|95(96|98|99(99
LMNN [6] [47|58(64|67|70(73|74|40({51|59|66(70|75|79(34{51|61{66|72|77|79
LMNN-R [7]|45|57|64|68|71|74|77]|47|56(65|72|76|79|83|49|64|73|79(83|86|89
ITML [30] |72|80(84|86|88|89|89]70(81{85|87|89({90|91]|88|93|96/96(98|98|99
LDML [15] |68|75(78|80|82(83|84|64|74|78|81|84|85|86(81[88|91({95|96|96(96
Mahalanobis [77|83(87(89|90(91|92]70|81(85|89(89(91|91]84|91|93|95[96|98|98
LDA 74(80|83(85(86|86(87]70|81|85(87|90(91(92]|88|94(96|96|98 98|98
Euclidean |69|75(80|81|83|84|85|68|77|81|83(85|87|89(85|91|94|95|96|96(97

Table 2 CMC scores (in [%]) for ETHZ for the first 7 ranks.

In contrast, PRID 2011 defines a more realistic setup. In fact, the images stem
from multiple cameras and especially the number of gallery images is much higher.
Again from the CMC curves in Fig. 6(a) it can be seen that for all methods be-
sides LDA and LDML a significant improvement can be obtained, especially for
the first ranks. The results in Table 3 reveal that in this case also using a standard
Mahalanobis distance yields competitive results. Moreover, it can be seen that the
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descriptive approach [16], which uses a much more complex representation, can
clearly be outperformed.

Matching Rate (%)
Matching Rate (%)

KISSME
EIML

LMNN
LMNN-R
—— ITML

LDML
Mahalanobis

Mahalanobis
w0 : RN L DA 10k FET LDA

Euclidean
T

Euclidean

I I I I L L L
0 100 200 300 400 500 600 0 50 100 150 200
Rank Rank

(a) PRID 2011. (b) PRID 4508 (with segmentation).

Fig. 6 CMC curves for (a) PRID 2011 and (b) PRID 450S.

Method r=1/10|20|50{100
KISSME [20]] 15 [39|52|68| 80
EIML [17] 16 (39(51|68| 81
LMNN [30] | 10 |30{42|59]| 73
LMNN-R [7] ] 9 [32(43|60| 76
ITML [6] 12 [36|47|64| 79
LDML [15] 2 | 6|11|19] 32
Mahalanobis | 16 |41|51|64| 76

LDA 4 [14(21(35] 48
Euclidean 3 |10|14(28| 45
Descr. M. [16]| 4 |24|37|56| 70

Table 3 CMC scores (in [%]) for PRID 2011.

As the newly created PRID 450§ dataset builds on PRID 2011, it has similar
characteristics, however, provides much more linked samples. In addition, we also
generated detailed foreground/background masks, allowing us to analyze the effect
of using an exact foreground/background segmentation. The CMC curves exploiting
the given segmentations are shown in Fig. 6(b). Again it can be seen that using
LDML has no and using LDA has only a little influence on the classification results,
whereas for all other approaches a significant improvement can be obtained. The
impact of segmentation is analyzed in Table 4, where both, the results with and
without segmentation, are compared. It can be recognized that using the foreground
information is beneficial for all approaches increasing the performance by up to 5%.

Finally, we show the results for the CAVIAR4REID dataset for two reasons. First,
to demonstrate that metric learning can also be applied if the number of training
samples is small, and, second, to show that the single-shot setup can easily be ex-
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Table 4

Method |r=1[10(20]|50|100
KISSME [20]| 28 |65|76|88| 96
EIML [17] | 29 |62]|73|86| 96
LMNN [30] | 24 [62(73(87| 96
LMNN-R [7]] 19 |54|66|81| 92
ITML [6] 21 |53|67|84| 95
LDML [15] | 4 |16(23[40| 53
Mahalanobis | 27 [60(70|82| 93
LDA 19 |38(46|62]| 81
Euclidean 4 |[15]22(40| 53

(@)
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Method r=1(10{20|50{100
KISSME [20]| 33 [71|79|90| 97
EIML [17] | 35 |68(77(90| 98
LMNN [30] | 29 |68|78({90| 97
LMNN-R [7]| 22 [59|71|86]| 95
ITML [6] 24 (59|71|87| 97
LDML [15] | 12 [31|39|55|73
Mahalanobis | 31 [62|73|85]| 95
LDA 20 |46(54|69| 86
Euclidean 13 [32(41|55| 74
(b)

CMC scores (in [%]) for PRID 4508S: (a) without segmentation and (b) with segmentation.

Method |r=1(2|3[4|5|6 | 7|8
KISSME [20]| 70 |88|95({98(99| 99 | 99 (100
EIML [17] | 67 |86(92|95|98| 99 |100{100
LMNN [30] | 43 [60|70|81(88| 94 | 98 |100
ITML [6] 56 |76(86(93|97| 98 |100(100
LDML [15] | 27 |46{59|71|81| 88 | 94 {100
Mahalanobis | 55 |77|90{95|98| 99 |100(100
LDA 37 |160|73(83|91| 94 | 98 {100
Euclidean | 28 |46|62|71|81| 88 | 94 {100
ICT [2] 62 (81]95(97(97|100{100|100

Table 5 CMC scores (in [%]) for CAVIAR4REID.

tended to multi-shot. The corresponding CMC scores (due to the small number of
samples averaged over 100 runs) are shown in Fig. 7 and Table 5, where we also
compare to [2]. Again for all approaches except LDML an improvement can be ob-
tained. The higher variance in performance can be explained by the smaller number
of training samples, resulting in a higher overfitting tendency.

Fig. 7 CMC curves for CAVIAR4REID.

Matching Rate (%)

201

Mahalanobis
LDA

Euclidean
T

Rank

7 8
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5.2 Discussion

The results shown above clearly indicate that metric learning, in general, can dras-
tically boost the performance for single-shot (and even for multi-shot) person re-
identification. In fact, by learning a metric we can describe the visual transition
from one camera to the other, thus, the applied features do not have to cope with all
variabilities, allowing for more meaningful feature matchings. Hence, even if rather
simple features are used competitive results can be obtained.

In particular, we used only block-based color and texture descriptions for two
reasons. On the one hand side since they are easy and fast to compute and on the
other hand side to demonstrate that using even such simple features state-of-the-art
or better results can be obtained. However, it is clear that better features, e.g., also
exploiting temporal information in a multi-shot scenario will further improve the
results.

Surprisingly, even using the standard Mahalanobis distance allows for improving
the results and finally yields considerable results. Nevertheless, also incorporating
discriminative information yields a further performance gain. However, we have to
consider the specific constraints given by the task: (a) images showing the same
person might not have a similar visual description whereas (b) images not showing
the same person could be very close in the original feature space. Thus, the prob-
lem is somehow ill-posed and highly prone to overfitting. This can for instance be
recognized for LDML, LMNN, and ITML.

As LDML does not use any regularization, it is totally overfitting to the training
data and thus yields rather weak results (comparable to the Euclidean distance). The
results of LMNN are typically better, however, since the impostor handling is not ro-
bust against outliers, the problems described above cannot be handled sufficiently.
The same applies for ITML, which often yields similar results as the original Maha-
lanobis distance, clearly showing that given somehow “ambiguously labeled” sam-
ples no additional discriminative information can be gained. In contrast, KISSME
and EIML, following different strategies, provide some regularization by relaxing
the original problem, which seems to be better suited for the given task. Moreover,
the metric estimation is computationally much more efficient.

Results on five different datasets showing totally different characteristics clearly
demonstrate that metric learning is a general purpose strategy. In fact, the same
features were used, only the parameter for PCA was adjusted, which has only a
little influence on the results. However, we recognized that for smaller datasets less
PCA dimensions are sufficient. The results also indicate the characteristics of the
datasets. For VIPeR and CAVIAR4REID showing a larger variety in the appearance
the discriminative power can fully be exploited. For PRID 2011 and PRID 4508
containing a larger amount of “similar” instances the improvement from generative
to discriminative metric is less significant. Finally, for the ETHZ dataset, where the
images are taken from the same camera view, metric learning has, as expected, only
a little influence.

Thus, if we are given enough data to learn a meaningful metric, metric learn-
ing could be highly beneficial in the context of person re-identification. However,
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more important than much data is good data. Hence, it would be more meaningful
to use temporal information to select good candidates for learning than just using
larger amounts of data. Similarly, is was also revealed by the improved results for
the PRID 450S dataset that using better data (i.e., estimating the metric on the fore-
ground regions only) is beneficial.

6 Conclusion

The goal of this chapter was to analyze the applicability of Mahalanobis metric
learning in the context of single-shot person re-identification. We first introduced the
main ideas of metric learning and gave an overview on specific approaches address-
ing the same problem following different paradigms. These were evaluated within a
fixed framework on five different benchmark datasets (where one was newly gener-
ated). If applicable, we also gave a comparison to the state-of-the-art. Even though
some approaches tend to overfit to the training data, we can conclude that metric
learning can dramatically boost the classification performance and that even less
complex (non-handcrafted) representations could be sufficient for the given task.
Moreover, one interesting result is that even a standard Mahalanobis metric not us-
ing any discriminative information yields quite good classification results. We also
showed that having a perfect segmentation further improves the classification and
that it is straight forward to extend the current framework toward multi-shot scenar-
ios. In a similar way also temporal information or a better image representation can
be used.

References

1. B. Alipanahi, M. Biggs, and A. Ghodsi. Distance metric learning vs. fisher discriminant
analysis. In Proc. AAAI Conf. on Artificial Intelligence, 2008.

2. T. Avraham, I. Gurvich, M. Lindenbaum, and S. Markovitch. Learning implicit transfer for
person re-identification. In Proc. ECCV Workshop on Re-Identification, 2012.

3. S. Bak, E. Corvee, F. Brémond, and M. Thonnat. Person re-idendification using Haar-based
and DCD-based signature. In Workshop on Activity Monitoring by Multi-Camera Surveillance
Systems, 2010.

4. S. Burer and R. Monteiro. A nonlinear programming algorithm for solving semidefinite pro-
grams via low-rank factorization. Mathematical Programming, 95(2):329-357, 2003.

5. D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani, and V. Murino. Custom pictorial structures
for re-identification. In Proc. British Machine Vision Conf., 2011.

6. J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning.
In Proc. Int’l Conf. on Machine Learning, 2007.

7. M. Dikmen, E. Akbas, T. S. Huang, and N. Ahuja. Pedestrian recognition with a learned
metric. In Proc. Asian Conf. on Computer Vision, 2010.

8. A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile scene analysis. In Proc.
IEEE Int’l Conf. on Computer Vision, 2007.



20

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Roth et al.

. M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. Person re-identification by

symmetry-driven accumulation of local features. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, 2010.

R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7:179-188, 1936.

N. Gheissari, T. B. Sebastian, and R. Hartley. Person reidentification using spatiotemporal
appearance. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2006.

A. Ghodsi, D. F. Wilkinson, and F. Southey. Improving embeddings by flexible exploitation
of side information. In Proc. Int’l Joint Conf. on Artificial Intelligence, 2007.

D. Gray, S. Brennan, and H. Tao. Evaluating appearance models for recognition, reacqui-
sition, and tracking. In Proc. IEEE Workshop on Performance Evaluation of Tracking and
Surveillance, 2007.

. D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with an ensemble of localized

features. In Proc. European Conf. on Computer Vision, 2008.

M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric learning approaches for face
identification. In Proc. IEEE Int’l Conf. on Computer Vision, 2009.

M. Hirzer, C. Beleznai, P. M. Roth, and H. Bischof. Person re-identification by descriptive
and discriminative classification. In Proc. Scandinavian Conf. on Image Analysis, 2011.

M. Hirzer, P. M. Roth, and H. Bischof. Person re-identification by efficient metric learning.
In Proc. IEEE Int’l Conf. on Advanced Video and Signal-Based Surveillance, 2012.

M. Hirzer, P. M. Roth, M. Kostinger, and H. Bischof. Efficient learning of camera transitions
for person re-identification. In Proc. European Conf. on Computer Vision, 2012.

M. Journée, F. Bach, P--A. Absil, and R. Sepulchre. Low-rank optimization of the cone of
positive semidefinite matrices. STAM Journal of Optimization, 20(5):2327-2351, 2010.

M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof. Large scale metric learning
from equivalence constraints. In Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion, 2012.

W. Li, R. Zhao, and X. Wang. Human reidentification with transferred metric learning. In
Proc. Asian Conf. on Computer Vision, 2012.

Z.Lin and L. S. Davis. Learning pairwise dissimilarity profiles for appearance recognition in
visual surveillance. In Advances Int’l Visual Computing Symposium, 2008.

M. Loog, R. P. W. Duin, and R. Haeb-Umbach. Multiclass linear dimension reduction by
weighted pairwise fisher criteria. IEEE Trans. on Pattern Analysis and Machine Intelligence,
23(7):762-766, 2001.

A. Mignon and F. Jurie. PCCA: A new approach for distance learning from sparse pairwise
constraints. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2012.

F. Porikli. Inter-camera color calibration by correlation model function. In Proc. Int’l Conf.
on Image Processing, 2003.

B. Prosser, W.-S. Zheng, S. Gong, and T. Xiang. Person re-identification by support vector
ranking. In Proc. British Machine Vision Conf., 2010.

A. Rahimi, B. Dunagan, and T. Darrell. Simultaneous calibration and tracking with a network
of non-overlapping sensors. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
2004.

W.R. Schwartz and L. S. Davis. Learning discriminative appearance-based models using par-
tial least squares. In Proc. Brazilian Symposium on Computer Graphics and Image Processing,
2009.

X. Wang, G. Doretto, T. B. Sebastian, J. Rittscher, and P. H. Tu. Shape and appearance context
modeling. In Proc. IEEE Int’l Conf. on Computer Vision, 2007.

K. Q. Weinberger and L. K. Saul. Fast solvers and efficient implementations for distance
metric learning. In Proc. Int’l Conf. on Machine Learning, 2008.

W.-S. Zheng, S. Gong, and T. Xiang. Reidentification by relative distance comparison. /[EEE
Trans. on Pattern Analysis and Machine Intelligence, 35(3):653-668, 2013.



Index

Efficient Impostor-based Metric Learning, 7
Information Theoretic Metric Learning, 6

KISSME, 8

Large Margin Nearest Neighbor, 7
Linear Discriminant Analysis, 5
Linear Discriminant Metric Learning, 5

Mahalanobis Distance, 1

21



