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Abstract

To learn an object detector labeled training data is re-
quired. Since unlabeled training data is often given as an
image sequence we propose a tracking-based approach to
minimize the manual effort when learning an object detec-
tor. The main idea is to apply a tracker within an active
on-line learning framework for selecting and labeling un-
labeled samples. For that purpose the current classifier is
evaluated on a test image and the obtained detection result
is verified by the tracker. In this way the most valuable sam-
ples can be estimated and used for updating the classifier.
Thus, the number of needed samples can be reduced and
an incrementally better detector is obtained. To enable ef-
ficient learning (i.e., to have real-time performance) and to
assure robust tracking results, we apply on-line boosting for
both, learning and tracking. If the tracker can be initialized
automatically no user interaction is needed and we have an
autonomous learning/labeling system. In the experiments
the approach is evaluated in detail for learning a face de-
tector. In addition, to show the generality, also results for
completely different objects are presented.

1. Introduction

A lot of research has been focused on efficient training of
detectors but only little attention has been paid to efficiently
labeling and acquiring suitable training data. Thus, training
data, i.e., positive and negative samples are usually obtained
by hand labeling a large number of images, which is a time
consuming and tedious task.

Negative examples (i.e., examples of images not con-
taining the object) are usually obtained by a bootstrap ap-
proach [21]. Starting with a few negative examples a classi-
fier is trained. The obtained classifier is applied to images,
that do not even contain the object-of-interest. Those sub-
images, where a (wrong) detection occurs are added to the
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set of negative examples and the classifier is retrained. This
process can be repeated several times. Therefore, obtaining
negative examples is usually not much of a problem.

Automatically obtaining a set of positive examples is a
more difficult task. Existing approaches to minimize the
labeling effort (e.g., [10, 15]) are based on two stages. In
the first stage, an initial classifier is trained using a smaller
number of examples. In the second stage, the classifier is
applied on a training sequence and the detected patches are
added to the set of positive examples. Levin et al. [10] start
with a small set of hand labeled data and generate additional
labeled examples by applying co-training of two classifiers.
To completely avoid hand labeling Nair and Clark [15] pro-
pose to use motion detection to obtain the initial training set.
New examples are acquired by applying a detector obtained
by on-line learning (Winnow).

As a disadvantage for these approaches an initial classi-
fier has to be trained and the classifiers are biased by the
examples used to train the initial model. Thus, a great num-
ber of potential new examples, even different views of the
same object, would not be added because they do not fit to
the learned model! Having a sequence of images this can be
avoided by using a tracker. Once initialized a robust tracker
is able to follow the object-of-interest through a sequence
of images. If tracking works on a longer sequence different
views of an object can be obtained and used for learning.

Thus, especially in field of face recognition, various
tracking-based methods were proposed to to gather train-
ing samples (e.g., [9,19]). Lee et al. [9] proposed to couple
face recognition and face tracking to improve the recogni-
tion rate. Both modules share the same appearance model,
a collection of linear subspaces, which approximates a non-
linear appearance manifold (e.g., [14]). Tracking is applied
in both, the training and recognition stage. In the train-
ing stage, the training samples are obtained by cropping
the results obtained by a variant of eigentracking [2] on a
training sequence. In the recognition stage, the final result
is obtained by using a Bayesian framework, that considers
both, the results of the detection in the current frame and
the (tracked) results from the previous frames.
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Similarly, Sivic et al. [19] apply tracking to obtain train-
ing samples. They first run a frontal face detector [13],
that is trained by boosting orientation-based features. To
achieve a low false positive rate a conservative detection
threshold is used. Hence, a lot of faces are not detected
and the false negative rate is increased. The thus obtained
detections are then used to initialize an affine covariant re-
gion tracker [20]. To compute the face representation from
the tracked patches, first, localized features such as left and
right eyes, tip of the nose, and center of the mouth are
searched. Then, the object representation is built from five
overlapping SIFT descriptors [12] at the detected features.
As a disadvantage, to learn the model for the feature posi-
tion and appearance a great amount (i.e., 5000 images) of
hand-labeled face images is needed!

In contrast, Hewitt and Belongie [7] proposed a method
for learning a face representation, where a tracker serves for
verification. The tracker locates the face correctly whereas
the initial classifier may fail. To finally compute a classifier
large-scale and low-scale features are used. But as a dis-
advantage the user needs to manually select the face in the
first input frame to build the initial face model.

But these approaches have several limitations. First, a
manual initialization [9] or a pre-trained classifier [9, 19] is
needed to initialize the learning process. In addition, since
a simple tracker is prone to errors and the selected patches
must be inspected manually before they can be used for
learning [9] . Thus, still some human effort is necessary.
Second, even though the tracking information provides the
labels on the fly, which would allow on-line learning, the
models are trained off-line. Finally, the usage of very com-
plex object models limits the approaches to a particular ob-
ject class (i.e., faces).

To overcome these problems in this paper we introduce
an active learning framework, that is based on discrimina-
tive on-line learning. Thus, no off-line training is required
and an existing classifier can directly be updated. The main
idea is that a tracker is applied for selecting the most valu-
able positive and negative samples. Thus, in contrast to a
passive random sampling strategy a faster convergence is
assured. In particular we apply on-line boosting for both,
for learning and tracking, which allows to learn a detector
in real-time (e.g., processing images from a life camera).
But since the approach is quite general other methods may
be applied as well. To have an autonomous learning system
the tracker is initialized automatically. Thus, for learning an
object representation no user interaction is needed.

The outline of the paper is as follows: First, in Section 2
we discuss the applied on-line learning method, the used
tracker, and possible autonomous initializations for track-
ing. Next, in Section 3 we introduce the tracking-based ac-
tive sampling strategy. Experimental evaluations are given
in Section 4. Finally, we conclude the paper in Section 5.

2. Preliminaries

2.1. On-line Learning

For learning in this paper we apply On-line Boosting for
Feature Selection [5]. The main idea of boosting for feature
selection, in general, is that each featurefj corresponds to
a single weak classifierhj and that boosting selects an in-
formative subset ofN features, where a weak classifier has
to perform only slightly better than random guessing (i.e.,
the error rate of a classifier for a binary decision task must
be less than 50%). In fact, various different feature types
may be applied but similar to the seminal work of Viola and
Jones [23] in this work we use Haar-like features, which can
be calculated efficiently using integral data-structures.

Thus, in the off-line case boosting for feature
selection can be summarized as follows: given
a training set of positive and negative samples
S = {(x1, y1), ..., (xL, yL)}, where xl ∈ IRm is a
sample andyl ∈ {−1,+1} is the corresponding label,
a set of possible featuresF = {f1, ..., fM}, a learning
algorithmL, and a weight distributionD, that is initialized
uniformly by D(l) = 1

L
. In each iterationn, n = 1, ..., N ,

all featuresfj , j = 1, . . . ,M are evaluated on all samples
(xl, yl), l = 1, . . . , L and hypotheses are generated by
applying the learning algorithmL with respect to the
weight distributionD over the training samples. The best
hypothesis is selected and forms the weak classifierhn and
the weight distributionD is updated according to the error
of the selected weak classifier. The process is repeated
until N features are selected (i.e.,N weak classifiers are
trained). Finally, a strong classifierH is computed as a
weighted linear combination of all weak classifiershn.

Contrary, during on-line learning each training sample
is provided only once to the learner. Thus, all steps de-
scribed above have to be on-line and the weak classifiers
have to be updated whenever a new training sample is avail-
able. On-line updating the weak classifiers is not a problem
since various on-line learning methods exist, that may be
used for generating hypotheses. The same applies for the
voting weightsαn, that can easily be computed if the errors
of the weak classifiers are known. The crucial step is the
computation of the weight distribution since the difficulty
of a sample is not known a priori. Thus, the basic idea is
to estimate the importanceλ of a sample by propagating it
through the set of weak classifiers [16]. In fact,λ is in-
creased proportional to the errore of the weak classifier if
the sample is misclassified and decreased otherwise.

Thus, the work-flow for on-line boosting for feature se-
lections selection can be described as follows: a fixed num-
ber ofN selectorss1, .., sN is initialized with random fea-
tures. A selectorsn can be considered a set ofM weak
classifiers{h1, . . . , hM}, that are related to a subset of fea-
turesFn = {f1, . . . , fM} ∈ F , whereF is the full feature



pool. The selectors are updated whenever a new training
sample〈x, y〉 is available and the selectorsn(x) selects the
best weak hypothesis according to the estimated training er-
ror from the importance weights of the correctly and incor-
rectly classified samples seen so far. Finally, the weight
αn of then-th selectorsn is updated, the importanceλn is
passed to the next selectorsn+1, and a strong classifier is
computed by a linear combination ofN selectors:

H(x) = sign

(

N
∑

n=1

αnsn(x)

)

. (1)

Thus, contrary to the off-line version, an on-line classi-
fier is available at any time of the training process.

2.2. Tracking

In addition to speed (real-time!) the most important qual-
ity criterion for a tracker is the stability. The stability can be
considered a measure how exactly a tracker determines the
object’s position over time. Since for the learning frame-
work proposed in this paper the tracked patches are used
to select the patches for updating the current classifier the
patches must be cut very accurately. Thus, a “very stable”
tracker is needed, that is able to follow an object without
drifting. The importance of a stable tracker is demonstrated
in Figure 1. We tracked a toy animal, that was put onto
a turn table. Since only the appearance of the object is
changing but not the position this is a very simple tracking
task. As can be seen from Figure 1(a), where the object was
tracked using a simple color tracker, the object is tracked
but there are small drifts. Thus, the object is not optimally
captured. In contrast, for the results shown in Figure 1(b)
we used a more stable tracker and we get highly accurate
results.

(a)

(b)
Figure 1. Importance of a stable tracker for learning: (a) track-
ing results obtained by a simple color tracker – the bounding box
is drifting and the tracked patches can not be used for learning;
(b) tracking results obtained by Tracking via On-line Boosting –
highly accurate patches are obtained, that can be used to learn an
object model.

In fact, the results shown in Figure 1(b) were obtained
by Tracking via On-line Boosting [5], where the main idea

is to formulate tracking as a binary classification problem.
For that purpose by using on-line boosting, that was dis-
cussed in detail in Section 2.1, a classifier is estimated, that
discriminates between the object and the local background.
In contrast to related (boosting-based) tracking approaches
(e.g., [1, 3]) applying an on-line learning method allows
to immediately model changes in the object’s appearance.
Moreover, varying the number of selectors provides a steer-
able environment in terms of speed and accuracy.

The tracking step is based on simple template tracking
[6]. Assuming that the object was detected at timet at time
t+1 a search region is defined around the detection in previ-
ous frame. By evaluating the current classifier on each sub-
patch in the region of interest a confidence value is obtained
for each patch. The thus obtained confidence map is ana-
lyzed and the target window is shifted to the best position,
i.e., the window where the confidence value is maximized.
Alternatively, a mean shift approach [4] may be applied. Fi-
nally, the classifier is updated and the process is continued.

To initialize the tracker, a selected image region is as-
sumed to be a positive sample. At the same time negative
examples are extracted by taking regions of the same size as
the target window from the surrounding background. Using
these samples several iterations of the on-line boosting al-
gorithm are carried out. Thus, the classifier adapts to the
specific target object and at the same time it is discrimina-
tive against its surrounding background.

2.3. Initialization of the Tracker

The simplest method is to manually initialize the tracker.
But to have an automatic learning system this step should
be automatic as well. The main idea is to find a suitable
segmentation, that separates the object-of-interest fromthe
background. In the following we give a not exhaustive sum-
mary of approaches, that we successfully applied to auto-
matically initialize a tracker:

Change Detection: To initialize a tracker via change detec-
tion first a background modelB (see, e.g., [18]) is estimated
Then, given the current imageI the changes caused by fore-
ground objects can be detected by background subtraction
and pixel-wise thresholding:

FG(m,n) = |B(m,n) − I(m,n)| > θ . (2)

From the thus obtained binary regions bounding boxes
are estimated, that can be used to initialize the tracker.

Color Model: Since most image sources (cameras, video
streams, etc.) provide color images it might useful to use
this color information; at least to initialize the tracker.In
particular, we can apply the ideas of skin-color modeling to
initialize a tracker. Thus, a skin-color model can be esti-
mated as follows: First, the variance caused by the intensity



is removed. In fact, this is achieved by normalizing the data
or by transforming the original pixel values into a differ-
ent color space (e.g.,rg-color-space orHSV-color-space).
Second, based on this more suitable representation a color
histogram is computed, which is used to estimate an ini-
tial mixture model byK-means clustering. Finally, a Gaus-
sian mixture model is estimated, which can efficiently be
done by applying the iterative EM-algorithm. To initializea
tracker the probability map of an image is thresholded and
the thus obtained binary mask is used to define the object-
of-interest.

Detector: Similar to the approach of Sivic et al. [19] a weak
detector may be used to initialize the process for learning
a stronger detector. For instance, an object detector, that
captures only partially the appearance of an object (e.g., a
frontal person detector), can be used to initialize a tracker.
Then through tracking new views of the object are collected
and finally a detector can be trained, that models the whole
appearance.

3. Active Learning Framework

When learning a classifier the samples are usually drawn
randomly from a fixed set. The set represents the underly-
ing distributions of positive and negative samples. Hence,
a great number of samples is needed. Such a sampling
strategy, which is often referred to aspassive learning[11],
would result in a slow convergence.

To overcome these problems an adaptive learning algo-
rithm taking advantage of the ideas ifactive learning(e.g.,
[11,22,24]) can be applied. In general, an active learner can
be considered a quintuple(C,Q, S, L, U) [11], whereC is a
classifier,Q is a query function,S is a supervisor (teacher),
and L and U are a set of labeled and unlabeled data, re-
spectively. First, an initial classifierC0 is trained from the
labeled setL. Given a classifierCt−1, then the query func-
tion Q selects the most informative unlabeled samples from
U and the supervisorS is requested to label them. Using the
thus labeled samples the current classifier is re-trained ob-
taining a new classifierCt. This procedure is summarized
in Algorithm 1.

Algorithm 1 Active Learning

Input: unlabeled samplesU, classifierCt−1

Output: classifierCt

1: while teacher can label samplesuj do
2: Apply Ct−1 to all samplesuj

3: Let Q find them most informative samplesuq

4: Let teacherS assign labelsyq to samplesuq

5: Re-train classifier:Ct

6: end while

When considering an adaptive system we can start from
a small set of labeled dataL. But usually the unlabeled data
U is not available in advance. Assuming we have already
trained a classifierCt−1 the first crucial point at timet is
to define a set of unlabeled dataUt and a suitable query
functionQ.

Thus, the first crucial question is “What are the most
valuable samples?”. It has been shown [17] that it is more
effective to sample the current estimate of the decision
boundary than the unknown true boundary. In fact, the
most valuable samples are exactly those, that were mis-
classified by the current classifier, which is illustrated in
Figure 2. The red and green points indicate the samples,
that were wrongly classified by the current classifier. Obvi-
ously, these points are much better samples than randomly
selected points from the class! Hence, the algorithm is fo-
cused on the hard samples and the current decision bound-
ary (dashed gray line) can be moved such that those samples
are correctly classified (solid gray line). For a detailed the-
oretical discussion see [17]. In this way the number of re-
quired training samples can considerably be reduced! Con-
sidering the task of object detection the misclassified sam-
ples are the detected false positives and the missed true pos-
itives.

Figure 2. Sampling at the current decision boundary is more ef-
ficient than random sampling: updating using only a small num-
ber of wrongly classified samples (red and green points) allows to
move the current decision boundary (dashed gray line) in the right
direction (solid gray line).

The second crucial point is the definition of the super-
visor S. In fact, new unlabeled data has to be robustly in-
cluded into the already built model. More formally, at timet
given a classifierCt−1 and an unlabeled examplext ∈ IRm.
Then, a reliable supervisor is needed, that robustly estimates
a labelyt ∈ {+1,−1} for xt.

Assuming that we have a robust tracker, that is able to
follow an object over a longer period of time without small
drifts. The key idea in this paper is that, when learning a
discriminative classifierC, a trackerT undertakes both, the
task of the query functionQ and of the teacherS. This is
illustrated in Figure 3.



(a) (b) (c)
Figure 3. Active learning - suitable updates for learning a detector:
(a) classifier evaluated at timet − 1, (b) positive (green bounding
box) and negative (red bounding boxes) updates selected at timet,
and (c) classifier evaluated at timet + 1.

For that purpose, at timet the classifierCt−1 is applied
on the current imageIt (see Figure 3(a)). The thus ob-
tained detection result is verified by the tracking resultTt

(based on size and position of the corresponding bounding
boxes), that robustly represents the object-of interest. Based
on this verification the valuable samples (see Figure 3(b)),
i.e., the reported false positives (red bounding boxes) and
the (missing) true positives (green bounding boxes), are
identified (trackerT is used as query functionQ). In ad-
dition, such the selected samples are labeled (trackerT is
used as teacherS). These samples are fed back into the dis-
criminative classifier as positive and negative examples, re-
spectively, and we finally get a better classifierCt (see Fig-
ure 3(c)). Exploiting the huge amount of video data (i.e.,
we have video stream) this process can be iterated to pro-
duce a stable and robust classifier. The update strategy is
summarized more formally in Algorithm 2.

Algorithm 2 Active Sampling Strategy

Input: discriminative classifierDt−1, tracking resultTt−1,
unknown imageIt

Output: classifierDt

1: EvaluateDt−1 on It obtainingJ detectionsxj

2: for j = 1, . . . , J do
if Tt−1 ≈ xj then

update (Dt−1, xj ,+)
else if Tt−1 ≈/ xj then

update (Dt−1, xj ,−)
end if

3: end for

In praxis a two stage approach is applied. In the first
stage, to generate an initial classifier, tracked patches are
used as positives samples whereas the negative samples are
extracted randomly from the background, where the tracker
has not detected an object. In the second stage, this clas-
sifier is re-trained by using the Active Sampling strategy
described in Algorithm 2. The whole learning approach is
summarized more formally in Algorithm 3.

Algorithm 3 Active Sampling via Tracking

1: Initialize TrackerT0

2: Collect pos./neg. training samples

3: Train initial classifierD0

4: while t do
5: Evaluate Tracker:Tt

6: updateDt (Algorithm 2)
7: end while

To actually learn the object representation we apply and
On-line Boosting for Feature Selection (Section 2.1), but
any other on-line learning method may be applied. More-
over, we apply Tracking via On-line Boosting (see Sec-
tion 2.2), that is based on the same representation. By using
a robust configuration (i.e., by using50 selectors) we can
assure that the tracking results have the required accuracy.
To initialize the learning process the object is either selected
by hand once or, if possible, automatically by any of meth-
ods discussed in Section 2.3.

4. Experimental Results

In the following demonstrate the presented approach
mainly based on a face detection task. Thus, the learning
process was started using a weak pre-trained face detector.
Alternatively, a probabilistic skin-color model can be ap-
plied for the same purpose.

First, we show the importance of a good tracker. There-
fore, we created several challenging sequences each consist-
ing of250 frames and trained different face classifiers as de-
scribed above. The only difference between these classifiers
is that in the active learning framework trackers of varying
accuracy were applied to select new training samples. In
fact, Tracking via On-line Boosting provides a steerable en-
vironment, i.e., we can vary the number of applied selectors.
Illustrative detection results for two special cases (using 10
and50 applied selectors) are shown in Figure 4.

For both cases the detector mainly captures the faces.
But it clearly can be seen that the detection results in Fig-
ure 4(a), that were obtained for the detector trained using
the samples selected by the more accurate tracker, are more
accurate. Depending on the ground-truth and the used eval-
uation criterion the detections shown in Figure 4(b) could
even be counted as false positive.

More formally, this is summarized in Table 1 and Ta-
ble 2, where we analyzed the detection characteristics. For
that purpose, we varied the level of significance. In fact, to
enable a fair comparison we applied the overlap criterion.
From Table 1 it can be seen that for the detector trained
using the reliable samples whether the number of true pos-
itives is decreased nor the number of false positives is in-



(a)

(b)
Figure 4. Quality of detection depends on the accuracy of the tracker: (a) tracker using50 applied selectors and (b) tracker using10 applied
selectors.

creased if we increase the required overlap from originally
40% to 60%. In contrast, if we perform the same experi-
ment for the detector trained by using the less reliable data
the recall and the precision are dramatically reduced. This
can be explained by the small drifts of the tracker, which
return patches, that do not describe the faces very well.
Hence, we get a less significant detector.

overlap 40% 50% 60%

recall 0.92 0.92 0.92
prec. 0.95 0.95 0.94
F-m. 0.95 0.94 0.93

Table 1. Detection characteristics for face detector trained from
“good” samples if required overlap is varied.

overlap 40% 50% 60%

recall 0.91 0.77 0.37
prec. 0.86 0.74 0.36
F-m. 0.89 0.75 0.36

Table 2. Detection characteristics for face detector trained from
“bad” samples if required overlap is varied.

In the following we show that by using the proposed
update strategy the number of required samples can be re-
duced and that a better classifier can be estimated. Thus,
we compare the performance of face detectors, that were
trained on-line by using different sampling strategies. The
first detector (Active Sampling) was trained as described in
Section 3. The second detector was trained using patches,
that were obtained by the tracker whereas the negative sam-
ples were randomly selected from the background (Random
Sampling). For both methods during learning after a pre-

defined number of processed frames classifiers were saved,
which were evaluated on an independent test sequence; the
obtained performance curves are shown in Figure 5.
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Figure 5. (a) Active Sampling vs. (b) Random Sampling.



From Figure 5(a) it can be seen that for Active Sampling
less than100 training frames are required to obtain a preci-
sion, a recall, and hence an F-measure of more than0.90. In
contrast, Figure 5(b) shows that Random Sampling requires
a longer settling phase. Even though a trend of increas-
ing accuracy can be observed after approximative150 train-
ing frames we the precision is insufficient and the precision
curve still shows a stochastic trend. But, in fact, compared
to Active Sampling we have a higher recall.

The same can be seen from Table 3, where we compare
the final face detectors obtained by Active Sampling and
Random Sampling. In addition, a state-of-the-art face de-
tector, i.e., the approach of Viola & Jones [23] is included
in this comparison. To evaluate this detector we used the
pre-trained classifier included in OpenCV1, that is based on
the work of Krupa et al. [8].

Active Samp. Rand. Samp. V & J
recall 0.96 0.97 0.64
prec. 0.95 0.79 0.76
F-m. 0.95 0.87 0.69

Table 3. Face detection: Active Sampling vs. Random Sampling
vs. Viola & Jones.

Similar to the learning curves shown in Figure 5 it can
be seen that Active Sampling and Random Sampling have
a comparable recall whereas the precision for Active Sam-
pling is much better. Moreover, the recall as well as the
precision for the Viola & Jones approach is much smaller
compared to the two other methods. This is not a surprising
result since this detector was trained for frontal faces only.
But as can be seen in Figure 4 the evaluation sequences also
contain semi-profile faces and persons looking down or to
the ceiling, that can not be captured by the detector.

Finally, to demonstrate that the proposed approach is not
limited to face detection we applied the method to learn
a detector for different hand held objects (i.e., a soft-toy
(devil), a bathing-toy (octopus), a coffee cup, and a cell
phone). To start the learning process for these experiments
change detection was applied to automatically initialize the
tracker. Alternatively, for objects having a predominant
color such as the devil (see Figure 6(a)) or the cup (see Fig-
ure 6(b)) also a probabilistic color model may be applied
for the same purpose. The thus obtained detection results
are summarized in Table 4.

devil cup octopus cell phone
recall 0.95 0.98 0.99 0.94
prec. 0.98 1.00 1.00 1.00
F-m. 0.96 0.99 0.99 0.97

Table 4. Detection results obtained for hand held objects.

1http://sourceforge.net/projects/opencvlibrary/ (March 20, 2008)

Even only a small number of training frames (i.e., ap-
proximative250) were used for learning competitive detec-
tion results were obtained. In addition, representative detec-
tion results are shown in Figure 6. It can be seen that there
is a high variance in size, shape, and appearance. Hence,
the presented approach is quite general and is not restricted
to specific visual properties.

(a) (b)

(c) (d)
Figure 6. Illustrative detection results for different hand held ob-
jects: (a) devil, (b) cup, (c) octopus, and (d) cell phone.

5. Conclusion

We have presented a tracking-based active learning ap-
proach for learning a discriminative object representation.
Having an image sequence, the main idea is to track the
object-of-interest and to use the tracking results to select
and label new training samples. For that purpose the cur-
rent discriminative classifier is evaluated on an input image
and the detection results are verified by the tracker. In this
way only valuable samples are used for updating, which in
fact, reduces the training time to finally get a powerful clas-
sifier. Since a stable tracker and an efficient on-line learning
method are required we apply on-line boosting for feature
selection for both, for learning the object representationand
for tracking. That is, the presented approach can be applied
for real-time learning a detector (e.g., processing images
from a video camera). In contrast to similar approaches, the
presented method is not limited to a particular objects and
the human effort is minimized. In fact, the experimental
results show that competitive detectors for faces and hand
held objects can be estimated. Moreover, if the tracker can
be initialized automatically by an independent cue such as
change detection or a weak detector no user interaction is
needed; otherwise the human effort is reduced to manually
select the object-of-interest once in the beginning.
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