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Abstract

For many computer wvision applications la-
beled/segmented data is needed. Manually assigning
labels or segmenting images is a time consuming and
tedious task and becomes infeasible for a huge amount
of data (e.g., when analyzing a video stream). Thus,
this paper proposes a new approach to minimize the
manual labeling/segmentation effort for learning an
object detector by automatically extracting training
data directly from a wvideo sequence. Therefore, a
robust background model, o tracker and an on-line
learning method are combined. The main idea is
to track an object through a video sequence and to
directly use the obtained image patches, showing the
object from different views, to incrementally update an
existing model which in turn can be used for detection.
As the tracker is initialized automatically by change
detection, mo wuser interaction is meeded! Thus, an
unknown object can be learned without having any
prior information. To show the benefit of the proposed
approach the framework is demonstrated on several
typical objects that can be found on a desktop.

1 Introduction

Given an input image, the task of object detection
is to decide if a cropped patch of an image contains
a specific object or not. Thus, a detector based on
a certain classifier (e.g., AdaBoost [33], Neural Net-
work [28], Winnow [15] or PCA [11] ) has to be trained.
However, for training a classifier a set of labeled data
(positive and negative examples) is needed. A lot of
research has been focused on efficient (unsupervised)
training of detectors but only little attention has been
paid to efficiently labeling and acquiring suitable train-
ing data. Thus, training examples are usually obtained
by hand labeling. As a huge amount of data is required,

i.e., a higher number of objects should be learned under
different view points and lightening conditions, this is
not very convenient. Therefore, the hand labeling ef-
fort should be minimized or even completely avoided.

Negative examples (i.e., examples of images not con-
taining the object) are usually obtained by a bootstrap
approach [31]. Starting with a few negative examples
a classifier is trained. The obtained classifier is applied
to images that do not even contain the object. Those
sub-images where a (wrong) detection occurs are added
to the set of negative examples and the classifier is re-
trained. This process can be repeated several times.
Therefore, obtaining negative examples is usually not
much of a problem.

Automatically obtaining a set of positive examples
is a more difficult task. Existing approaches to mini-
mize the labeling effort (e.g., [14,22,27]) are based on
two stages. In the first stage, an initial classifier is
trained using a smaller number of examples. In the
second stage, the classifier is applied on a training se-
quence and the detected patches are added to the set
of positive examples. Levin et al. [14] start with a
small set of hand labeled data and generate additional
labeled examples by applying co-training of two clas-
sifiers. To completely avoid hand labeling Nair and
Clark [22] propose to use motion detection to obtain
the initial training set, an idea that was previously ad-
dressed by Baumberg and Hogg [2] to minimize the
manual effort of learning the shape model of persons
from a video stream. New examples are acquired by
applying a detector obtained by on-line learning (Win-
now). To get an even better initial discriminant clas-
sifier Roth et al. [27] proposed to apply a generative
model on the motion data to robustly extract the true
positives only. A new positive example is added if it fits
to both, the discriminant and the generative model; in
the same way negative examples can be obtained. As a
disadvantage of these methods an initial classifier has
to be trained and therefore the algorithms are biased by



the examples used to train the initial classifiers. Thus,
a great number of potential new examples, even dif-
ferent views of the same object, would not be added
because they do not fit to the current model!

Other approaches use “weakly labeled data” (e.g.,
[26]) or apply Active Learning (e.g., [32,34]). Where
for learning from weakly labeled data some information
(e.g., the object-of-interest is known to be in the train-
ing images) has been provided, Active Learning can
be used to label both, negative and positive samples.
However, still a (small) set of labeled samples reliably
representing the classes is needed in the beginning.

To overcome the drawbacks described above a
tracker can be applied. Based on an one-time initial-
ization of the object-of-interest, a robust tracker is able
to follow the object through the entire video sequence
— assuming that the frame-rate is high enough such
that the location of the object is only slightly changed
from frame to frame. If tracking works on a longer
video sequence, different views of the same object can
be obtained. Thus, new positive examples are obtained
without any user interaction needed. The extracted im-
age patches can be directly used as input for an (incre-
mental) learning algorithm. Moreover, by using change
detection information the tracker can be initialized au-
tomatically. In this paper we apply the Approximate
Median [19] filter to model the background, an MSER
tracker [6] and incremental PCA [30] for learning. But
as the approach is quite general other methods may
be applied. Thus, we have a framework to learn even
unknown objects directly from a video sequence.

Sivic et al. [29] have proposed a similar approach
(apply tracking for data acquisition). But there are
two main differences: (1) local features are used for
learning and (2) as a face detector based on AdaBoost
is applied to obtain the first examples, the framework
can not be used for learning an object representation
from scratch.

The outline of the paper is as follows: In Section 2
we introduce the new learning framework and describe
the components used. To show the power of the ap-
proach the framework is demonstrated on different
hand held objects in Section 3. Finally, conclusions
are drawn in Section 4.

2 Learning Framework

The proposed learning framework, consisting of
three components, is depicted in Figure 1. First, an
adaptive background model is estimated using the Ap-
proximate Median algorithm [19], a simple but fast and
effective background modeling approach. If a consis-
tent background model is obtained, the object of inter-

est is presented to the system. For change detection
a binary image is computed by pixel-wise thresholding
the difference image between the current frame and the
background model. Second, if an obtained blob is sta-
ble over time, the corresponding patch in the current
frame is used to initialize the tracker. In particular we
apply a tracker that is based on the MSER detector [6],
but in general any other blob-based tracker (e.g., mean
shift color tracker [4]) may be used. In fact, compared
to change detection, using a tracker produces more ac-
curate masks, i.e., for hand held objects the hand is seg-
mented as well (see Figure 2(a-b)). Finally, the patches
obtained by the tracker are directly used for on-line
learning. Due to the expected redundancy in the data
it is more convenient to use a generative method such as
PCA. Moreover, the patches obtained by tracking are
only slightly changing from frame to frame. Therefore,
they are highly appropriate for on-line learning. Thus,
we apply an incremental PCA algorithm [30]. But as
it was proposed for Conservative Learning [27] a dis-
criminative classifier like AdaBoost [33] can be trained
from (a subset) of the thus obtained data later on!

Training data Test data
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Figure 1. The proposed learning framework.

2.1 Change Detection

Having a stationary camera a common approach to
detect forground objects is to pixel-wise threshold the
difference image between the currently processed image
and a background image. Let B; be the current esti-
mated background image, I; the current input image
and 6 a threshold, then a pixel is classified as fore-
ground if

IBi (2, y) — Ti(z,y)| > 0. (1)

To estimate the background model By several (adap-
tive) approaches including running average [12], tem-



poral median filter [16] or eigenbackgrounds [25] have
been proposed. A simple but computationally efficient
method was developed by McFarlane and Schofield
[19]. The Approximated Median filter computes an ap-
proximation of the temporal median by incrementing
the current estimate (only one reference image has to
be stored!) by one if the input pixel value is larger than
the estimate and by decreasing it by one if smaller:
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This estimate eventually converges to the real median.
To avoid that non-moving forground objects are accu-
mulated into the background model and to preserve a
robust median estimation spatial and temporal weights
may be assigned for the updates. Having a consistent
background model, a tracker can be robustly initialized
if a detected foreground blob is stable over time.

To demonstrate the initialization process Figure 2
shows three subsequent frames (input image and binary
foreground image) of this first stage of our framework.
After a consistent background model was computed the
object is put into the scene (Figure 2 (a)-(b)). If the
obtained blob is stable over time the tracker is initial-
ized with the corresponding region of the input image
(Figure 2 (c)).

2.2 MSER-Tracker

For tracking the objects we apply a tracker that is
based on the detection of Maximally Stable Extremal
Regions (MSERs) that was proposed by Donoser and
Bischof [6]. Thus, this section basically summarizes
the main concept of MSER-tracking. In addition, the
cropping of patches for learning based on the tracking
results is explained.

The Maximally Stable Extremal Region (MSER) de-
tector from Matas et al. [17] has proven to be one of the
best interest point detectors in computer vision. Evalu-
ations by Mikolajczyk and Schmid [20] and Fraundor-
fer and Bischof [8] revealed that the MSER detector
performs best on a wide range of test sequences.

MSERs are connected regions which can be detected
in any image whose pixel values are of a totally ordered
set. All MSERs are defined by an extremal property
of the intensity function in the region and on its outer
boundary. MSERs have properties that form their su-
perior performance as stable local detector. The set
of MSERs is closed under continuous geometric trans-
formations and is invariant to affine intensity changes.
Furthermore MSERs are detected at different scales.

In the paper from Matas et al. [17] MSER detection
is applied to single gray scale images. But the concept
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Figure 2. Initialization of the tracker by
change detection.

can be easily extended to color images by defining a
suitable ordering relationship on the color pixels. In
our case, we fit a multivariate Gaussian distribution to
the RGB values of the region-of-interest initialized by
the change detection algorithm. Then, the RGB val-
ues of all image pixels are ordered by their Mahalanobis
distance [7] to this Gaussian distribution. The calcu-
lated distances can be visualized as gray scale image,
which is shown in Figure 3(b), wherein dark areas rep-
resent small distances, whereas bright areas represent
pixels with very differing color.

The detection of MSERs can be implemented in an
efficient way by analysis of a data structure called the
component tree that recently has been used by Couprie
et al. [5] for efficient implementation of watershed seg-
mentation. The component tree is a rooted, connected
tree and can be created for any image with pixel val-
ues that are part of a totally ordered set. Each node
of the component tree represents a connected region
within the input image I;,,. For MSERs we only con-
sider extremal regions R; as nodes, which are defined
by



(c) MSER detection result.

Figure 3. lllustration of MSER detection on
color images.

Vp € R; ,Vq € boundary(R;) — Lin(p) > Iin(q). (3)

These extremal regions are identified as connected
regions within binary threshold images I {fm, which are
the result of the calculation

I, = L > k, (4)

where k € [min(I;,) max(I;;,)]. Each node of the
component tree is assigned the corresponding gray
value k£ at which it was determined.

The edges within the tree define an inclusion rela-
tionship between the extremal regions. Thus, for a
region R; that is the son of a region R; within the tree,

VpGRineRJ‘ (5)

is fulfilled. By moving in the component tree up-
wards, the corresponding gray value k of the extremal
regions becomes lower, which leads to increased region
sizes. The root of the tree represents a region which
includes all pixels of the input image I;,.

MSERs are identified by analysis of the component
tree. For each connected region R; within the tree a
stability value W is calculated.

U(R;) = (IRT®| — [RIT))/IRY, (6)

where |.| denotes the cardinality, R is a region
which is obtained by thresholding at a gray value g and
A is a stability range parameter. RY 2 and Ri+A are

the extremal regions that are obtained by moving up-
wards respectively down-wards in the component tree
from region R; until a region with gray value g — A re-
spectively g+ A is found. MSERs correspond to those
nodes of the tree that have a stability value ¥, which
is a local minimum along the path to the root of the
tree. Thus, maximally stable regions are those regions
which have approximately the same region size within
2A neighboring threshold images. Figure 3(c) shows
an exemplary MSER detection result. The detected
extremal regions are shown in white.

Various algorithms have been proposed to compute
the component tree, the most efficient algorithm by
Najman and Couprie [23] was used for our implemen-
tation. The complexity of the creation process for the
component tree becomes O(Na(N)), where N = n+m,
n is the number of pixels and m is the number of
arcs in the image (i.e., approximately 2n for the 4-
neighborhood). The function « is the inverse Acker-
mann function [1], which is a very slowly growing func-
tion, that is for all practical purposes below 4. Thus,
analysis of the component tree enables the detection of
MSERSs in quasi-linear time, which improves the orig-
inal implementation that runs in O(NN loglog N) time
— of course for practical image sizes there is not much
difference.

The component tree allows not only the detection of
MSERs within a single image but in addition it consti-
tutes the basis for the extension to MSER tracking [6].
This algorithm improves the computational time for
MSER calculation and additionally provides more sta-
ble results compared to single frame based MSER de-
tection. In the following, the main ideas of the algo-
rithm are summarized:

First, the tracker is initialized by selecting a region-
of-interest (ROI) within the image I at time ¢. To
have a full automatic system, where no user interac-
tion is needed, the this selection is performed based on
the results of the change detection algorithm. Next,
MSER detection is performed by analyzing the com-
ponent tree of the selected ROI. The biggest, detected
MSER is tracked at the image I;1 by performing two
steps. (1) A new region of interest (ROI) of prede-
fined size, centered around the center of mass of the
MSER to be tracked, is propagated to the next frame
(if a motion model is available it can be incorporated
here). Then, the component tree for this region is built
in quasi-linear time by the previously described algo-
rithm. (2) The entire tree is analyzed and the node
which best fits to the input MSER is chosen as the
tracked extremal region representation. Thus, not nec-
essarily the most stable extremal region is chosen as
tracked region representation. Figure 4 illustrates this



tracking concept.

(b) Region of interest (ROI)
around center of mass in im-
age t + 1.

(a) Input image t. The
MSER to be tracked is shown
with white border.

Figure 4. ROI definition for tracking of single
MSER.

The best fit to the input MSER is identified by com-
paring incrementally computed feature vectors that are
built for each of the connected regions of the compo-
nent tree. The region, which has the smallest weighted
Euclidean distance between its feature vector and the
one from the input MSER, is chosen as tracked repre-
sentation.

The features calculated are mean gray value, region
size, center of mass, width and height of the bounding
box and stability. The weights for the features can be
used to adapt to different kinds of input data. Please
note, that due to efficiency reasons all of the features of
the extremal regions are computed incrementally [18]
during creation of the component tree. Thus, no addi-
tional computation time is required. The update takes
place each time connected components are united by
the union step.

Finally, the required image patch is created by crop-
ping the bounding box of the detected, tracked MSER
representation from the image I;41. The presented
steps are repeated again and again, which creates a set
of image patches, showing the object-of-interest from
different viewpoints. Figure 5 illustrates the MSER
tracking concept for image patch creation.
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»gg»

Figure 5. Concept of MSER tracking for patch
extraction.

Examples of tracked objects and its corresponding
MSERs are depicted in Figure 6. As can be seen the
MSERs may contain holes (texture, smaller regions of
different color, etc.). But since the patches are cropped
based on the corresponding bounding boxes this is not
a problem at all. Moreover, objects may be represented
by more than one MSER (Figure 6(c)). Thus, these
regions are tracked in parallel and a new training patch
is obtained by cropping the bounding box covering all
of the MSERs. Examples of cropped patches that are
used for learning are shown in Figure 7.

Figure 6. Detected MSERSs during tracking.

2.3 Incremental PCA

The image patches obtained by tracking are highly
correlated and need to be compressed which can be effi-
ciently performed by PCA. The basic idea of PCA is to
map high-dimensional input data to a low-dimensional
subspace by finding the directions with the highest
variance. Hotelling [11] has shown that the principal
axes maximizing the variance are given by the eigen-
vectors of the covariance-matrix of the data.

Let x; € R™ be an individual image represented as
a vector, and X = [x1,...x,] € R™*" a set of images
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Figure 7. Tracking results for training data
sets.

assuming that X is mean normalized. Let Q be the
covariance matrix of X. Due to the properties of the
covariance-matrix (symmetric and pos. semi-definite),
SVD on X can be applied to efficiently compute the
eigenvectors u; € R™ of Q; U = [uy,...u,] € R™*".

As most information is covered within the eigenvec-
tors according to the largest eigenvalues, usually only k
(k < n) eigenvectors are needed to represent an image
x to a sufficient degree of accuracy:

X = Z ai(x)ui = Ua (7)

=1

In the recognition stage, an unknown test sample y
is projected to the eigenspace encompassing the train-
ing images by calculating a standard projection

aily)=uly= wuy; , i=1...k, (8)
j=1

or, as a robust procedure [13], by solving a system of

linear equations
k
y’l‘i:Zaj(y)uTi,j 9’ Zzlq b (9)
j=1

evaluated at ¢ > k points s = (s1,...54). Once we have
obtained the parameters a;(y) we can reconstruct the
image using (7) and determine the reconstruction error
€ = ||y — y||- The detection may either be performed
based on this error [13] or by estimating the distance
between the projected test sample and the projected
training data [24].

The most efficient approach is to use an on-line PCA
algorithm that is trained as new data arrives. There-
fore, different incremental PCA approaches have been
proposed that are based on incremental SVD-updating
(e.g., [3,21,30]). Since the method can be extended in
a robust way, i.e., corrupted input images (containing
occlusions or unreliable pixel values) may be used for
incrementally updating the current model, we apply a
simplified version of the incremental PCA method of
Sko¢aj and Leonardis [30].

Assuming that an eigenspace was already built from
n images, at step n + 1 the current eigenspace is up-
dated with a new image x. First, x is projected into
the current eigenspace U™ and the image is recon-
structed. Next, the difference r (residual vector) be-
tween the original image and its reconstruction is es-
timated. A new basis U’ is created by enlarging the
current basis U™ by the residual vector r. Since r is
orthogonal to U™ the current images as well as the
new image can be represented in the new basis. Finally,
the new subspace UM s estimated by rotating the
subspace U’ by U”, where U” is obtained by perform-
ing PCA on the new representation. In each step the
dimension of the subspace is increased by one. To pre-
serve the dimension of the subspace the least significant
principal vector may be discarded [10].

To obtain an initial model, the batch method may
be applied on a smaller set of training images. Al-
ternatively, to have a fully incremental algorithm, the
eigenspace may be initialized using the first training
image x: pM =x, UY =0 and AY = 0.

3 Experimental Results

To demonstrate the approach we have trained and
evaluated detectors for several objects that can be
found on a desktop. The objects are hand held in
the training stage as well as in the evaluation stage.
We have created separate sequences to train the clas-
sifiers and independent test sequences for evaluation.
To learn an object representation different views of the



target object were presented. Patches of different size
were resized to a common patch size according to the
initialization of the tracker.

The experiments are divided into three parts: First,
a background model is estimated and the tracker is ini-
tialized. Second, the object is tracked and an object
representation is incrementally learned. Finally, the
previously computed classifier is applied for a detection
task on an independent test sequence. For the results
shown in Figure 8 and Figure 9 for each object 200-
300 patches obtained by tracking were used for on-line
learning; to build a PCA model of sufficient accuracy
only 10-15 eigenvectors were needed. Thus, Figure 8
depicts detection results on the test sequences for dif-
ferent data sets. For Figure 9 a more complex test
sequence was created. Three different objects were pre-
sented at different locations and varying scales. How-
ever, all objects were detected!

HN‘&
T

Figure 8. Detections: simple test sequences.

4 Conclusion

We have presented a framework for on-line learn-
ing an object representation even for unknown ob-
jects directly from a video sequence. Therefore, a

Figure 9. Detections: complex test sequence.

background model (Approximated Median), a tracker
(MSER tracker) and an on-line learning method (incre-
mental PCA) were combined. The tracker is initialized
by change detection and the patches obtained are used
as input for the incremental learner. Thus, no user in-
teraction is needed! Moreover, no labeled or segmented
images are required. We have demonstrated the frame-
work on different desktop objects, but as our approach
is quite general we could learn any other object (e.g.,
faces) if an (automatic) initialization of the tracker is
available. The presented approach can simply be ex-
tended by adding robustness in the detection [13] as
well as in the learning stage [30]. Furthermore, a se-
lected subset of patches (avoiding redundancy in the
datal) obtained by the tracker may be used as positive
examples for conservative learning [27] or more general
for on-line boosting [9].
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