
Computer Vision Winter Workshop 2006, Ondřej Chum, Vojťech Franc (eds.)
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Abstract For learning an object representation a huge
amount of labeled data is needed. To minimize the labeling
effort this paper proposes a new approach for learning from
unlabeled data. The main idea is to combine a tracker and a
learning method by directly feeding the learning algorithm
with patches obtained by the tracker. In particular we apply
an MSER based tracker and batch PCA for learning. But
in general any tracker and any learning algorithm may be
used. In a first step, the object-of-interest is initialized man-
ually. Then, the object is tracked through a video sequence
and a set of image patches, showing the object from different
views, is extracted. The obtained patches are passed to PCA
and a reconstructive model of the object is learned. Human
input is reduced to a one-time initialization of the tracker.
The approach is demonstrated on realistic scenes including
face detection and detection of hand held objects.

1 Introduction

In the past, numerous successful approaches for object
detection including faces [23], pedestrians [27], cars [2],
bikes [18], etc. have been proposed. Given an input im-
age, the task is to decide if a cropped patch contains a spe-
cific object or not. Therefore a detector based on a classifier
(e.g., AdaBoost [7], Winnow [11], Neural Network [20] or
support vector machine [25]) has to be trained. However,
for training a classifier a set of labeled data (positive and
negative examples) is needed. Much research has been fo-
cused on efficient training of detectors but only little atten-
tion has been paid for labeling and acquiring suitable data.
Therefore, training data is usually obtained by hand label-
ing a large number of images. As a huge amount of data
is required, this is not very convenient. Thus, to keep the
learning process as automatic as possible, the hand labeling
effort should be minimized.

Negative examples (i.e., examples of images not con-
taining the object) are usually obtained by a bootstrap ap-
proach [22]. Starting with a few negative examples a clas-
sifier is trained. The obtained classifier is applied to im-
ages not containing the object. Those sub-images where a
(wrong) detection occurs are added to the set of negative ex-
amples and the classifier is retrained. This process can be
repeated several times. Therefore, obtaining negative exam-
ples is usually not much of a problem.

Automatically obtaining a set of positive examples is a
more difficult task. Existing approaches to minimize the la-
beling effort (e.g., [10, 15, 19]) are based on two stages. In
the first stage, an initial classifier is trained using a smaller
number of examples; in the second stage, the classifier is
applied on a training sequence and the detected patches are
added to the set of positive examples. Levin et al. [10] start
with a small set of hand labeled data and generate additional
labeled examples by applying co-training of two classifiers.
To completely avoid hand labeling Nair and Clark [15] pro-
pose to use motion detection to obtain the initial training set.
New examples are acquired by applying a detector obtained
by on-line learning (Winnow). Similar to [15] for Conser-
vative Learning [19] proposed by Roth et al. motion infor-
mation is used to create an initial data set. But as motion
detection may return false positives a generative model is
applied to robustly extract the true positives only. Thus, an
even better initial discriminant classifier is obtained. A new
positive example is added if it fits to both, the discriminant
and the generative model. As a main disadvantage of these
methods an initial classifier has to be trained. Therefore the
algorithms are biased by the examples used to train the ini-
tial classifiers. Thus, different views of the same object that
do not fit to the current model would not be used for up-
dates. Additionally, (manually) labeled data is necessary to
train the classifier.

Automatically labeling both, negative and positive sam-
ples, can be achieved by applying Active Learning (e.g.,
[24, 28]). Given an active learnerl(f, s, D), wheref is a
classifier trained on the labeled data setD, the sample func-
tion s automatically selects those unlabeled samples that
provide most additional information for explicit labeling.
However, still a set of labeled samples reliably representing
the classes is needed in the beginning.

To overcome the drawbacks described above a tracker
can be applied. Based on a manual, one-time initialization
of the object-of-interest, a robust tracker is able to follow the
object through the entire video sequence – assuming that the
location of the object is only slightly changed from frame to
frame. If tracking works on a longer video sequence, differ-
ent views of the same object may be achieved. Thus, new
positive examples are obtained without any further user in-
teraction.

The extracted image patches can be directly used as input
for a learning algorithm. Therefore, the main contribution of
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this paper is to propose a framework that combines a tracker
and a learning algorithm. Thus, the human input and label-
ing effort can be reduced to manually selecting the object-
of-interest once in the beginning. The proposed framework
is depicted in Figure1.

Figure 1: The proposed learning framework.

In particular, we apply a tracker that is based on the
MSER detector [12] and batch PCA [8] for learning. But
since the approach is very general any other tracker (e.g.,
Mean shift color tracker [3], etc.) and any other learning al-
gorithm (e.g., AdaBoost [26]) may be applied. But due to
the expected redundancy of the data obtained by the tracker
a generative method such as PCA would be more appropri-
ate. To show the power and the generality of the approach
the framework is demonstrated on two different tasks: (1)
face detection and (2) detection of hand held objects.

The outline of the paper is as follows: In Section2 we
describe the tracking algorithm used and summarize the ap-
plied learning method. Experimental results of learning
faces and different desktop objects are presented in Section3
and finally, conclusions are drawn in Section4.

2 Tracking and Learning

2.1 Tracking

The first part of our concept requires a stable tracking
method for video sequence analysis. We introduce a novel
algorithm for tracking of Maximally Stable Extremal Re-
gions (MSERs). The presented algorithm improves the com-
putational time for MSER calculation and additionally pro-
vides more stable results compared to single frame based
MSER detection. The object-of-interest to be tracked is ini-
tialized by hand and MSER tracking detects a set of image
patches containing the object-of-interest in each frame of the
video sequence.

The Maximally Stable Extremal Region (MSER) detec-
tor from Matas et al. [12] has proven to be one of the
best interest point detectors in computer vision. Evalua-
tions by Mikolajczyk and Schmid [14] and Fraundorfer and
Bischof [6] revealed that the MSER detector performs best
on a wide range of test sequences.

MSERs are connected regions which can be detected in
any image whose pixel values are of a totally ordered set. All
MSERs are defined by an extremal property of the intensity
function in the region and on its outer boundary. MSERs
have properties that form their superior performance as sta-

(a) Input image. (b) Color probability image.

(c) MSER detection result.

Figure 2: Illustration of MSER detection on color images.

ble local detector. The set of MSERs is closed under con-
tinuous geometric transformations and is invariant to affine
intensity changes. Furthermore MSERs are detected at dif-
ferent scales.

In the main paper from Matas et al. [12] MSER detection
is applied to single gray scale images. But the concept can
be easily extended to color images by defining a suitable or-
dering relationship on the color pixels. In our case, we fit
a multivariate Gaussian distribution to the RGB values of
the pixels from the manually initialized object-of-interest.
Then, the RGB values of all image pixels are ordered by
their Mahalanobis distance [5] to this Gaussian distribution.
The calculated distances can be visualized as gray scale im-
age, which is shown in Figure2(b), wherein dark areas rep-
resent small distances, whereas bright areas represent pixels
with very differing color.

MSER tracking is implemented in the most efficient way
by analysis of a data structure called the component tree.
The component tree is a structure which allows the detec-
tion of MSERs within a single image and, in addition, con-
stitutes the basis for the extension to MSER tracking. The
component tree has been recently used by Couprie et al. [4]
for efficient implementation of watershed segmentation.

The component tree is a rooted, connected tree and can
be created for any image with pixel values that are part of a
totally ordered set. Each node of the component tree repre-
sents a connected region within the input imageIin. For
MSERs we only consider extremal regionsRi as nodes,
which are defined by

∀p ∈ Ri , ∀q ∈ boundary(Ri) → Iin(p) ≥ Iin(q). (1)

These extremal regions are identified as connected re-
gions within binary threshold imagesIk

bin, which are the
result of the calculation

Ik
bin = Iin ≥ k, (2)
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wherek ∈ [min(Iin)max(Iin)]. Each node of the com-
ponent tree is assigned the corresponding gray valuek at
which it was determined.

The edges within the tree define an inclusion relationship
between the extremal regions. Thus, for a regionRi that is
the son of a regionRj within the tree,

∀p ∈ Ri → p ∈ Rj (3)

is fulfilled. By moving in the component tree up-wards,
the corresponding gray valuek of the extremal regions be-
comes lower, which leads to increased region sizes. The
root of the tree represents a region which includes all pixels
of the input imageIin.

MSERs are identified by analysis of the component tree.
For each connected regionRi within the tree a stability value
Ψ is calculated.

Ψ(Ri) = (|Rg−∆
j | − |Rg+∆

k |)/|Rg
i |, (4)

where|.| denotes the cardinality,Rg
i is a region which is

obtained by thresholding at a gray valueg and∆ is a sta-
bility range parameter.Rg−∆

j andRg+∆
k are the extremal

regions that are obtained by moving up-wards respectively
down-wards in the component tree from regionRi until a
region with gray valueg − ∆ respectivelyg + ∆ is found.
MSERs correspond to those nodes of the tree that have a
stability valueΨ, which is a local minimum along the path
to the root of the tree. Thus, maximally stable regions are
those regions which have approximately the same region
size within2∆ neighboring threshold images. Figure2(c)
shows an exemplary MSER detection result. The detected
extremal regions are shown in white.

Various algorithms have been proposed to compute the
component tree, the most efficient algorithm by Najman and
Couprie [16] was used for our implementation. The com-
plexity of the creation process for the component tree be-
comesO(Nα(N)), whereN = n + m, n is the number of
pixels andm is the number of arcs in the image (i.e., ap-
proximately2n for the 4-neighborhood). The functionα is
the inverse Ackermann function [1], which is a very slowly
growing function, that is for all practical purposes below4.
Thus, analysis of the component tree enables the detection
of MSERs in quasi-linear time, which improves the orig-
inal implementation that runs inO(N log log N) time – of
course for practical image sizes there is not much difference.

MSER tracking starts with the manual initialization of a
region-of-interest (ROI) within the imageIt at timet. Then,
MSER detection by analysis of the component tree is ap-
plied to this ROI. The biggest, detected MSER is tracked at
the imageIt+1 by performing the two following steps. First,
a new region of interest (ROI) of predefined size, centered
around the center of mass of the MSER to be tracked, is
propagated to the next frame (if a motion model is available
it can be incorporated here). Then the component tree for
this region is built in quasi-linear time by the previously de-
scribed algorithm. Second, the entire tree is analyzed and
the node which best fits to the input MSER is chosen as
the tracked extremal region representation. Thus, not nec-
essarily the most stable extremal region is chosen as tracked

(a) Input imaget. The MSER
to be tracked is shown with white
border.

(b) Region of interest (ROI)
around center of mass in image
t + 1.

Figure 3: ROI definition for tracking of single MSER.

Figure 4: Concept of MSER tracking for patch extraction.

region representation. Figure3 illustrates this tracking con-
cept.

The best fit to the input MSER is identified by com-
paring feature vectors that are built for each of the con-
nected regions of the component tree. The region, which has
the smallest weighted Euclidean distance between its fea-
ture vector and the one from the input MSER, is chosen as
tracked representation.

The features calculated are mean gray value, region size,
center of mass, width and height of the bounding box and
stability. The weights for the features can be used to adapt
to different kinds of input data. Please note, that due to effi-
ciency reasons all of the features of the extremal regions are
computed incrementally [13] during creation of the compo-
nent tree. Thus, no additional computation time is required.
The update takes place each time connected components are
united by the union step.

Finally, the required image patch is created by cropping
the bounding box of the detected, tracked MSER represen-
tation from the imageIt+1. The presented steps are repeated
again and again, which creates a set of image patches, show-
ing the object-of-interest from different viewpoints. Figure
4 illustrates the MSER tracking concept for image patch cre-
ation.

2.2 Learning

For the second part of our concept we apply batch PCA [8]
to learn the object representation from the patches obtained
by tracking.

As images can be considered high dimensional vectors,
let us introduce the notation: Letxi ∈ IRm be an individ-
ual image represented as a vector, andX = [x1, . . . xn] ∈
IRm×n a set of images assuming thatX is mean normalized.
Let Q be the covariance matrix ofX. Due to the properties
of the covariance-matrix (symmetric and pos. semi-definite),
SVD onX can be applied to efficiently compute the eigen-
vectorsui ∈ IRm of Q; U = [u1, . . . un] ∈ IRm×n.
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As most information is covered within the eigenvectors
according to the largest eigenvalues, usually onlyk (k < n)
eigenvectors are needed to represent an imagex to a suffi-
cient degree of accuracy:

x̃ =
k∑

i=1

ai(x)ui = Ua (5)

In the recognition stage, an unknown test sampley is pro-
jected to the eigenspace encompassing the training images
by calculating a standard projection

ai(y) = uT
i y =

m∑

j=1

ujiyj , i = 1 . . . k , (6)

or, as a robust procedure [9], by solving a system of linear
equations

yri
=

k∑

j=1

aj(y)uri,j , i = 1 . . . q , (7)

evaluated atq ≥ k pointss = (s1, . . . sq). Once we have
obtained the parametersai(y) we can reconstruct the image
using (5) and determine the reconstruction errorε = ||y−ỹ||.
The detection may either be performed based on this error
[9] or by estimating the distance between the projected test
sample and the projected training data [17].

3 Experimental Results

3.1 Description of Experiments

To demonstrate the approach we have defined two different
tasks: detection of hand held objects (e.g., mobile phone,
cup, etc.) and face detection for person recognition. There-
fore, we have created separate sequences to train the classi-
fiers and independent test sequences. Examples for the train-
ing sequences are depicted in Figure5. For the hand held
objects shown in Figure5(a)-(b) different views of the tar-
get object were presented. As the learning method is patch-
based only small rotations of the objects are permitted to
preserve the aspect ratio; patches of different size were re-
sized to a common patch size. For face detection the goal
was to learn the natural variance of facial expressions and
postures of the head (see Figure5(c)-(d)).

For both scenarios the experiments are divided into three
parts: First, the object of interest is manually selected in
the training sequence to initialize the tracker and the object
is tracked. Second, an object representation is learned by
PCA using the patches obtained by the tracker. Finally, the
previously computed classifiers are applied for a detection
task on an independent test sequence.

3.2 Results

As the main contribution of this paper is to show that patches
obtained by tracking an object can be used to train an object
detector we show both, tracking results and results of detec-
tion. First, Figure6 depicts the tracked objects and its cor-
responding MSERs. The MSERs may contain holes (eyes,
texture, etc.). But since the patches are cropped based on the
corresponding bounding boxes this is not a problem at all.

(a) (b)

(c) (d)

Figure 5: Training sequences used for tracking.

The obtained patches are resized to the same size and used
for learning a PCA model. Examples of cropped patches are
shown in Figure7.

(a)

(b)

(c)

Figure 6: Detected MSERs during tracking.

Next, we show some detection results. For the cup se-
quence 270 patches were extracted from a training sequence.
Due to redundancy in the obtained set only every fifth patch
was used for training the PCA model. For the detection
task 5-10 eigenvectors were sufficient. The test data set is
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(a)

(b)

(c)

Figure 7: Tracking results for training data sets.

more complex since the cup is presented at different posi-
tions. Therefore, the scale of the object is changing. But
by evaluating the detector on three different scales we get
perfect detections. The results are shown in Figure8.

(a) (b)

(c) (d)

Figure 8: Detection results for the cup sequence.

For the the mobile phone data set 300 patches were ob-
tained by tracking but only 30 were used for PCA training.
For the reconstructive model 5-10 eigenvectors were suffi-
cient to achieve the desired accuracy. As can be seen in
Figure9 the object is always detected if the rotation of the
mobile phone is within the specific range that was learned
before. Otherwise the detection will fail (see Figure9(d)).

Finally, we show some results for the person detection
task. In the tracking stage more than 500 patches were ex-
tracted for both test persons (one separate sequence for each

(a) (b)

(c) (d)

Figure 9: Detection results for the mobile phone sequence.

(a) (b)

(c) (d)

Figure 10: Detection results for the person detection task.

test person). For learning the PCA model 60 patches and
5-10 eigenvectors were used for the reconstruction. The ob-
tained classifiers are evaluated together on a single test se-
quence. As one can see in Figure10 the faces are detected
and the persons are recognized (white and yellow bound-
ing boxes). Since the presented approach can simple be ex-
tended by adding robustness [9] even the person with the
hands in front of the face (see Figure10(d)) would be de-
tected.

4 Conclusion

We have presented a new framework for learning an object
representation from unlabeled data by combining a tracker
with a learning method. Thus, an appearance based model of
an object can directly be learned from a training sequence.
Therefore, no training images taken on a turn table or ob-
tained by manual segmentation are needed. The main idea
is to use the output of the MSER based tracker directly as
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input for batch PCA. The tracker is initialized one-time by
manually selecting the object-of-interest. Then, the object
is tracked and different views of the object can be learned.
Thus, the human input for learning can be reduced to manu-
ally selecting an object once in the beginning. As our ap-
proach is quite general we have demonstrated the frame-
work on different scenarios including desktop scenes and a
face detection task. To take advantage of tracking an ob-
ject - obtaining different views of the object that slightly
change from frame to frame - an on-line learning method
(e.g., incremental PCA [21]) may be applied. Furthermore
the patches obtained by the tracker can be used as positive
examples for boosting [26] or for conservative learning [19].
Thus, our next steps will be to automatically initialize the
tracker by a color-based model (faces) and by change de-
tection information (desktop scenes) and to apply a more
suitable (on-line) method for learning.
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