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Abstract

In this paper, we present an adaptive but robust object
detector for static cameras by introducing classifier grids.
Instead of using a sliding window for object detection we
propose to train a separate classifier for each image loca-
tion, obtaining a very specific object detector with a low
false alarm rate. For each classifier corresponding to a grid
element we estimate two generative representations in par-
allel, one describing the object’s class and one describing
the background. These are combined in order to obtain a
discriminative model. To enable to adapt to changing en-
vironments these classifiers are learned on-line (i.e., boost-
ing). Continuously learning (24 hours a day, 7 days a week)
requires a stable system. In our method this is ensured by
a fixed object representation while updating only the repre-
sentation of the background. We demonstrate the stability in
a long-term experiment by running the system for a whole
week, which shows a stable performance over time. In addi-
tion, we compare the proposed approach to state-of-the-art
methods in the field of person and car detection. In both
cases we obtain competitive results.

1. Introduction
A very prominent approach for object detection is to use

a sliding window technique (e.g., [3,15,18,21]). Each patch
of an image is tested if it is consistent with a previously es-
timated model or not. Finally, all consistent patches are
reported. The model may either represent a specific ob-
ject (e.g., a specific cup, that is represented by different
views) or a class of objects (e.g., faces, pedestrians, cars,
or bikes), where specific instances are not distinguished.
These models are mostly based on local features described
by a classifier, (e.g., AdaBoost [5] or support vector ma-
chine [20]), which is typically obtained by learning. Hence,
when discussing the problem of object detection, implicitly,
the problem of visual learning is addressed.

The goal of all of these approaches is to build a generic
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Figure 1. Since changing environmental conditions (e.g., light-
ning changes or changes of objects in the background) can not
be handled by a fixed model an adaptive/scene specific system is
required.

object model that is applicable for all possible scenarios and
tasks (e.g., [3,4,11]). The drawback of these methods, how-
ever, is that the detectors are usually not very specific (i.e.,
they return false alarms). As can be seen from Figure 1(a)
even if general classifiers (“broad application”) are trained
from a very large number of training samples, they often
fail for specific situations. This is caused by the main limita-
tion of such approaches – a representative dataset is needed,
which is not available for many applications. Since not all
variability, especially for the negative class (i.e., all possi-
ble backgrounds), can be captured this results in a low recall
and an insufficient precision.

One way to overcome this problem is to use scene spe-



cific information to reduce the number of false alarms [9].
As can be seen from Figure 1(b) this can dramatically im-
prove the overall performance of a generic detector. To
further improve the classification results specific classifiers
(“narrow applications”) can be applied, which are designed
to solve a specific task (e.g., object detection for a specific
setup). This is the common case, e.g., for a surveillance ap-
plication. In fact, to train such classifiers less training data
is required and for the particular task they are usually better
in terms of accuracy and efficiency [12, 18, 22].

To further improve the classification power and to fur-
ther reduce the number of needed samples an adaptive clas-
sifier using an on-line learning algorithm can be applied
[10, 15, 22]. Thus, the system can adapt to changing envi-
ronments (e.g., changing illumination conditions) and these
variations need not to be handled by the model. In fact, in
this way the complexity of the problem is reduced and a
more efficient classifier can be trained. The main problem
of adaptive methods is that they tent to drift when running
over a long period of time.

In this paper, we address the problem of adaptive scene-
specific learning by further simplifying the problem. In
particular, we use the ideas of grid-based object classifica-
tion (e.g., [7, 8]), where the main idea is to apply a separate
classifier on each image location (grid element), to learn an
adaptive but still robust scene specific object representation.
We estimate two models in parallel. We learn a generative
model for the background corresponding to the grid ele-
ment as well as a generative model for the object-of-interest.
Thus, we can keep the representation for the object fixed
while we gain the adaptivity by adapting the model to the
background. Finally, both generative classifiers are com-
bined in order to get a discriminative model. To adapt the
classifier to a specific scene an on-line learning method is
applied for learning. In a long-term experiment we demon-
strate that the classification performance is not decreased
even if the system is running and learning for a whole week
(i.e., by taking one image per second, we processed approx.
580,000 frames). In addition, we demonstrate our method
for person and car detection comparing it to state-of-the-art
approaches obtaining excellent results. However, since the
approach is quite general, it is not limited to these specific
applications.

The paper is organized as follows. In Section 2 we re-
view the basic concepts of on-line learning using classi-
fier grids. Next, in Section 3 we present and discuss our
new combined generative-discriminative grid-based classi-
fication method. Detailed evaluations of the proposed ap-
proach are given in Section 4. Finally, the paper is summa-
rized and discussed in Section 5.

2. On-line Learning Classifier Grids
In the following, we briefly review the main ideas of

classifier grids and how they can be applied for on-line
learning using fixed update rules.

2.1. Classifier Grid

The idea of classifier grids is to sample an input image by
using a fixed highly overlapping grid (both in location and
scale), where each grid element i = 1, . . . , N corresponds
to one classifier Ci. This is illustrated in Figure 2. Thus, the
classification task that has to be handled by one classifier
Ci is reduced to discriminate the background of the specific
grid element from the object-of-interest. Due to this simpli-
fication less complex classifiers can be applied. In particu-
lar, the grid-based representation is well suited for compact
smart on-line classifier, which can be evaluated and updated
very efficiently.

Figure 2. Concept of grid-based classification: a highly overlap-
ping grid is placed over the image, where each grid element corre-
sponds to a single classifier.

2.2. Fixed Update Rules

However, on-line systems have one main disadvantage:
new unlabeled data has to be robustly included into an al-
ready built model. Typical update schemes (i.e., label gen-
erators) such as self-training (e.g., [13, 17]) and co-training
(e.g., [2, 12]) rely on a direct feedback of the current clas-
sifier. Thus, they tend to drift, i.e., the classifier starts to
learn something completely wrong and would yield arbi-
trarily wrong results.

To overcome these problems, we recently proposed a
grid-based object detection system that is based on fixed
updates [7]. Given a set of representative positive (hand)
labeled examples X+. Then, using

〈x,+1〉, x ∈ X+ (1)

to update the classifier is a correct positive update by defi-
nition. The probability that an object is present on patch xi
is given by

P (xi = object) =
#pi
∆t

, (2)



where #pi is the number of objects entirely present in a par-
ticular patch within the time interval ∆t. Thus, the negative
update with the current patch

〈xi,t,−1〉 (3)

is correct most of the time (wrong with probability P (xi =
object)). The probability of a wrong update for this partic-
ular image patch is indeed very low.

Since the positive updates are correct by definition the
remaining problem is some low amount of label noise from
the negative class. Hence, the applied on-line learning
method must be able to cope with this problem.

2.3. On-line Learning

This can be ensured by using on-line boosting for fea-
ture selection [6]. In general, Boosting [19] forms a strong
classifier

H(x) =

N∑

j=1

αjhj(x) (4)

by a linear combination of N weak classifiers hj(x), which
have only to perform better than random guessing. These
weak classifiers are trained by re-weighing the training sam-
ples, i.e., more emphasis is given to still misclassified exam-
ples. In order to do feature selection, each weak classifier
hj corresponds to one feature fj .

For on-line boosting for feature selection selectors were
introduced, where the actual boosting step is then per-
formed on these selectors. Each selector j holds a set of
M weak classifiers {hj1, ..., hjM} and is represented by its
best weak classifier hjm, i.e., the weak classifier with the
lowest estimated error

εm,j =
λwm,j

λcm,j + λwt,j
, (5)

where λwm,j and λcm,j are the weights of the samples that
were classified correctly and incorrectly up to now.

In our case the weak classifiers hj are built based on
two distributions D+

j and D−
j , which are estimated from

the feature responses of negative and positive samples, re-
spectively. In particular, we assume that these are Gaussian
distributions, which can easily be updated (e.g., by using a
Kalman filtering technique). Based on these a simple deci-
sion stump

hj(x) = pj · sign(fj(x)− θj) (6)

can be estimated, where the threshold θj and parity pj are
calculated using Bayesian rule with respect toD+

j andD−
j .

3. Robust Adaptive Grid-based Classification
When training an on-line classifier we have to robustly

include new unlabeled samples into the system. More for-
mally, at time t given a classifier Ct−1 and an unlabeled
example xt, the goal is to robustly estimate a label yt ∈
{+1,−1} for xt. According to the findings of Section 2.2
we can take advantage of classifier grids in both cases, pos-
itive and negative updates.

Since the appearance of the object-of-interest is known,
it can be described in advance by a finite set X+ of positive
samples. Thus, for each feature fj ∈ F , where F is the full
feature space, a generative model can be estimated using the
distributions D+

j . Since X+ is fixed, the distributions D+
j

can also be kept fixed and can be calculated in an off-line
pre-training stage. In contrast, the negative class is chang-
ing over time and can therefore not be described by a finite
set of samples. However, this information can be extracted
on-line from the scene, i.e., from the patch corresponding
to the grid-element. According to Eq. (2) the probability
that a patch related to a grid-element does not describe the
background is quite low and a representative set of negative
samples can be gathered. Thus, for each feature fj we can
estimate a distributions D−

j on-line over time.
The thus obtained generative models describe the posi-

tive and negative samples by the distributions of the feature
responses. Hence, we finally can estimate a discriminative
classifier by combining them on feature level. This can ef-
ficiently be realized by using on-line boosting for feature
selection (see Section 2.3). The overall idea is illustrated in
Figure 3.
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Figure 3. The grid-based detector can be interpreted as a com-
bination of generative models describing the background and the
object-of-interest, which are combined to a discriminative model
at feature level.

In the following we summarize the three steps that are
required to estimate an adaptive discriminative model by
combining the generative models described above:

Off-line pre-training: Given the fixed set of positive train-
ing samples X+, in the first step we train a classifier
applying off-line boosting. In this way for the selected
features fj we can estimate the corresponding posi-
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In the following we summarize the three steps that are
required to estimate an adaptive discriminative model by
combining the generative models described above:

Off-line pre-training: Given the fixed set of positive train-
ing samples X+, in the first step we train a classifier
applying off-line boosting. In this way for the selected
features fj we can estimate the corresponding posi-



tive distributions D+
j as well as positive error εoff-line

+ ,
which is kept fixed during the on-line learning.

On-line weak classifier update: The negative distribution
D−

j is updated using the current patch whereas the
fixed positive distribution D+

j is unchanged. In or-
der to reduce the amount of label noise, the genera-
tive information of the positive and negative distribu-
tion D+

j and D−
j can be used to decide whether the

current image patch should be used for a negative up-
date or not. Based on these two distributions we can
build a discriminative model for each weak classifier
corresponding to a feature (see Figure 4 and compare
to Eq. 6). Since the generative representations can be
adapted on-line this allows for discriminative on-line
learning.

fj(x)
Dj-

Dj+

variable

fixed
dis. 

threshold

decision

Figure 4. For each feature fj the discriminative threshold θ is cal-
culated using the fixed (pre-trained) positive distribution D+

j and
the variable negative distribution D−

j .

On-line feature selection: For the feature selection pro-
cess, the errors of the features (weak classifiers) have
to be calculated. In particular, as described in Sec-
tion 2.3, the best weak classifier in a selector is chosen
according to its error. Since only negative updates are
performed during on-line learning, only the error for
negative samples, i.e., the false positive rate, can be
estimated. However, the fixed distributions D+

j were
estimated in the pre-training stage. Thus, instead of
Eq. (5) we can use the combined error

ε =
1

2
(εoff-line

+ + εon-line
− ) (7)

to select the best weak classifier within the selector.

Finally, the thus trained classifiers are evaluated on each
new frame, where a detection is reported, if the classifier’s
response H(x) is above a certain threshold (e.g., zero). In
order to avoid overlapping detections a post-processing is
applied. Since there is no direct feedback within the learn-
ing process and possible errors are not accumulated but are
fading out, the system runs stable even for a long period of
time.

In general, any feature type for which the required distri-
butions can be estimated (e.g., [3]) may be applied within
this framework. However, to have an efficient system
(memory requirements and speed) that can be applied for
real-world scenarios, we use only Haar-like wavelets [21].
In fact, for the scenarios discussed in Section 4 we can en-
sure a frame-rate of up to 30fps on a standard PC! More-
over, these results show that even using this very simple
feature type competitive results can be obtained.

4. Experimental Results

In the following we will demonstrate the benefits of the
presented approach. Therefore, we split the experiments
into three parts. First, we give a detailed analysis for the
task of person detection. Second, to show that the approach
is not limited to this specific task, it is applied for a com-
pletely different application, i.e., car detection. Finally, to
show the stability over time, we give results for a long-term
experiment, which ran for one week!

4.1. Experimental Setup

If not specified otherwise all experiments were per-
formed and evaluated as described below. First, to gener-
ate the classifier grid the approximate size of the object-of-
interest in the scene is needed. For reasons of simplicity we
estimated the ground-plane for our experiments manually
(this could also be done automatically, e.g., [16]). Based
on this estimate a grid of classifiers is initialized using an
overlap of 85%− 90%. Each of these classifiers, which are
evaluated and updated whenever a new frame arises, con-
sists of 50 selectors, each of them holding a set of 10 weak
classifiers. Hence, in total only 500 weak classifiers, each of
it corresponding to one Haar-like feature, have to be stored.
This is the result of the off-line pre-training stage, which
allows to pre-select a smaller number of valuable features.

For a quantitative evaluation, we use recall-precision
curves (RPC) [1]. Therefore, we have to estimate the pre-
cision Pr = TP/(TP + FP ) and the recall R = TP/P ,
where TP is the number of true positives, FP is the num-
ber of false positives, and P is the number of positives in
the test data represented by the given ground-truth. In par-
ticular, a detection is accepted as true positive, if it ful-
fills the overlap criterion [1], where a minimal overlap of
50% is needed. Once we have estimated these param-
eters we can plot the recall R against 1 − Pr. Addi-
tionally, we use the F − measure [1], which is the har-
monic mean between recall and precision and is defined
by FM = (2 · R · Pr)/(R + Pr). In particular, the char-
acteristics given in this section were generated such that the
F −measure was maximized.



4.2. Person Detection

First of all, we give a detailed evaluation of the proposed
approach for the task of person detection. For that pur-
pose, we generated a challenging test set showing a corridor
of a public building (Corridor sequence) consisting of 300
frames, which contains 296 persons. The sequence, which
was taken at a resolution of 320× 240, shows typical diffi-
culties such as various moving objects (e.g., a ball, chairs,
and an umbrella) and partly overlapping persons.

In particular, we compared our new method to generic
state-of-the-art detectors, which can be downloaded from
the Internet1 2 (i.e., the Dalal and Triggs (D&T) person
detector [3] and the person detector trained using the de-
formable part model of Felzenszwalb et al. (FS) [4]), which
do not use any prior knowledge, to adaptive scene specific
detectors (i.e. the grid-based approach (GB) of Grabner et
al. [7] and the Conservative Learning (CL) of Roth et al.
[18], as well as to low level methods (i.e., a simple back-
ground model (BGM) [14], template matching (TM), and a
combination of both (TM+BGM), which might be consid-
ered a simple pendent to our method).

In order to allow for a fair comparison, in a post-
processing step we removed all detections that do not fit
to the estimated ground-plane. In fact, a detection was re-
moved if the scale was smaller than 75% or greater than
125% of the expected patch-height. Please note, this post-
processing does not reduce the recall since these detections
would be counted as false positives otherwise. Moreover, to
ensure satisfactory results for the Dalal and Triggs detector
and the deformable part model, we resized the input images
to 640× 480 for these methods.

The thus obtained results obtained by a given ground-
truth are summarized in Figure 5 and in Table 1, where we
show the recall-precision curves for all methods and the cor-
responding detection characteristics.

R Pr FM
Cons. Learning [18] 0.84 0.94 0.89
Proposed approach 0.88 0.83 0.85
Dalal and Triggs [3] 0.63 0.97 0.76
Grabner et al. [7] 0.61 0.87 0.72
Felzenszwalb et al. [4] 0.61 0.83 0.70
BGM 0.76 0.63 0.69
TM+BGM 0.44 0.73 0.55
TM 0.44 0.37 0.40

Table 1. Detection characteristics of the Corridor Sequence for
different methods sorted by the F-measure.

From these results, it can be seen that the general detec-
tors show an excellent precision, but the recall is too low for
practical applications. Moreover, the low level cues totally

1http://pascal.inrialpes.fr/soft/olt
2http://people.cs.uchicago.edu/˜pff/latent
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Figure 5. RPC for the Corridor Sequence.

fail, i.e., for BM and TM either the recall or the precision is
very poor such that even a combination of both (TM+BGM)
yields insufficient results. In contrast, the adaptive methods
provide sufficient results. In fact, the grid-based approach
of Grabner et al. shows a comparable performance to the
generic detectors. The best results are obtained by Con-
servative Learning, a high sophisticated method. However,
our proposed approach yields competitive detection results,
even using only very simple update rules and compact clas-
sifiers. Finally, typical results of our approach are depicted
in Figure 6.

Figure 6. Illustrative detection results of the grid-based person de-
tector for the Corridor Sequence.

In addition, we evaluated our approach on two publicly
available datasets, i.e., the Caviar dataset 3 and the PETS
2006 dataset4 and compared it to the general detectors,
which might be considered a fair baseline. In particular,
from both data sets we selected one sequence containing a
lot of people. The results for both data sets are shown in
Figure 7 and Figure 9, respectively. Again it can be seen
that the adaptive grid-based detector outperforms the gen-
eral detector; especially, in terms of recall. Finally, we show
some illustrative detection results in Figure 8 and Figure 10,
respectively.

3http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
4http://www.pets2006.net
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Figure 7. RPC for the Caviar Sequence.

Figure 8. Illustrative detection results of the grid-based person de-
tector for the Caviar Sequence.
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Figure 9. RPC for the PETS 2006 Sequence.

Figure 10. Illustrative detection results of the grid-based person
detector for the PETS 2006 Sequence.

4.3. Car Detection

To show that the proposed approach is not limited to de-
tecting persons, we additionally demonstrate it for car de-
tection. We compare our method to existing established
methods: Implicit Shape Models (ISM) of Leibe et al. [11]5

and a car detector trained using the deformable part model
of Felzenszwalb et al. (FS) [4]. The methods were evalu-
ated on a sequence showing one lane of a public highway.
The whole scene consists of 1000 frames and contains 1283
cars from the rear view. Again for the ISM method and the
FS detector the original images (380 × 324) were re-sized
to the double size. In order to obtain a sufficient number of
detections from the FS detector the detection threshold was
set to −0.5.
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Figure 11. RPC for the Highway sequence.

From the results shown in Figure 11 it can be seen that
the proposed method clearly outperforms the fixed car de-
tectors. In particular, we get a recall of more than 90% while
still having a very high precision! Moreover, illustrative de-
tection results obtained by the proposed approach are shown
in Figure 12.

Figure 12. Illustrative detection results of the grid-based person
detector for the Highway sequence. The white line put a ceiling
on the detection region.

5http://www.vision.ee.ethz.ch/˜bleibe/code/ism.html



4.4. Long-term behavior

Since the main goal in this paper was to develop a ro-
bust adaptive system that is learning 24 hours a day and 7
days a week, in the following we demonstrate the long-term
behavior of the proposed method. During 7 days we up-
dated our system with 580, 000 frames (i.e., we took 1fps).
To show that the systems’ performance is unchanged over
time, we selected four different points in time and extracted
sequences of 2, 500 frames (which corresponds to approx.
40 minutes of video data):

# updates yet performed # persons
1st day 3,390 201
3rd day 179,412 222
6th day 484,891 454
7th day 577,500 316

Table 2. Description of the selected sequences of the long-term
experiment.

From the results shown in Figure 13 and in Table 3 it can
be seen that the method is stable over time. The slightly
variations in the curves can be explained by the different
levels of complexity for the four sequences (i.e., number of
persons, density of persons, etc.). But as can be seen from
Table 3 the F-measure is unchanged over time.
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Figure 13. RPC for the long-term experiment

R Pr FM
1st day 0.87 0.98 0.92
3rd day 0.84 0.95 0.89
6th day 0.85 0.96 0.90
7th day 0.87 0.96 0.92

Table 3. Results of the long-term experiment.

Finally, in Figure 14 we illustrate the significantly chang-
ing conditions we had to deal with during these 7 days (i.e.,
natural light, artificial lighting, inadequate lighting, etc.).

Thus, these drastically changing conditions, which can be
handled by our system considerable better than by other
methods, arise the need for an adaptive system!

(a) morning

(b) noon

(c) afternoon

(d) evening

(e) night

Figure 14. Illustrative detection results of the grid-based person
detector obtained during to long-term experiment.



5. Conclusion
In this paper, we presented a new robust adaptive ob-

ject detection system for static cameras, which should run
24 hours a day, 7 days a week. The main idea is to ap-
ply classifier grids, i.e., we train a separate classifier for
each image location. Since the complexity of the detection
task is considerably reduced (i.e., a single classifier has only
to discriminate between the object-of-interest and the back-
ground of the specific grid element) more compact and thus
very efficient classifiers can be applied. To ensure an adap-
tive but still stable system, we apply two representations (on
feature level) in parallel, one for the background, which is
adapted, and one for the objects, which is kept fixed. In par-
ticular, this is realized by using on-line boosting for feature
selection. Thus, the system can adapt to changing environ-
ment conditions avoiding drifting (i.e., corrupting the clas-
sifier). This stability over time is demonstrated in a long-
term experiment. In fact, the results show that even after
performing 580,000 updates (!) our system is still running
stable. Moreover, a comparative study for person and car
detection shows that the proposed approach yields compet-
itive results and even outperforms state-of-the-art methods
on different (publicly available) datasets.
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