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Abstract. We will introduce a new effective framework for learning an object
detector. The main idea is to minimize the manual effort when learning a classi-
fier and to combine the power of a discriminative classifier with the robustness
of a generative model. Starting with motion detection an initial set of positive ex-
amples is obtained by analyzing the geometry (aspect ratio) of the motion blobs.
Using these samples a discriminative classifier is trained using an on-line version
of AdaBoost. In fact, applying this classifier nearly all objects are detected but
there is a great number of false positives. Thus, we apply a generative classifier
to verify the obtained detections and to decide if a detected patch represents the
object of interest or not. As we have a huge amount of data (video stream) we
can be very conservative and use only patches for (positive or negative) updates
if we are very confident about our decision. Applying this update rules an in-
crementally better classifier is obtained without any user interaction. Moreover,
an already trained classifier can be re-trained on-line and can therefore easily
be adapted to a completely different scene. We demonstrate the framework on
different scenarios including pedestrian and car detection.

1 Introduction

In the recent years, the demand for automatic methods analyzing large amounts of vi-
sual data has been increasing. Starting with face detection [32,38] there has been a con-
siderable interest in visual object detection, e.g., pedestrians [39], cars [1], bikes [23],
etc. All these trends have been encouraging research in the area of automatic detection,
recognition, categorization, and interpretation of objects, scenes and events.

These visual systems have to encompass a certain level of knowledge about the
world they are observing and analyzing. The most convenient way of knowledge acqui-
sition is its accumulation through learning. Thus, the core of most systems is usually
a classifier, e.g., AdaBoost [8], Winnow [18], neural network [32] or support vector
machine [37] that is obtained by learning.

These approaches have achieved considerable success in the above mentioned ap-
plications but a requirement of all these methods is a training set which in some cases
needs to be quite large. The problem of obtaining enough training data increases even
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further because the methods are view based, i.e., if the view-point of the camera changes
the classifier needs to encompass this variability (e.g., car from the side and car from
the back). Training data is usually obtained by hand labeling a large number of images
which is a time consuming and tedious task. For illustration consider the pictures shown
in Fig.1. To get a considerable training set the task would be to mark all persons that
occur within this scene. Clearly, this is not practicable for applications requiring a large
number of different view-points (e.g., video surveillance by large camera networks).
Thus, acquiring training samples and as a consequence learning should be as automatic
as possible (especially if the amount of data required for learning is huge).

(a) (b)

Fig. 1. Hand labeling: labeling all occurring persons as positive examples is a time consuming
task if a great amount of training data is required.

Negative examples (i.e., examples of images not containing the object) are usually
obtained by a bootstrap approach [35]. One starts with a few negative examples and
trains a classifier. The obtained classifier is applied to images not containing the object.
Those sub-images where a (wrong) detection occurs are added to the set of negative
examples and the classifier is retrained. This process can be repeated several times.

Obtaining reliable positive examples is, however, a more difficult problem, since
discriminant classifiers are very sensitive to false training data. In addition, if the visual
system’s environment is constantly changing, the system has to keep adapting to these
changes. It has, therefore, to keep continuously learning and updating its knowledge.
When implementing continuous learning mechanisms, two main issues have to be ad-
dressed. First, the representation, which is used for modeling the observed world, has
to allow updating with newly acquired information. This update step should be efficient
and should not require access to the previously observed data while still preserving the
previously acquired knowledge. And secondly, a crucial issue is the quality of updating,
which highly depends on the correctness of the interpretation of the current visual in-
put. In this context, several learning strategies can be used, ranging from a completely
supervised learning approach (when the correct interpretation of the current visual input
is given by a tutor) to a completely unsupervised approach (when the visual system has



to interpret the current input without any additional assistance). Obviously, the latter
approach is preferable, especially when the amount of data to be processed is large.

Having these two issues in mind, one has to carefully select the type of representa-
tions of the objects (or subjects, or scenes) that can be used. Discriminative representa-
tions are compact, task dependent, efficient, and effective, but usually not very robust.
On the other hand, reconstructive representations are usually less efficient and less ef-
fective, but more general and robust. Thus, it would be desirable to combine these two
representations to achieve best of both worlds which would lead to efficient and effec-
tive, while still general and robust continuous learning techniques.

In fact, all of these requirements are met by the on-line conservative learning frame-
work [29,31]. A preliminary version of this approach [30] was based on batch methods.
Thus, it was not suitable for on-line learning which we show is a beneficial extension
for unsupervised learning. To avoid hand labeling of input data, we want that the visual
system labels data automatically. During the learning process a sufficient knowledge is
required for reliably evaluating the visual input. Thus, the process of labeling should
strongly be intertwined with the process of continuous learning, which could provide
enough redundant information to determine statistically consistent data. Only the suffi-
ciently consistent data would then be used to build the representations, enabling robust
learning (and updating of the representations) under non-ideal real-world conditions.
We refer to this approach as conservative learning. Also importantly, such a conserva-
tive approach assures, that non-relevant (corrupted, inexact, false) data is not included
into the model and that the model is not degraded.

The proposed framework is depicted in Fig. 2. The basic idea is to use a huge
amount of unlabeled data that is readily available for most detection task (i.e., just
mount a video camera and observe the scene) to avoid hand labeling of training data for
object detection tasks.

Motion
detection

Reconstructive model

Appearance Shape

Discriminative model

AdaBoost

Classifier

Input image

Fig. 2. The proposed on-line learning framework.

We use two types of models, a reconstructive one which assures robustness and
serves for verification, and a discriminative one, which actually performs the detection.



To get the whole process started we use a simple motion detector to detect potential ob-
jects of interest. In fact, we miss a considerable amount of objects (which can be com-
pensated by just using longer sequences) and we will also get miss-detections (which
will be reduced in the subsequent steps). The output from the motion detector can be
used to robustly build a first initial reconstructive representation. To further increase
the robustness we are combining multiple cues – we use one representation on shape
and the other on appearance. In particular, we use the robust incremental PCA [34]
at this stage such that most of the miss-detections (background, false detections, over-
segmentations, etc.) are not incorporated in the reconstructive model. This is very cru-
cial as the discriminative classifier needs to be trained with “clean” images to produce
good classification results. The discriminative model, the incremental Ada-Boost [9], is
then used to detect new objects in new images. The output of the discriminative clas-
sifier is then verified by the reconstructive model, and detected false positives are fed
back into the discriminative classifier as negative examples and true positives as posi-
tive examples to further improve the discriminative model. In fact, it has been shown
in the active learning community [26] that it is more effective to sample the current
estimate of the decision boundary than the unknown true boundary. This is exactly
achieved by our combination of reconstructive and discriminative classifiers. Exploit-
ing the huge amount of video data this process can be iterated to produce a stable and
robust classifier. Since all methods (PCA, AdaBoost, Background) operate in an incre-
mental manner, every image can be discarded immediately after it is captured and used
for updating the model.

The outlined approach is similar to the recent work of Nair and Clark [21] and
Levin et al. [15] who also proposed methods for automatic labeling new training data.
Nair and Clark propose to use motion detection for obtaining the initial training set
and then Winnow as a final classifier. Their approach does not include reconstructive
classifiers, nor does it iterate the process to obtain more accurate results. In that sense
our framework is more general. Levin et al. use the so called co-training framework to
start with a small training set and to increase it by using a co-training of two classifiers
operating on different features. We show that using a combination of reconstructive and
discriminative classifiers helps to increase the performance of the discriminative one.

2 On-line Conservative Learning

2.1 Motion Detection

To get the process started we use motion detection (or more generally change detec-
tion). Having a stationary camera a common approach to detect foreground objects is to
pixel-wise threshold the difference image between the currently processed image and
a background image. Let Bt be the current estimated background image, It the current
input image and θ a threshold, then a pixel is classified as foreground if

|Bt(x, y)− It(x, y)| > θ. (1)

For realistic applications different environmental conditions (e.g., changing light-
ening conditions or foreground models moving to background and vica versa) have to



be handled. Therefore, several adaptive methods for estimating a background model
Bt have been proposed that update the existing model with respect to the current input
frame It (e.g., running average [12], temporal median filter [19], approximated median
filter [20]). A more detailed discussion of these different background models can be
found in [4, 10, 27].

To minimize the computational costs and to have an adaptive on-line method we
apply the approximated median method [20] to estimate the background model. The
approximated median filter computes an approximation of the temporal median by in-
crementing the current estimate by one if the input pixel value is larger than the estimate
and by decreasing it by one if smaller:

Bt+1(x, y) =
{

Bt(x, y) + 1 Bt(x, y) < It(x, y)
Bt(x, y)− 1 Bt(x, y) > It(x, y) .

(2)

This estimate (only one reference image has to be stored!) eventually converges to the
real median. To avoid that non-moving foreground objects are accumulated into the
background model and to preserve a robust median estimation spatial and temporal
weights may be assigned for the updates.

The obtained motion blobs can be labeled as persons if the aspect ratio of their
bounding box is within the pre-specified limits. Examples of accepted patches are
shown in Fig. 3 where the corresponding blob regions are marked by a green bounding
box. As can be seen from Fig. 3(a) motion blobs that do not fit to the given constraints
are not included into the set of positive trainings samples.

(a) (b)

Fig. 3. Motion blobs obtained from background subtraction. Blobs that fulfill the constrains are
accepted are positive samples (green bounding boxes).

2.2 Reconstructive Model

As reconstructive model we use a PCA-based subspace representation. This low-dimensional
representation captures the essential reconstructive characteristics by exploiting the re-
dundancy in the visual data. As such, it enables “hallucinations” and comparison of the
visual input with the stored model [13]. In this way the inconsistent data can be rejected
and the discriminative model can be trained from clear data only.



During the learning process, however, a sufficient knowledge is required for a reli-
able evaluation of the visual input that is still to be acquired. Nevertheless, by consider-
ing the reconstruction error, the robust learning procedure can discard inconsistencies
in the input data and train the model from consistent data only [6,33]. Furthermore, this
can be done also in an incremental way. A bunch of methods for incremental building
of eigenspaces have been proposed [3, 11, 16]. Some of them also address the prob-
lem of robust incremental learning [17, 34]. We use a simplified version of [34] and by
checking the consistency of the input images (patches) we keep continuously accepting
or rejecting potential patches as positive or negative training examples for the discrim-
inative learner (and updating the reconstructive model). In the following this algorithm
is summarized.

For batch PCA all training images are processed simultaneously. A fixed set of
input images X = [x1, . . . xn] ∈ IRm×n is given, where xi ∈ IRm is an individual image
represented as a vector. It is assumed that X is mean normalized. Let Q ∈ IRm×m be the
covariance matrix of X, then the subspace U = [u1, . . . , un] ∈ IRm×n can be computed
by solving the eigenproblem for Q or more efficiently by solving SVD of X.

In contrast, for incremental learning, the training images are given sequentially.
Assuming that an eigenspace was already built from n images, at step n + 1 the current
eigenspace can be updated in the following way [34]: First, the new image x is projected
in the current eigenspace U(n) and the image is reconstructed: x̃. The residual vector
r = x − x̃ is orthogonal to the current basis U(n). Thus, a new basis U′ is obtained
by enlarging U(n) with r. U′ represents the current images as well as the new sample.
Next, batch PCA is performed on the corresponding low-dimensional space A′ and
the eigenvectors U′′, the eigenvalues λ′′ and the mean µ′′ are obtained. To update the
subspace the coefficients are projected in the new basis A(n+1) = U′′T

(
A′ − µ′′1

)
and

the subspace is rotated: U(n+1) = U′U′′. Finally, the mean µ(n+1) = µ(n) + U′µ′′ and
the eigenvalues λ(n+1) = λ′′ are updated. In each step the dimension of the subspace
is increased by one. To preserve the dimension of the subspace the least significant
principal vector may be discarded [11]. The method is summarized more detailed in
Algorithm 1.

To obtain an initial model, the batch method may be applied to a smaller set of
training images. Alternatively, to have a fully incremental algorithm, the eigenspace
may be initialized using the first training image x: µ(1) = x, U(1) = 0 and A(1) = 0.

This method can easily be extended in a robust manner, i.e., corrupted input images
may be used for incrementally updating the current model. To achieve this, outliers in
the current image are detected and replaced by more confident values: First, an image
is projected to the current eigenspace using the robust approach [13] and the image is
reconstructed. Second, outliers are detected by pixel-wise thresholding (based on the
expected reconstruction error) the original image and its robust reconstruction. Finally,
the outlying pixel values are replaced by the robustly reconstructed values.

To further increase the robustness of the reconstructive model, we build two sub-
space representations in parallel: appearance-based and shape-based representation.
The former is created from the cropped and resized appearance patches, which are
detected by the motion detector. Since the output of this detector is also a binary seg-
mentation mask, this mask is used to calculate the shape images based on the Euclidean



Algorithm 1 Incremental PCA
Input: mean vector µ(n), eigenvectors U(n), coefficients A(n), input image x
Output: mean vector µ(n+1), eigenvectors U(n+1), coefficients A(n+1), eigenvalues λ(n+1)

1: Project image x to current eigenspace:
a = U(n)T

“
x− µ(n)

”

2: Reconstruct image:
x̃ = U(n)a + µ(n)

3: Compute residual vector:
r = x− x̃

4: Append r as new basis vector to U:
U′ =

“
U(n) r

||r||

”

5: Determine the coefficients in the new basis:

A′ =

„
A(n) a

0 ||r||
«

6: Perform PCA on A′ and obtain the mean µ′′, the eigenvectors U′′ and the eigenvalues λ′′.
7: Project coefficients to new basis:

A(n+1) = U′′T (A′ − µ′′1)
8: Rotate subspace:

U(n+1) = U′U′′

9: Update mean:
µ(n+1) = µ(n) + U′µ′′

10: Update eigenvalues:
λ(n+1) = λ′′

distance transform [2]. The first five eigenvectors of the thus obtained appearance-based
and shape-based model are shown in Figs. 4(a,b). In addition, an example of such bi-
nary masks and the corresponding shapes obtained by distance transform is shown in
Fig. 5.

(a) (b)

Fig. 4. Reconstructive model - first five principal vectors: (a) appearance-based model and (b)
shape model.



Fig. 5. Shape model obtained by Euclidean distance transform of binary shape images.

2.3 On-line AdaBoost for Feature Selection

In general, boosting converts (boosts) a weak learning algorithm into a strong one.
Various variants of Boosting have been developed (e.g., Real-Boost [8], LP-Boost [7])
but here we focus on the discrete AdaBoost (adaptive boosting) algorithm introduced
by Freund and Shapire [8]. It adaptively re-weights the training samples instead of re-
sampling them and trains a weak classifier with respect to these weight distribution.
Finally, a strong classifier is build from a linear combination of all the trained weak
classifiers.

Boosting for feature selection was first introduced by Tieu and Viola [36] and later
used by Viola and Jones [38] for face detection. The main idea is that each feature
corresponds to a single weak classifier and that boosting selects an informative sub-
set of N features from all possible features F = {f1, ..., fM}. In each iteration step
n = 1, ..., N all features fj are evaluated on all positive and negative training samples
X = {(x1, y1), ..., (xL, yL)}, where xi ∈ IRm is a sample and yi ∈ {−1,+1} is the
corresponding label. A hypothesis is generated by applying the learning algorithm L
with respect to the weight distribution p(xi) over the training samples which is initial-
ized uniformly. The best hypothesis is selected and forms the weak classifier hweak

n .
The weight distribution p(xi) is updated according to the error of the current weak clas-
sifier. The process is repeated until N features are selected (i.e., N weak classifiers are
trained). Finally, a strong classifier hstrong is computed as a weighted linear combina-
tion of all weak classifiers where the weights αn are calculated according to the errors
of hweak

n .
In our work we use three different types of features, which are Haar-like features [38],

Orientation histograms [5,14], and a simple version of local binary patterns (LBP) [22].
Note, that the computation of all feature types can be done very efficiently using integral
images [38] and integral histograms [28] as data structures. This allows to do exhaustive
template matching when scanning the whole image.

The method as described above works off-line; all training samples must be given
in advance which is not the case for many applications. In order to get an on-line algo-
rithm, all steps have to be on-line. Therefore, we use the on-line AdaBoost algorithm
proposed by Oza [24, 25]. In contrast to the off-line version, the weak classifiers are
updated whenever a new training sample arrives. Since we can not calculate the weight
distribution the basic idea of on-line boosting is that the importance λ of a sample can
be estimated by propagating it through the set of weak classifiers. This allows to adap-
tively train a detector and to efficiently generate the training set. In addition, a classifier



is available at any time. Moreover, Oza [25] has proved, if off-line and on-line boosting
are given the same training set the weak classifiers returned by on-line boosting con-
verges statistically to the one obtained by off-line boosting as the number of iterations
N →∞.

In the following we will shortly discuss on-line boosting for feature selection that
was proposed by Grabner and Bischof [9]. They introduce “selectors” and perform on-
line boosting on these selectors and not directly on the weak classifiers. Each selector
hsel(x) holds a set of M weak classifiers {hweak

1 (x), . . . , hweak
M (x)} and selects one of

them

hsel(x) = hweak
m (x) (3)

according to an optimization criterion (using the estimated error ei of each weak clas-
sifier hweak

i such that m = arg mini ei).
Thus, on-line boosting for feature selection can be summarized as follows: first, a

fixed set of N selectors hsel
1 , .., hsel

N is initialized randomly with weak classifier (i.e.,
features). When a new training sample 〈x, y〉 arrives the selectors are updated. This up-
date is done with respect to the importance weight λ of the current sample. For updating
the weak classifiers any on-line learning algorithm can be used. To obtain the weak clas-
sifiers hweak

j the feature fj is evaluated on the sample image x. The weak classifier with
the smallest estimated error e?

n is selected by the selector and the corresponding voting
weight αn = 1

2 ln
(

1−e?
n

e?
n

)
and the importance weight λ of the sample are updated and

passed to the next selector hsel
n+1. The weight is increased if the example is misclassified

by the current selector or decreased otherwise. Finally, a strong classifier is obtained by
linear combination of N selectors:

hstrong(x) = sign
( N∑

n=1

αn · hsel
n (x)

)
. (4)

2.4 Conservative Update Rules

Having the reconstructive models described in Section 2.2 each image patch can be
checked whether it is consistent with them or not. Figs. 6(a,b) depict an image and its
appearance and shape reconstructions in the case of a correct and a false detection. In
the latter case, the reconstruction error for both, the appearance-based and the shape
model are significantly larger (i.e., the original image and its reconstruction differ sig-
nificantly) whereas we get small reconstruction errors for the correct example.

Thus, the reconstruction error can be considered a meaningful criterion for our up-
date decisions. In the conservative learning framework we perform updates only if we
are very confident, in particular we used following update rule: the current discrimina-
tive classifier is applied to a training image and all patches that were labeled as object
are verified by the reconstructive model. If the reconstruction error for both, appearance
and shape, is very low there is a positive update of the classifier; if the reconstruction
errors are big there is a negative update. Otherwise there is no update. As this decisions
are based on very conservative thresholds most patches are not considered at all. This
update rule is illustrated in Fig. 7.



(a) (b)

Fig. 6. Appearance image, its reconstruction, shape image, its reconstruction: (a) in case of correct
detection, (b) in case of false detection.

Fig. 7. Conservative updating the discriminant classifier.

Finally, in Fig. 8 we illustrate the incremental learning process by visualizing the
updates. Therefore, the first, the third, the 34th and the 64th frame of a sequence of
total 300 frames are shown. A red bounding box indicates a negative update, a green
bounding box a positive update and a white bounding box indicates a detection that is
not used for updating the existing classifier. It can be seen that there is a great number
of negative updates within the very first frames (see Figs. 8(a,b)). If the incremental
learning process is running for a longer time we finally get a stable classifier and only a
small number of updates are necessary (see Figs. 8(c,d)).



(a) (b)

(c) (d)

Fig. 8. On-line Conservative Learning: (a) updates for 1st frame, (b) updates for 3rd frame, (c)
updates for 34th frame, and (d) update for 64th frame.

3 Experimental Results

3.1 Description of Experiments

For testing our framework we used two different surveillance video sequences. For the
first one (CoffeeCam), showing a corridor in a public building near to a coffee dis-
penser, we have recorded images over several days. A simple motion detector triggers
the camera and then each second one image is recorded. In total we have recorded
over 35000 images. To train the classifiers a sequence containing 1200 frames has been
used. For evaluation purposes we have generated a challenging independent test set of
300 frames (containing groups of persons, persons partially occluding each other and
persons walking in different directions) and a corresponding ground truth.

The second sequence (Caviar), showing a corridor in a shopping center, was taken
by the CAVIAR project and is publicly available1. There is a great number of short
sequences that have been joined to a single one. To avoid redundancy the frame rate was
reduced to approx. 1 fps (only every 25th frame was stored). For evaluation purposes an

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1; January 29, 2007



independent test set of 144 frames was created. Note that CAVIAR provides a ground
truth in XML format which we used for our evaluation. This ground truth annotates also
persons which are only partially visible (e.g., only a hand or head) which, in fact, can
not be detected by our system.

To monitor the progress during on-line training after several training images the
classifier obtained up to now is evaluated on the same independent test sequence. There-
fore, the experiments are split into two main parts: First, we trained and evaluated clas-
sifiers on the CoffeeCam sequence. Second, to demonstrate the on-line adaptation ca-
pability, a classifier trained on the CoffeeCam sequence was applied to the Caviar test
set. In addition, we show detection results obtained from classifiers that was trained us-
ing conservative learning. Therefore, we evaluated a person detector on a very complex
sequence (a crowd in a lobby of a public building) and a car detector on a sequence
showing a tunnel.

3.2 CoffeeCam

First, we need an initialization stage to collect positive and negative samples applying a
motion based classifier. All patches where motion detection has detected an object are
selected as positive examples. The negative examples are obtained by randomly sam-
pling regions where no motion was detected (AdaBoost1). Since the motion detector
returns approx. 10% false positives a robust reconstructive representation (PCA on ap-
pearance and shape) is computed from the output of the motion detector. Thus, the false
positives can be filtered out and may be used as negative examples (AdaBoost2). Next,
we can use the thus obtained data sets to train an initial AdaBoost classifier and PCA
models for appearance and shape and start the on-line training. The PCA models were
updated using the incremental PCA later on.

Let us have a look at the results obtained by on-line learning. As an evaluation cri-
terion we used similar to [1], precision, recall and the F-measure that can be considered
as trade-off between recall and precision. Fig. 9 depicts the performance curves if we
start on-line training from AdaBoost2. One can see a clear improvement (especially in
the first 100 steps) where a lot of false positives can be eliminated. The sudden decrease
in performance around frame no. 900 is caused by a single background patch that is de-
tected as a false positive over the whole test sequence; after the next update the curves
get back to the previous level.

Fig. 9(b) depicts the performance curves if we start on-line training from AdaBoost1.
Since this initial classifier is worse there is a greater number of false positives in the be-
ginning. Therefore more than 300 frames are necessary to obtain comparable results to
the previous classifier but finally we get the same performance as for the first test case!
This example demonstrates that it is beneficial (1) first to perform a few steps of off-line
learning at the beginning and then switch to an on-line version and (2) to use clean data
for training.

Fig. 10 shows the detections by three different on-line classifiers (initial, after 300
and after 1200 training frames) on the test sequence. There are many false positives in
(a) that can be completely removed by on-line training, as can be seen in (b) and (c).
Fig. 11 depicts some more examples of persons correctly detected by the final classifier
that was trained with 1200 frames.
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(a) (b)

Fig. 9. (a) On-line learning started from AdaBoost2, (b) On-line learning started from AdaBoost1.

(a) (b) (c)

Fig. 10. Improvement of on-line classifier: (a) initial classifier, (b) after 300 frames and (c) after
1200 frames.

(a) (b) (c)

Fig. 11. Detections by the final classifier trained with 1200 frames.



Finally, we want to show that the on-line algorithms are comparable to the off-
line versions of the methods. Therefore we have trained classifiers of different stages
using the off-line framework we have proposed in [30] and evaluated them on the test
sequence. The initialization stage (collect patches and build an initial classifier) is the
same as described above (Off-line AdaBoost1 and Off-line AdaBoost2). To train a new
classifier the current classifier is evaluated on another sequence. Thus, new positive and
negative examples are added to the current training set; a new classifier is trained (Off-
line AdaBoost3). Table 1 depicts these increasingly better results compared to the final
classifiers obtained by the on-line framework.

method recall prec. F-m.
Off-line AdaBoost1 97.4 % 27.5 % 42.9 %
Off-line AdaBoost2 91.9 % 57.4 % 70.7 %
Off-line AdaBoost3 93.6 % 94.8 % 94.2 %

AdaBoost1 86.4 % 88.3 % 87.4 %
AdaBoost2 87.7 % 89.7 % 88.7 %

Table 1. Experimental results of the off-line and of the on-line framework.

3.3 Switch to Caviar

After we have shown that the on-line learning framework is working on the CoffeeCam
data we want to demonstrate two interesting aspects: First, we show that the classifiers
trained on the CoffeeCam data describe a generalized person model. Therefore Fig. 12
depicts the performance of the classifiers while training them on CoffeeCam training
data and evaluating them on the Caviar test sequence. One can clearly see that the
precision (and therefore the F-measure) is improved by on-line training while the recall
is roughly constant. This shows that a person model is learned that generalizes over
specific setups.

Second, we demonstrate that the on-line learning framework is able to adapt to a
completely different scene. Therefore we perform on-line training on the Caviar data
set starting with a classifier obtained by the CoffeeCam training. Due to the compression
noise a new model for appearance is required. Furthermore motion detection can not
be applied to the Caviar data set, because the quality of the motion blobs is too bad
for classifying based on size and aspect ratio restrictions only. Since the shape model
is more robust (holes etc.), the shape model estimated from the CoffeeCam data can
be used to collect patches for generating an appearance based PCA model. The PCA
models (appearance and shape) were updated using the incremental PCA later on.

Fig. 12(b) depicts the evaluation results of this experiment. The main improvement
is achieved within the first 100 frames (false positives in the background). The precision
(and therefore the F-measure) can be clearly increased. Please note that the obtained
performance of approx. 60% detection rate might look quite low, but this is actually
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Fig. 12. (a) Performance of CoffeeCam classifier evaluated on Caviar test set, (b) Performance of
Caviar on-line learning.

quite good considering the given ground truth. If we exclude all persons that are not at
least 50% visible we get a detection rate of approx. 79%.

The noisy behavior of the curves can be explained by the nature of on-line learning
and the way we perform the evaluation. We have a fixed test set, therefore it may happen
that particular cases occurring in the test set are not occurring in the training sequence
for some time. Thus, the classifier will not perform well on this particular data, i.e., if
this happens to parts of the background that are visible most of the time. Examples of
the finally obtained classifier that was trained with 1200 frames are shown in Fig. 13.

3.4 Further Detection Results

To demonstrate that the proposed framework even works on more complex scenarios
we show detection results on a crowdy scene. Therefore, a classifier was trained on-line
from 1000 frames. This classifier was then evaluated on an independent test sequence
of 600 frames. Examples of detections are shown in Fig.14.

Finally, we show that the proposed framework is quite general and is not limited
to train a person model. Therefore, Fig. 15 shows results of a car detector applied in a
tunnel that was trained using on-line conservative learning.

4 Summary and Conclusions

We have presented an on-line learning framework that avoids hand labeling of training
data. This framework has been used on challenging person detection tasks. We have
demonstrated that on-line learning obtains comparable results to off-line learning. We
have also shown that we can adapt an already trained person detector to a quite dif-
ferent set-up (i.e, by reducing the number of false positives). While the CoffeeCam
sequence was obtained with a high quality camera looking down a corridor, the Caviar
sequence was obtained with a consumer video camera mounted almost horizontally.
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Fig. 13. Detections by the final classifier trained with 1200 frames.

Moreover, the sequences contain a considerable amount of compression noise. Never-
theless, the on-line framework was able to adapt to this quite different scenario. The
proposed framework is quite general. It can be used to learn completely different ob-
jects (e.g., cars) and can be extended in several ways. More modules (generative and
discriminative classifiers) operating on different modalities will further increase the ro-
bustness and generality of the system. In particular, we will add a tracking algorithm to
obtain a wider variety of positive samples (which in turn should increase the detection
rate).
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31. P. M. Roth, H. Grabner, D. Skočaj, H. Bischof, and A. Leonardis. On-line conservative
learning for person detection. In Proc. IEEE International Workshop on Visual Surveillance
and Performance Evaluation of Tracking and Surveillance, pages 223–230, 2005.

32. H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 20(1):23–38, 1998.
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