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Abstract. Object detection and segmentation are two challenging tasks
in computer vision, which are usually considered as independent steps.
In this paper, we propose a framework which jointly optimizes for both
tasks and implicitly provides detection hypotheses and corresponding
segmentations. Our novel approach is attachable to any of the available
generalized Hough voting methods. We introduce Hough Regions by for-
mulating the problem of Hough space analysis as Bayesian labeling of
a random field. This exploits provided classifier responses, object center
votes and low-level cues like color consistency, which are combined into
a global energy term. We further propose a greedy approach to solve
this energy minimization problem providing a pixel-wise assignment to
background or to a specific category instance. This way we bypass the
parameter sensitive non-maximum suppression that is required in related
methods. The experimental evaluation demonstrates that state-of-the-art
detection and segmentation results are achieved and that our method is
inherently able to handle overlapping instances and an increased range
of articulations, aspect ratios and scales.

1 Introduction

Detecting instances of object categories in cluttered scenes is one of the main
challenges in computer vision. Standard recognition systems define this task as
localizing category instances in test images up to a bounding box representation.
In contrast, in semantic segmentation each pixel is uniquely assigned to one of a
set of pre-defined categories, where overlapping instances of the same category
are indistinguishable. Obviously, these tasks are quite interrelated, since the
segmentation of an instance directly delivers its localization and a bounding box
detection significantly eases the segmentation of the instance.

* This work was supported by the Austrian Research Promotion Agency (FFG) under
the projects CityFit (815971/14472-GLE/ROD) and MobiTrick (8258408) in the
FIT-IT program and SHARE (831717) in the IV2Splus program and the Austrian
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Fig.1. Hough regions (yellow) find reasonable instance hypotheses across scales
and classes left) despite strongly smeared vote maps (middle). By jointly optimiz-
ing for both segmentation and detection, we identify even strongly overlapping in-
stances (right) compared to standard bounding box non-maximum suppression.

Both tasks have recently enjoyed vast improvements and we are now able
to accurately recognize, localize and segment objects in separate stages using
complex processing pipelines. Problems still arise where recognition is confused
by background clutter or occlusions, localization is confused by proximate fea-
tures of other classes, and segmentation is confused by ambiguous assignments
to foreground or background.

In this work we propose an object detection method which combines instance
localization with its segmentation in an implicit manner for jointly finding op-
timal solutions. Related work in this field, as will be discussed in detail in the
next section, either tries to combine detection and segmentation in separate
subsequent stages [1] or aims at full scene understanding by jointly estimating
a complete scene segmentation of an image for all object categories [2].

We place our method in between these two approaches, since we combine
instance localization and segmentation in a joint framework. We localize object
instances by extracting so-called Hough regions which exploit available informa-
tion from a generalized Hough voting method, as it is illustrated in Figure 1.
Hough regions are an alternative to the de-facto standard of bounding box non-
maximum suppression or vote clustering, as they are directly optimized in the
Hough vote space. Since we are considering maxima regions instead of single
pixel maxima, articulation and scale become far less important. Our method is
thus more tolerant against diverging scales and the number of overall scales in
testing is reduced. Further, we implicitly provide instance segmentations and to
increase the recall in scenes containing heavily overlapping objects.

2 Related Work

In this work we consider the problem of localizing and accurately segmenting
category instances. Thus, in this section we mainly discuss the related work in
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the three most related research fields: non-maximum suppression, segmentation
and scene understanding.

One of the most prominent approaches for improving object detection perfor-
mance is non-maximum suppression (NMS) and its variants. NMS aims for sup-
pressing all hypotheses (i.e. bounding boxes) within a certain distance (e.g. the
widespread 50% PASCAL criterion) and localization certainty with respect to
each other. Barinova et al. [3] view the Hough voting step as an iterative proce-
dure, where each bounding box of an object instance is greedily considered. Desai
and Ramaman [4] see the bounding box suppression as a problem of context eval-
uation. In their work they learn pairwise context features, which determine the
acceptable bounding box overlap per category. For example, a couch may overlap
with a person, yet not with an airplane.

The second approach for improving object detection is to use the support of
segmentations. The work of Leibe et al. [5] introduced an implicit shape model
which captures the structure of an object in a generalized Hough voting manner.
They additionally provide segmentations per detected category instance, but
require ground truth segmentations for every positive training sample. To re-
cover from overlapping detections, they introduce a minimum description length
(MDL) criterion to combine detection hypotheses based on their costs as sep-
arate or grouped hypotheses. Borenstein and Ullman [6] generate class-specific
segmentations by a combination of object patches, yet this approach is decoupled
from the recognition process. Yu and Shi [7] show a parallel segmentation and
recognition system in a graph theoretic framework, but are limited to a set of a
priori known objects. Amit et al. [8] are treating parts as competing interpreta-
tions of the same object instances. Larlus and Jurie [9] showed how to combine
appearance models in a Markov Random Field (MRF) setup for category level
object segmentation. They used detection results to perform segmentation in
the areas of hypothesized object locations. Such an approach implicitly assumes
that the final detection bounding box contains the object-of-interest and cannot
recover from examples not sticking to this assumption, which is also the case
for methods in full scene understanding. Gu et al. [10] use regions as underlying
reasoning for object detection, however they rely on a single over-segmentation
of the image, which cannot recover from initial segmentation errors. Tu et al. [11]
propose the unification of segmentation, detection and recognition in a Bayesian
inference framework where bottom-up grouping and top-down recognition are
combined for text and faces.

The third approach for improving object detection is to strive for a full scene
understanding to explain every object instance and all segmentations in an im-
age. Gould et al. [12] jointly estimate detection and segmentation in a unified
optimization framework, however with an approximation of the inference step,
since their cost formulation is intractable otherwise. Such an approach cannot
find the global optimal solution. Wojek and Schiele [13] couple scene and detector
information, but due to the inherent complexity the problem is not solvable in an
exact manner. Winn and Shotton [14] propose a layout consistent Conditional
Random Field (CRF) which splits the object into parts and enforces a coherent
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layout when assigning the labels and connects each Hough transform with a part
to extract multiple objects. Yang et al. [15] propose a layered object model for
image segmentation, which defines shape masks and explains the appearance,
depth ordering, and labels of all pixels in an image. Ladicky et al. [2] combine
semantic segmentation and object detection into a framework for full scene un-
derstanding. Their method trains various classifiers for ”stuff” and ”things” and
incorporates them into a coherent cooperating scene explanation. So far, only
Ladicky et al. managed to incorporate information about object instances, their
location and spatial extent as important cues for a complete scene understand-
ing, which allows to answer a question like what, where and how many object
instances can be found in an image. However, their system is designed for diffi-
cult full scene understanding and not for an object detection task, as they only
integrate detector responses and infer from the corresponding bounding boxes.
This limits the ability to increase the detection recall or to improve the accuracy
of instance localization.

Our method improves the accuracy of object detectors by using the object’s
supporting features for joint segmentation and reasoning between object in-
stances. We achieve a performance increase in recall and precision, through the
ability to better handle articulations and diverging scales. Additionally, we do
not require a parameter sensitive non-maximum suppression since our method
delivers unique segmentations per object instance. Please note, in contrast to
related methods [5, 16] these segmentation masks are provided without learning
from ground truth segmentation masks for each category.

3 Joint Reasoning of Instances and Support

The main goal of this work is the joint reasoning about object instances and
their segmentations. Our starting point is any generalized Hough voting method
like the Implicit Shape Model (ISM) [5], Hough Forests [17] or the max-margin
Hough transform [18]. We formulate our problem in terms of a Bayesian labeling
of a first-order Conditional Random Field (CRF) aiming at the minimization
of a global energy term. Since global inference in the required full random field
is intractable, we propose a greedy method which couples two stages iteratively
solving each stage in a global optimal manner. Our model inherently links clas-
sifier probabilities, corresponding Hough votes and low-level cues such as color
consistency and centroid proximity.

We first describe in Section 3.1 the global energy term for providing pixel-
wise assignments to category instances, analyzing unary and pairwise potentials.
In Section 3.2 we introduce our approach for minimizing the energy term by a
greedy approach. Finally, in Section 3.3 we directly compare the properties of
our method to related work.

3.1 Probabilistic Global Energy

We assume that we are given any generalized Hough voting method like [17,
5,18, 19], which provides our N voting elements X; within the test image and
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corresponding object center votes H; into the Hough space. We further assume
that we are given p (C|X;, D;) per voting element, which measures the likelihood
that a voting element X; belongs to category C by analyzing a local descriptor
D;. This could be feature channel differences between randomly drawn pixel
pairs as in [17]. All this information can be directly obtained from the generalized
Hough methods; see experimental section for implementation details.

The goal of our method is to use the provided data of the generalized Hough
voting method to explain a test image by classifying each pixel as background
or as belonging to a specific instance of an object category. We formulate this
problem as Bayesian labeling of a first-order Conditional Random Field (CRF)
by minimizing a global energy term to derive an optimal labelling.

Such random field formulations are widespread, especially in the related field
of semantic segmentation, e.g. [20]. In a standard random field X" each pixel is
represented as a random variable X; € X, which takes a label from the set £ =
{l1,12,...,lx} indicating one of K pre-defined object classes as e.g. grass, people,
cars, etc. Additionally, an arbitrary neighborhood relationship N is provided,
which defines cliques c¢. A clique c is a subset of the random variables X, where
Vi,j € cholds i € N and j € N;, i.e. they are mutually neighboring concerning
the defined neighborhood system A

In our case, we not only want to assign each pixel to an object category,
we additionally aim at providing a unique assignment to a specific instance of
a category in the image, which is a difficult problem if category instances are
highly overlapping. For the sake of simplicity, we define our method for the single
class case, but the method is easily extendable to a multi-class setting.

We also represent each pixel as random variable X; with ¢ = 1... N, where
N is the number of pixels in the test image, and aim at assigning each pixel a
category-specific instance label from the set £ = {lp,l1,...,l5}, where L is the
number of instances. We use label [ for assigning a pixel to the background. We
seek for the optimal labeling x of the image which is taken from the set L = £V.
The optimal labeling minimizes the general energy term E (x) defined as

E(x) = —log P (x|D) —log Z =Y he(xc), (1)
ceC

where Z is a normalization constant, D is the observed data, C is the set of
considered cliques defined by the neighborhood relationship A and %.(x.) is
a potential function of the defined clique. The Maximum a Posteriori (MAP)
labeling x* is then found by minimizing this energy term as

z* = argmin F (x) . (2)
el

To obtain reasonable label assignments it is important to select powerful po-
tentials, which range from simple unary terms (e.g. evaluating class likelihoods),
pairwise terms (e.g. the widespread Potts model) or even higher order terms.
While unary potentials ensure correct label assignments, pairwise potentials aim
at providing a smooth label map, e.g. by avoiding the assignment of identical
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labels over high image gradients. The overall goal is to provide a smooth labeling
consistent with the underlying data.

Our energy is modeled as the sum of unary and pairwise potentials. In the
following, we assume that we are given a set of seed variables S which consist
of L subsets Sy € X of random variables for which we know the assignment to
a specific label in the image. We again assume that the set Sg represents the
background. These assignments are an essential step of our method and how to
obtain them is discussed in Section 3.2.

Based on the given assignments S;, we define our instance-labeling problem
as minimizing the following energy term

E(z) = Z O (X;) + Z T(Xi)+ Z 2(X;) + Z ¥ (X, Xj) (3)

XS Xi€eS X€8 Xi, X;EN

which contains a unary, instance-specific class potential @, a color based unary
potential 1", a distance based unary potential {2 and a pairwise potential ¥. The
first unary potential @ contains the estimated likelihoods for a pixel taking a
certain category label as provided by the generalized Hough voting method as

6 = —log p(C|X;,D;), (4)

i.e. the unary potentials © describe the likelihood of getting assigned to one of the
identified seed regions or the background. Since we do not have a background
likelihood, the corresponding values for [y are set to a constant value ppgck,
which defines the minimum class likelihood we want to have. The term © drives
our label assignments to correctly distinguish background from actual object
hypotheses.

The unary potential 7" analyzes the likelihood for assigning a pixel to one of
the defined seed regions, e.g. analyzing local appearance information in compar-
ison to the seed region. In general any kind of modeling scheme is applicable in
this step. We model each subset S; € X by Gaussian Mixture Models (GMM)
G, and define color potentials for assigning a pixel to each instance by

T =—log p(Xi|G)). (5)

The corresponding likelihoods for the background class ly are set to log(1 —
max;e, p (X;]Gr)) since the background is mostly too complex to model. The
term 7 ensures that pixels are assigned to the right instances by considering the
appearance of each instance.

The third unary potential {2 defines a spatial distance function analyzing
how close each pixel is to each seed region S; by

N =A(X;S1), (6)

where A is a distance function. The term {2 ensures that correct assignments
to instances are made considering constraints like far away pixels with diverging
center votes are not assigned to the same instance.
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Finally, our pairwise potentials encourage neighboring pixels in the image
to take the same label considering a contrast-sensitive Potts model ¥ analyzing
pixels included in the same cliques ¢ defined as

W{v it oz £ (7)

where V is an image specific gradient measure or local color difference. The
term ¥ mainly ensures that smooth label assignments are achieved.

This way we can effectively incorporate not only the probability of a single
pixel belonging to an object, but also consider the spatial extent and the local
appearance of connected pixels in our inference. Please note that this formulation
can e.g. be extended to superpixels to include higher-order potentials [21].

Finding an optimal solution without knowledge of the seeds S; is infeasible
since inference in such a dense graph is NP-hard. Therefore, in the next section
we propose a greedy algorithm for solving the above presented energy mini-
mization problem, which alternately finds optimal seed assignments and then
segments instances analyzing the hough vector support. The final result of our
method is a segmentation of the entire image into background and individual
category instances.

3.2 Instance Labeling Inference

We propose a novel, greedy inference concept to solve the energy minimization
problem defined in Eq. 3. The core idea is to alternately find a single, optimal
seed region analyzing the provided Hough space (Eq. 8), and afterwards to use
this seed region to find an optimal segmentation of the corresponding instance
in the image space (Eq. 3). The obtained segmentation is then used to update
the Hough space information (Eq. 10), and we greedily obtain our final image
labeling.

We assume that we are given the votes H; of each pixel into the Hough vote
map, providing a connection between pixelwise feature responses and projected
Hough centers. Hence, we can build a two-layer graph for any image, where the
nodes in the first layer I (image graph) are the underlying random variables X;
for all pixels in the image, and the second layer H (Hough graph) contains their
transformed counterparts H(X;) in the Hough vote map. Figure 2 illustrates this
two-layer graph setup.

The first step is to optimally extract a seed-region from the corresponding
Hough graph H. Therefore, we propose a novel paradigm denoted as Hough
regions, which formulates the seed pixel extraction step itself as a segmentation
problem. A Hough region is defined as connected, arbitrarily shaped subset of
graph nodes H; € H, which are the hypothesized center votes for the object
instance into the Hough space. In the ideal case, all pixels of the instance would
vote to the same center pixel, unfortunately in the real world these Hough center
votes are quite imperfect. Even despite recent research to decrease the Hough
vector impurity [17, 19], the Hough center is never a single pixel. This arises from
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o

Fig. 2. Two layer graph design (top: Hough and bottom: image) to solve proposed
image labeling problem. We identify Hough regions as subgraphs of the Hough graph
H. The backprojection into the image space, in combination with color information,
distance transform values and contrast sensitive Potts potentials defines instance seg-
mentations in the image graph 1.

various sources of error such as changes in global and local scales, aspect ratios,
articulation, etc. Perfect Hough maxima are unlikely and there will always exist
inconsistent centroid votes. The idea and benefit of our Hough regions paradigm
is now to exactly capture this uncertainty by considering regions, and not single
Hough maxima.

Thus, our goal is to identify Hough regions Hj in the Hough space H, which
then allows to directly define the corresponding seed region S; by the back-
projections into the image space, i.e. the random variables X; € S; are the
nodes in the image graph I which project into the Hough region Hj. For this
reason, we define a binary image labeling problem in the Hough graph by

E(@)= ) OH(X))+ ) P(H(Xi). H(X))), (8)
~N

X, eX

which contains the projected class-specific unary potentials © and a pairwise
potential @. The potential © for each variable X; is projected to the Hough
graph using H(X;). The unary potential at any node H(X;) is then the sum of the
classifier responses voting for this node, as it is common in general Hough voting
methods. The pairwise potential @ is defined on this very same graph H as a
gradient-sensitive Potts model, where the gradient is calculated as the difference
between the unary potentials of two nodes H(X;) and #(X) in the Hough graph
H. This binary labeling problem can be solved in a global optimal manner using
any available inference algorithm as e.g. graph cuts [22], and the obtained Hough
region Hj is then back-projected to the seed region S;.

The second step, after finding the optimal seed region Sy, is to identify all
supporting pixels of the category instance in the image graph I. Since we have
now given the required seed region Sj, we can apply our energy minimization
problem defined in Eq. 3 and again solve a binary labeling problem, for assigning
each pixel to the background or the currently analyzed category instance. The
last part is the distance function A (X, S;), which we define as

_ 0 if H(X;)eH
A(X;,8) = {DT(Xi) otherwise, )
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where H(X;) is the Hough transformation of an image location to its associated
Hough nodes and DT(X;) is the distance transform over the elements of the
current seed pixels, which are given by the Hough region Hj. Again this binary
labeling problem can be solved in a global optimal manner using e.g. graph cut
methods [22], which returns a binary segmentation mask M; for the current
category instance.

After finding the optimal segmentation M; for the currently analyzed cate-
gory instance in the image space, we update the Hough vote map, considering the
already assigned Hough votes. In such a way our framework is not error-prone to
spurious incorrect updates in the Hough voting space as it is common in related
methods. This directly improves the detection performance, as occluded object
instances are not removed. On the contrary, occluded instances are now more
easily detectable by their visible segmentation, as they require less visibility with
competing object instances or other occlusions.

In detail, the update considers each image location and its (independent)
votes, which are accumulated in the nodes of the Hough graph. An efficient
update is possibly by subtracting the previously segmented object instance from
the classwise, unary potentials, which are initially @ (X;) = ©(X;), by

Qt-i-l(Xi) = Qt(Xi) - @<XM1)7 (10)

where each random variable X 4, within the segmentation mask M; of the
category instance is used in the update. Using our obtained segmentations, we
focus the update solely on the areas of the graph where the current object
instance plays a role. This leads to a much finer dissection of the image and
Hough graphs, as shown in Figure 2.

After updating the Hough graph H with the same update step, we repeat find-
ing the next optimal seed region and afterwards segmenting the corresponding
category instance in the image graph I. This guarantees a monotonic decrease
in max(6;11) and our iteration stops when max(©i41) < ppack, i-e. we have
identified all Hough regions (object instances £) above a threshold.

3.3 Comparison to Related Approaches

Our implicit step of updating the Hough vote maps by considering optimal seg-
mentations in the image space, is related to other approaches in the field of non-
maximum suppression. In general, one can distinguish two different approaches

in this field.

Bounding bozxes are frequently selected as underlying representation to perform
non-maximum suppression and are the de-facto standard for defining the number
of detections from a Hough image. In these methods the Hough space is analyzed
using a Parzen-window estimate based on the Hough center votes. Local max-
ima in the Parzen window estimate determine instance hypotheses by placing a
bounding box considering the current scale onto the local maxima. Conflicting
bounding boxes, e.g. within a certain distance and quality with respect to each
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other are removed (NMS). Integrating such a setup in our method would mean
that each bounding box represents one seed region Sy and additionally defines
a binary distance function A (X;,S;), where A = 1 for all pixels within the
bounding box and A = 0 for all other pixels.

Non-maximum suppression comes in many different forms like a) finding all
local maxima and performing non-maximum suppression in terms of mutual
bounding box overlap in image space to discard low scoring detections; b) ex-
tracting global maxima iteratively and eliminating these by deleting the interior
of the bounding box hypothesis in Hough space [17]; ¢) iteratively finding global
maxima for the seed pixels [3] and estimating bounding boxes and subtracting
the corresponding Hough vectors. All pixels inside the bounding box are used
to reduce the Hough vote map. This leads to a coarse dissection of the Hough
map which leads to problems since it includes much background information and
overlapping object instances.

Clustering methods allow more elegant formulation since they attempt to group
Hough vote vectors to identify instance hypotheses. The Implicit Shape Model
(ISM) [5], for example, employs a mean-shift clustering on sparse Hough center
locations to find coherent votes. The work by Ommer and Malik [23] extends
this to clustering Hough voting lines, which are infinite lines as opposed to
finite Hough vectors. The benefit lies in extrapolating the scale from coherent
Hough lines, as the line intersection in the 3D x—y—scale space determines the
optimal scale. Such an approach relates to ours, since the clustering step can
be interpreted as elegantly identifying the seed pixels we analyze. However such
approaches assume well-distinguishable cluster distributions and are not well-
suited for scenarios including many overlaps and occlusions. Furthermore, similar
to the bounding box methods, which require a Parzen-window estimate to bind
connected Hough votes, clustering methods require an intra- to inter cluster
balance. In terms of a mean-shift approach this is defined by the bandwidth
parameter considered. An additional drawback of clustering methods is also
the limited scalability in terms of number of input Hough vectors that can be
efficiently handled. An interesting alternative is the grouping of dependent object
parts [24], which yields significantly less uncertain group votes compared to the
individual votes.

Our proposed approach has several advantages compared to the discussed
related methods. A key benefit is that we do not have to fix a range for local
neighborhood suppression, as it is e.g. required in non-maximum suppression
approaches, due to our integration of segmentation cues. As it is also demon-
strated in the experimental section, our method is robust to an increased range
of variations in object articulations, aspect ratios and scales, which allows to
reduce the number of analyzed scales during testing while maintaining the de-
tection performance. We implicitly also provide segmentations of all detected
category instances, without requiring segmentation masks during training. In
overall, the benefits of our Hough Regions approach lead to higher precision and
recall compared to related approaches.
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Fig. 3. Recall/Precision curve for the TUD campus and TUD crossing sequences show-

ing analysis at multiple scales for highly overlapping instances. See text for details.

4 Experimental Evaluation

We use the publicly available Hough Forest code [17] to provide the required class
likelihoods and the centroid votes. For non-maximum suppression (NMS), we ap-
ply the method of [3] (also based on [17]), which outperforms standard NMS in
scenes with overlapping instances. It is important to note that for datasets with-
out overlapping instances like PASCAL VOC, the performance is similar to [17].
For this reason, we mainly evaluate on datasets including severely overlapping
detections, namely TUD Crossing and TUD Campus. Additionally, we evaluate
on a novel window detection dataset GT240, designed for testing sensitivity to
aspect ratio and scale variations. We use two GMM components, equal weighting
between the energy terms and fix ppqer = 0.125.

4.1 TUD Campus

To demonstrate the ability of our system to deal with occluded and overlapping
object instances (which results in an increased recall using the PASCAL 50%
criterion), we evaluated on the TUD Campus sequence, which contains 71 images
and 303 highly overlapping pedestrians with large scale changes. We evaluated
the methods on multiple scale ranges (one, three and five scales) and Figure 3
shows the Recall-Precision curve (RPC) for the TUD Campus sequence. Aside
the fact that multiple scales benefit the detection performance for all methods,
one can also see that our Hough regions method surpasses the performance at
each scale range (+3%, +8%, +8% over [3]) and over fewer scales. For example,
using Hough regions we only require three scales to achieve the recall and preci-
sion, which is otherwise only achieved using five scales. This demonstrates that
our method handles scale variations in an improved manner, which allows to
reduce the number of scales and thus runtime during testing. The ISM approach
of Leibe et al. [5] reaches good precision, but at the cost of decreased recall, since
the MDL criterion limits the ability to find all partially occluded objects.
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Fig.4. Recall/Precision curve for the street-level window detection dataset
GrazTheresa240 with strong distortion and aspect ratio changes in 5400 images.

4.2 TUD Crossing

The TUD Crossing dataset [25] contains 201 images showing side views of pedes-
trians in a relatively crowded scenario. The annotation by Andriluka et al. [25]
contains 1008 tight bounding boxes designed for pedestrians with at least 50%
visibility, ignoring highly overlapping pedestrians. For this reason we created a
pixelwise annotation. The new annotation is based on the original bounding box
annotation and now contains 1212 bounding box annotations with corresponding
segmentations. In addition to bounding boxes we also annotated the visibility
of pedestrians in fully visible body parts: head, front part of upper body, back
part of upper body, left leg or right leg.

Typically, in this sequence three scales are evaluated, however to show ability
to handle scale, we evaluate only on a single scale for all methods. Figure 3 shows
the Recall-Precision curve (RPC) for the TUD crossing sequence in comparison
to an Implicit Shape Model (ISM) [5] and the probabilistic framework of [3]. Our
method achieves a better recall compared to the other approaches. We increase
the recall as well as the precision indicating that our method can better handle
the overlaps, scale and articulation changes.

4.3 GrazTheresa240

We also evaluated our method on a novel street-level window detection dataset
(denoted as GrazTheresa240), which consists of 240 buildings with 5400 redun-
dant images with a total of 5542 window instances. Window detection itself
is difficult due to immense intra-class appearance variations. Additionally, the
dataset includes a large range of diverging aspect ratios and strong perspective
distortions, which usually limit object detectors. In our experiment we tested
on three different scales and a single aspect ratio. As shown in Figure 4 we can
substantially improve the detection performance in both recall and precision
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Fig. 5. Segmentations for TUD Crossing and TUD Campus datasets.

(12% at EER) compared to the baseline [17]. Our Hough regions based detector
consistently delivers improved localization performance, mainly by reducing the
number of false positives and by being less sensitive to diverging aspect ratios
and perspective distortions.

4.4 Segmentation

As final experiment we analyze achievable segmentation accuracy on the TUD
Crossing sequence [25], where we created binary segmentations masks for each
object instance for the entire sequence. Segmentation performance is measured
by the ratio between the number of correctly assigned pixels to the the total
number of pixels (segmentation accuracy). We compared our method to the
Implicit Shape Model (ISM) [5], which also provides segmentations for each
detected instance. Please note that the ISM requires segmentation masks for all
training samples to provide reasonable segmentations whereas our method learns
from training images only. Nevertheless, we achieve competitive segmentation
accuracy of 98.59% compared to 97.99% for the ISM. Illustrative results are
shown in Figure 5.

5 Conclusion

In this work we proposed Hough regions for object detection to jointly solve
instance localization and segmentation. We use any generalized hough voting
method, providing pixel-wise object centroid votes for a test image, as starting
point. Our novel Hough regions then determine the locations and segmentations
of all category instances and implicitly handles large location uncertainty due to
articulation, aspect ratio and scale. As shown in the experiments, our method
jointly and accurately delineates the location and outline of object instances,
leading to increased recall and precision for overlapping and occluded instances.
These results confirm related research where combining the tasks of detection
and segmentation improves performance, because of the joint optimization ben-
efit over separate individual solutions. In future work, we plan to consider our
method also during training for providing more accurate foreground /background
estimations without increasing manual supervision.
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