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Abstract. Pan-Tilt-Zoom (PTZ) cameras are widely
used in video surveillance tasks. In particular, they
can be used in combination with static cameras to
provide high resolution imagery of interesting events
in a scene on demand. Nevertheless, PTZ cameras
only provide a single trajectory at a time. Hence,
engineering algorithms for common computer vision
tasks, such as automatic calibration or tracking, for
camera networks including PTZ cameras is difficult.
Therefore, we propose a virtual PTZ (vPTZ) cam-
era to simplify the algorithm development for such
camera networks. The vPTZ camera is built on a
cylindrical panoramic view of the scene and allows
to reposition its field of view arbitrarily to provide
several trajectories. Further, we propose an unsuper-
vised extrinsic self-calibration method for a network
of static cameras and PTZ cameras solely based on
correspondences between tracks of a walking human.
Our experimental results show that we can obtain ac-
curate estimates of the extrinsic camera parameters
in both, outdoor and indoor scenarios.

1. Introduction

Video surveillance systems are used to simplify
several tasks, such as security critical surveillance or
sports game analysis. Although single static cameras
can provide a wide field of view (FOV), the captured
information is often insufficient to analyze dynamic
crowded scenes, such as team sports, where the ob-
jects of interest will frequently occlude each other.
To handle such scenarios, typically a network of sev-
eral static cameras with overlapping fields of view is
necessary. Furthermore, one often needs high quality
imagery of particular events within the scene. This
can be accomplished by combining the static cam-
eras with PTZ cameras. This combination allows to

simultaneously capture wide views of a scene with
static cameras and additionally provides high resolu-
tion video feeds of specific parts of the scene with
PTZ cameras.

PTZ cameras are very flexible, as they can observe
an almost 360° horizontal field of view (HFOV) by
repositioning the camera head. Nevertheless, while
developing algorithms for common computer vision
tasks, such as multiple object tracking, the use of
a real PTZ camera is complex. In order to accu-
rately test a vision algorithm which uses a PTZ cam-
era, several trajectories of the PTZ camera need to
be evaluated. However, the camera head cannot be
repositioned off-line, which poses a problem for ap-
plication developers. Thus, we propose a virtual PTZ
(vPTZ) camera to replace a real dynamic camera dur-
ing development. The vPTZ builds on a panoramic
view of the scene created from the video stream of
a spherical camera. This allows to simulate arbitrary
PTZ trajectories on a single data set off-line.

Furthermore, we implement a method for self-
calibration of the extrinsic parameters of cameras in
a network of static cameras with overlapping FOVs
and PTZ cameras. Calibrating a camera network re-
quires point correspondences between several FOVs.
In scenarios where the baseline between the fields
of view is rather small, these correspondences may
be found by extracting robust features, such as SIFT
[12]]. However, these approaches deteriorate if there
are many repetitive structures or only weak key
points, which are both common conditions in a real-
istic man-made environment. Moreover, cameras are
typically placed at distant locations of a scene instead
of ensuring a small baseline, which again cannot be
handled by a local feature approach.

One possible solution to overcome these problems
is to observe motion in the scene, e.g., walking hu-



mans or driving cars. Point correspondences required
for the self-calibration process can be obtained by ex-
tracting feature points from moving objects. In this
way, even non-professional users are able to easily
calibrate a network of multiple cameras.

Given synchronized video streams of static cam-
eras and PTZ cameras, we propose a self-calibration
method to obtain the extrinsic camera parameters
based on detected head and foot locations of a walk-
ing human. We demonstrate the self-calibration
method using the proposed vPTZ on both outdoor
and indoor setups, consisting of three to four static
cameras and one spherical camera capturing the
panoramas used for the vPTZ. As image measure-
ments often contain noise, we introduce an outlier
removal method to obtain consistent point correspon-
dences for the calibration process. Our experimental
results show that after outlier removal, we obtain a
robust estimate of the cameras’ extrinsic parameters.
We provide the evaluated data sets for further aca-
demic use, as well as an implementation of the vPTZ,
which can be used to simulate trajectories of a real
PTZ camera on the provided data sets.

2. Related Work

To the best of our knowledge, simulating a real
PTZ camera using panoramic imagery of a scene has
not been addressed before. A closely related con-
cept is creating virtual camera planes which has been
demonstrated in [[14]. The authors extract perspective
views from an omnidirectional vision system in order
to remove distortions for interest region matching.
Another related concept for simplifying the develop-
ment of algorithms for multiple camera networks has
been addressed in [20]]. There, a synthetic camera
network is placed inside a virtual scene. However,
since modelling realistic human behavior within a
virtual environment is a complex task, our approach
benefits from using real video footage.

Self-calibration of both, static cameras (e.g., [,
17]]) and PTZ cameras (e.g., 32, 9]) has been of sig-
nificant interest in the past. Basically, when combin-
ing static and dynamic cameras, one faces the prob-
lem of controlling the PTZ camera within the camera
network. This can be realized either by computing
lookup tables between the positions of the PTZ and
feature points in the FOVs of the static cameras, e.g.,
[25} 4], or by calibrating the camera network in order
to establish a geometric relation between pixel posi-
tions in the static views and the position of the PTZ

camera, e.g., [7]. Our system adopts to the latter ap-
proach.

Establishing geometric relations between the cam-
eras in a surveillance network is often based on ex-
tracting local features, e.g., [16]. However, given
scenarios where the angles between the FOVs of the
cameras are large or the static scene contains a lot of
repetitive features, a static key point based approach
is not applicable. One possible solution for such
scenarios is to obtain correspondences by observing
moving objects in the scene. In [22| [11], centroids
of moving objects, tracked in at most three camera
views, are used to calibrate the cameras and establish
a common ground plane, respectively. As the cen-
troids of the objects are above the ground plane, ad-
ditional refinement steps are needed to estimate the
common ground plane.

Another motion based self-calibration method has
been demonstrated in [13]], where head and foot lo-
cations of detected pedestrians are used to estimate
vanishing points in the camera views. Since this ap-
proach is rather sensitive to noise, [10] shows that
additionally incorporating a statistical model of hu-
man motion can improve the calibration results.

Very recently, Puwein et al. proposed a self-
calibration method of a PTZ camera network based
on foot point correspondences of players of a soccer
game [19]. The extracted foot point trajectories are
used to establish geometric constraints for the cal-
ibration process. Additionally, they include corre-
spondences from detected field lines to improve the
calibration results.

The use of foot locations of tracked humans has
also been proposed in [8]. However, this approach is
just semi-automated since the user has to define two
bundles of coplanar parallel lines for each camera in
order to recover the relative orientation of the camera
to the ground.

Another method based on human detections has
been demonstrated in [15]], where the authors extract
the head and foot locations by matching the silhou-
ette of a standing human with silhouette imagery of a
synthetic 3D model. This approach requires the hu-
man calibration target to stand still at a few positions
within a camera’s FOV.

If there is only little overlap between the cameras’
fields of view, one has to compensate the lack of cor-
respondences. One solution to this problem is to ap-
ply prior knowledge about the target’s motion, e.g.,
[21% [18].



3. Virtual PTZ

In order to simulate a PTZ camera off-line, we
use a panoramic camera to capture the 360° horizon-
tal view of the scene. In particular, we use a Point
Grey Ladybug3 camera, which uses six 2 MP lenses
to capture the required panoramas. We obtain a vir-
tual PTZ camera by creating a virtual pinhole view
and resampling its image plane using the panoramic
imagery.

The concept of VPTZ from a panorama view can
be considered as the inverse problem of image stitch-
ing. In the image stitching workflow, multiple im-
ages are projected onto a suitable panorama model,
e.g., a cylinder. Afterwards, the projected images
have to be mapped from the model’s surface onto a
flat region in order to obtain a panorama image. On
the other hand, given panoramic images of a scene,
we can simulate a PTZ camera by combining a stan-
dard pinhole camera model and the panorama projec-
tion.

For a better understanding of the vPTZ camera,
we first briefly summarize the creation of a cylin-
drical panorama according to [23, 24]. If the rota-
tion of the camera which captures one part of the
panorama is the identity, i.e., the camera is in its
canonical representation, the optical axis is aligned
with the z-axis and the y-axis is aligned vertically.
We denote the camera in the canonical representation
as c¢. The 3D ray from the optical center to the pixel
(z¢,y.) " on the panorama tile is thus (z,ye, fo) .
where f. is the focal length of the camera. Points
on the cylinder are given by an angle # and a height
h. The corresponding 3D cylindrical coordinates are
thus (sinf,h,cos0)" o (zc,ye, fo) ', as shown in
Figure The point (z.,%.)" on a panorama tile
can be mapped to the pixel position (2,y')" of the
panorama image by

=50 = satan& (1)
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where s is a scaling factor depending on the desired
resolution of the panorama. Moreover, s can also be
used to minimize the distortion near the center of the
image by choosing s = f,.

Given a cylindrical panorama as above, we can
build a virtual PTZ camera by resampling a virtual
pinhole view. The pinhole camera is placed such
that its optical center coincides with the center of the

y =sh=s 2)

cylinder and thus renders the view of the virtual PTZ.
To obtain the imagery of the vPTZ, we have to com-
pute a ray to each pixel on the image plane of the
virtual PTZ and intersect it with the cylindrical sur-
face. A ray r from the optical center of the vPTZ to
apixel (u,v) " on the virtual image plane is given as
(u,v, f,) T, where f, is the focal length of the vir-
tual PTZ, which controls zooming. To account for
the pan and tilt angles (A and ¢) of the vPTZ, r has
to be transformed such that the vPTZ is in its canon-
ical representation, i.e., its axes are aligned with the
cylinder of the panorama projection. This is done by
using the rotation matrix R, such that # = Rr. The
rotation matrix is computed as R = R,IR,, where
R, R, are rotation matrices around the = and y axes,
respectively, given as

1 0 0

Ry(p) = [0 cos(p) —sin(ep) 3)
0 sin(yp) cos(p)
cos(A) 0 sin(A)

Ry(\) = o 1 0 |. @
—sin(A) 0 cos(A)

The pixel value of the virtual image plane can be
obtained by mapping the intersection of the ray ¢
and the cylindrical surface onto the panorama image.
This is realized by substituting 7 into Eq. (I) and (2).
Figure|T]illustrates the scheme of the virtual PTZ and
shows a sample view.

The zooming capability of the vPTZ is limited by
the quality of the panoramic imagery. Thus, choos-
ing a too large focal length results in undesirable ar-
tifacts. However, our experimental results show that
even medium quality panoramas are sufficient to use
the vPTZ as a simulation of a real PTZ camera.

4. Unsupervised Calibration Method

Our self-calibration method for a network of mul-
tiple static and vPTZ cameras consists of the follow-
ing steps. First, we track a walking human through-
out the scene and compute its foot and head locations
for every camera in the network. Next, we remove
outliers in the detected foot and head measurements
to obtain clean measurements for the calibration step.
Finally, we perform a modified bundle adjustment to
estimate the extrinsic parameters of the cameras.

4.1. Head and Foot Point Localization

To obtain head and foot point measurements of
a walking human over multiple frames of a video,
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Figure 1. Concept of the virtual PTZ. Image stitching
projects a panorama tile onto the cylinder [(a)] Aligning
a virtual pinhole camera with the cylinder then allows to
simulate a PTZ camera. Two virtual pinhole views are il-
lustrated in Figure [(b)} as well as the optical axis z, of
one view with the corresponding pan and tilt angles. Fig-
ures [(c)] and [(d)] show a part of the cylindrical panorama
with the superimposed FOV of the vPTZ and the corre-
sponding view of the vPTZ camera, respectively.

we first segment and track the object of interest. In
scenes with sparse motion, moving objects may be
easily segmented by performing background subtrac-
tion. Considering simple environments, i.e., scenar-
ios where there are almost no shadows nor other
noise which degrades the quality of the background
model, the detected foreground blobs correspond
perfectly to the human calibration target. To obtain a
robust segmentation, we estimate two adaptive back-
ground models in parallel. One using the intensity
values and one on the saturation channel of the im-
agery converted to the HSV color space. By com-
bining these two models, we overcome the problems
caused by penumbras, i.e., soft shadows, and weak
reflections of the pedestrian.

As simple background modelling would fail for
more complex scenarios, e.g., scenes with dense
motion, hard shadows, heavy reflections, or occlu-
sions of the object of interest, we validate the results
of the segmentation by performing template match-
ing. Therefore, we compare patches extracted around
the detected foreground blobs with several templates
showing a pedestrian in various poses. In order to
follow the trajectory of the pedestrian, we use a blob

(a) (b) (©)

Figure 2. Pedestrian segmentation - background patches
and corresponding real imagery with superimposed head
and foot locations and axes of the first eigenvectors. [(a)]
[©)] Static camera views. Segmented human in the
vPTZ view.

tracking method based on spatial proximity and size
similarity.

The head and foot locations of the segmented
pedestrian can be determined by fitting an ellipse
over the corresponding foreground blob. This is done
by analyzing the eigenvectors of the covariance ma-
trix of the blob. As we assume a standing or walking
human calibration target, the first eigenvector will be
aligned almost vertically. Thus, we consider the head
position to be the topmost point of the foreground
blob along this axis. We compute the head location
by intersecting the first eigenvector axis with the top
border of the minimum bounding rectangle of the de-
tected blob. Similarly, we obtain the foot point by an
intersection of the first eigenvector axis with the bot-
tom border of the minimum bounding rectangle. Fig-
ure 2illustrates head and foot locations calculated in
this way.

It may be noted that real feet positions of a pedes-
trian are only aligned along the axis of the first eigen-
vector if the human is standing still, or its feet cross
each other while walking. Thus, our denoted foot
positions are in fact the projections of the human’s
center of mass along the first eigenvector axis, which
provide consistent correspondences across all camera
views.

4.2. Outlier Removal

Outliers in the measured head and foot locations
can be removed by estimating pairwise homogra-
phies, i.e., planar projective transformations, be-
tween the camera views based on the detected head
and foot locations. A robust homography estimation
can be obtained by using the well-known RANSAC
algorithm and the normalized Direct Linear Trans-
form [6]. Additionally to the homography, RANSAC
returns a consensus set, containing all measurements
which support the estimated transformation, i.e., the
so called inliers. Computing the intersection of the



consensus sets of the pairwise homographies, we ob-
tain cleaned sets of image measurements which can
be used for the self-calibration process.

To obtain clean measurements, we group the
N cameras of the network into pairs p; =
{camera;, camera; };—1. N j%;. Next, we compute
the pairwise homographies, which gives N sets of
inliers. By intersecting these sets, we obtain the con-
sensus set over all cameras, i.e., the cleaned head and
foot locations.

The maximum set of cleaned measurements can
be obtained by computing the homographies between
spatially neighboring cameras. Given additional in-
formation on the sequential arrangement of the cam-
eras in the network, we can group the cameras clock-
wise, i.e., assuming N cameras and a clockwise in-
creasing labelling, we group the cameras into the
pairs p; = {camera;, camera; ;1 mod N }i—1..N. Esti-
mating the homographies and the resulting intersec-
tion set, we obtain the maximum number of cleaned
head and foot locations, which slightly improves the
results when used as input to our self-calibration
method.

4.3. Camera Calibration

According to [6], the camera projection matrix P;
projects a 3D point X to a homogeneous point on
the image plane of camera j. This projection ma-
trix can be decomposed into the camera’s intrinsic
parameters, described by the upper triangular cali-
bration matrix K;, and its extrinsic parameters, de-
scribed by a rotation matrix I2; and a translation vec-
tor ¢;. Thus, the projection matrix is given as

fie Y Pia
Py =K;[Rjlt;], Kj=1|0 f;, pj, ]|, O
0 0 1

where f;,, f;, are the focal length parameters in the
x and y directions, y; denotes the skew, and p; =
(pj.,pj,) " is the principal point offset of camera j.
The projection of a 3D point by a normalized cam-
era, i.e., a camera where the intrinsic calibration is
the identity, depends solely on the camera’s extrinsic
parameters. Thus, we can estimate the rotation and
translation of a camera w.r.t. a global coordinate sys-
tem from point correspondences if its intrinsic cal-
ibration is known. As the projection matrix is ho-
mogeneous, we need the homogeneous representa-
tions of the 3D foot and head points. These are given
as X = (a,b,0,1)" for 3D foot points, and X =

(a,b, h, 1) for 3D head points, respectively, where
(a,b) is the unknown 2D position at the correspond-
ing plane, and h is the height of the detected human.
Transforming a homogeneous 3D point X with the
projection matrix P of a normalized camera gives the
normalized coordinates z = PX. Given the image
measurements m; of the head and foot points in cam-
era j, as well as its intrinsic calibration, we obtain the
normalized coordinates as z; = K ;- 1mj. These nor-
malized measurements can be used to evaluate the
estimated extrinsic calibration by computing the re-
projection error E* = ||x; — P; X||?, which vanishes
if the correct solution has been found.

Although this pixel-based reprojection error can
be easily computed for a static camera in the scene,
it cannot be applied to a vPTZ camera directly, due
to its variable parameters. However, as the vPTZ
additionally provides the pan/tilt/zoom parameters
(An, ©n, and f,,) at the time of capturing frame n,
we can define an alternative reprojection error based
on angular distances. Therefore, we assume that the
optical center of the camera and the rotational center
are identical, which holds for the vPTZ.

Given a 3D ray from the optical center of the vPTZ
to the measured pixel location m,, = (uy,v,) ", we
obtain the corresponding pan and tilt angles (w and
1) w.r.t. the virtual camera’s coordinate system as

w:)\n—i—atan%, U—n.
fn fn
Additionally, we need to compute the pan and tilt
angles ({2 and W) of the corresponding 3D point
M, = (an,bn,2,)", w.rt. the camera’s coordinate
system. Using the currently estimated extrinsic pa-
rameters of the vPTZ, i.e., the rotation R and the
translation ¢, these can be computed as

(r1,72,73) " = [R|t] (an,bn, 20, 1) T (7)
) = atan E, ¥ = atan T—Q. (®)
T3 T3

Y = ¢p + atan (6)

Thus, we can define the reprojection error for the
VPTZ as B = ||(w, )" — (Q,¥) T2

For a network with static cameras N and vPTZ
cameras Ny, we can compute the extrinsic calibration
of each camera by minimizing the reprojection errors
as

vy wn Y B YH,©
Rjtj,a;,b; JEN,,i JENG,i
E}; = iy — PiXil? (10)

EL = (wig ¥ig) " — (g, Tig) T2 (1)



We solve this non-linear least squares optimization
problem using the iterative Levenberg-Marquardt
(LM) algorithm. Similar to [1]], our experimental
results show that the LM algorithm provides suffi-
ciently accurate results, even if initialized without
any knowledge of the cameras’ real positions. In our
experiments, we always initialize the cameras 10 me-
ters above the global 3D coordinate center such that
the optical axes face in positive z-direction.

The calibration method for the proposed vPTZ
camera can also be applied to real PTZ cameras, as
long as they provide sufficiently accurate measure-
ments of the current pan/tilt/zoom parameters. It may
be noted, that our proposed method adopts the com-
mon geometric model, where the orthogonal rotation
axes are aligned with the camera’s imaging optics.
The vPTZ camera follows this ideal model, whereas
in general, the optical center of a real PTZ camera
and its rotation axes are not aligned exactly. How-
ever, in typical surveillance scenarios, the resultant
deviations are minimal w.r.t. to the scene’s dimen-
sion and thus do not notably affect the accuracy of
computer vision applications, such as tracking.

If calibrating a real PTZ camera as proposed, we
have to consider the varying lens distortion, which
depends on the current focal length. One solution is
to estimate the lens distortion for several zoom levels,
such that the distortion at arbitrary zoom levels can
be interpolated from the available estimates. Thus,
for an arbitrary focal length of the PTZ camera, we
can compute the undistorted image measurements,
which can be used to accurately estimate the extrinsic
calibration using the proposed method.

It may be noted that the reprojection error for PTZ
cameras assumes that all point correspondences lie
on the same half-sphere w.r.t. the camera’s optical
center. However, by initially placing the camera far
above the coordinate center for the LM algorithm,
we ensure that all projected measurements lie on the
same half-sphere throughout optimization.

5. Experimental Results

To evaluate the proposed self-calibration method,
we use two data sets, one outdoor and one indoor.
The camera networks in our experiments contain
three (outdoor) to four (indoor) static Axis P1347
cameras, as well as one spherical Point Grey Lady-
bug3 camera. Both camera setups cover a large area
of interest, as can be seen in Figure 3]

We estimate the cameras’ intrinsic parameters for

Figure 3. Sample views of the outdoor (top row) and in-
door (bottom row) data sets with superimposed head and
foot locations of the human calibration target (red points).

(a)l(b)ll(d)l(e)| Static camera views. [(c)l(f)] Views of the
vPTZ.

each camera setup using a publicly available tool-
boxﬂ Next, we use the intrinsic parameters to obtain
the normalized coordinates of the measured head and
foot locations. After outlier removal, the normalized
measurements are used to estimate the extrinsic pa-
rameters of the cameras by solving Eq. (9). Since we
have no prior knowledge of the real camera positions,
we initially place all cameras 10 meters above the
(unknown) global coordinate center, with the optical
axes facing in positive z-direction. Thus, the initial
position of each camera before LM optimization is
(0,0, —10). After convergence, we obtain both, the
positions and orientations of the cameras, as well as
the estimated 2D coordinates (a,b) " of the head and
foot points in the corresponding plane. Figure []il-
lustrates the computed setup of both data sets.

To evaluate our method, we project known points
onto the ground plane using the estimated projec-
tion matrices. According to [6], the homography
between the world plane at z = 0 and the image
plane of camera j is given as H = [ry,r2,;], where
r; 1s the ¢-th column of the camera rotation matrix
R;, and t; is its translation. Thus, the pixel lo-
cations (u,v)' of the imaged ground plane points
can be projected onto the world plane at z = 0 as
(&,9,w)" = H *(u,v,1)". The projected 2D point
on the ground plane is given as (/0,9 /w) . Next,
we compute distances between the known points and
compare these with measurements of the real scenes.
Table[T] lists the resultant deviations. As can be seen,

'7.-Y. Bouguet. Camera Calibration Toolbox for Mat-
lab. http://www.vision.caltech.edu/bouguetj/
calib_doc/index.html, accessed November 24, 2011.
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Figure 4. Estimated camera positions of the outdoor (top)
and indoor (bottom) scene. Axes units are meters. Dots
show sample head (black) and foot (blue) points used for
calibration. As the optical axes initially face in positive
direction, the resultant heights (z-axis) are negative.

Data set Camera

1 | 2 | 3 | 4 [vTZ
Outdoor | 0.015 | 0.019 | 0.072 | n.a. | 0.082
Indoor 0.139 | 0.107 | 0.159 | 0.083 | 0.210

Table 1. Mean reprojection errors in meters.

our self-calibration method provides sufficient ac-
curacy for typical surveillance applications, such as
tracking.

We provide both data set for further academic
use. The package contains the video streams and ex-
trinsic parameters of all cameras within the scene, the
intrinsic calibration of the static cameras, and sample
code to utilize the vPTZ. The implementation can be
used to generate sample PTZ trajectories for the pro-
posed data sets, such as illustrated in Figure [5]

6. Conclusions

We presented a virtual PTZ camera based on
panoramic imagery of a real scene. The vPTZ can be
used to evaluate different pan/tilt/zoom trajectories
on the same data set on demand, whereas real PTZ

Available online at http://lrs.icg.tugraz.at/
download.php#vptz,

cameras can only provide a single trajectory. Con-
sidering the task of developing applications for video
surveillance systems with integrated PTZ cameras,
the vPTZ can be used to simulate a real PTZ camera
off-line.

Furthermore, we presented a method for unsuper-
vised calibration of a network of static cameras and
PTZ cameras with overlapping fields of view. Our
self-calibration method is based on correspondences
from tracks of a walking human. We presented how
to extract head and foot locations of the pedestrian
from videos, remove outliers within these measure-
ments, and obtain the extrinsic parameters of the
cameras by solving a non-linear optimization prob-
lem on the reprojection error. We demonstrated our
method on both, indoor and outdoor data sets, us-
ing the proposed vPTZ camera. As our experimen-
tal results show, the detected feature points provide
sufficient accuracy for calibrating a camera network
which covers a large region of interest.

In order to obtain the complete PTZ calibration,
we plan to investigate the effect of varying zoom
levels and adopt the presented calibration method
accordingly. We will focus our research on robust
tracking algorithms of scenes with multiple objects
of interest, such as sports games, where additional
fields of view provided by PTZ cameras can be used
to resolve ambiguities.
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