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Abstract

In this paper, we address the problem of model-free on-
line object tracking based on color representations. Accord-
ing to the findings of recent benchmark evaluations, such
trackers often tend to drift towards regions which exhibit a
similar appearance compared to the object of interest. To
overcome this limitation, we propose an efficient discrimi-
native object model which allows us to identify potentially
distracting regions in advance. Furthermore, we exploit this
knowledge to adapt the object representation beforehand so
that distractors are suppressed and the risk of drifting is
significantly reduced. We evaluate our approach on recent
online tracking benchmark datasets demonstrating state-of-
the-art results. In particular, our approach performs favor-
ably both in terms of accuracy and robustness compared
to recent tracking algorithms. Moreover, the proposed ap-
proach allows for an efficient implementation to enable on-
line object tracking in real-time.

1. Introduction

Visual object tracking is a fundamental task for a wide
range of computer vision applications. Domains such as
visual surveillance, robotics, human-computer interaction,
and augmented reality require robust and reliable location
estimates of a target throughout an image sequence. De-
spite significant progress in recent years, creating a generic
object tracker is still rather challenging due to real-world
phenomena such as illumination changes, background clut-
ter, fast object motion changes, and occlusions.

Although some application domains allow us to incor-
porate strong assumptions about the target (e.g. pedestrian
tracking [11, 36, 37, 40]), it is often desirable to build a
generic tracker which can readily be used for arbitrary ob-
ject classes. Such model-free online trackers neither apply
pre-learned object models nor exploit class-specific prior
knowledge. Instead, a representative object model must be
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Figure 1: Comparison of the proposed approach with the
state-of-the-art trackers ACT, DSST, and KCF. The exam-
ple frames show the VOT14 basketball, car, and polarbear
sequences, respectively. Best viewed in color.

learned given a single input frame with a (possibly noisy)
initial object annotation, e.g. an axis-aligned bounding box.

Among earlier tracking approaches, color histograms
(e.g. [12, 34, 35]) were a common method for appear-
ance description. However, over the last decade the re-
search focus has shifted to trackers based on well engi-
neered features such as HOG (e.g. [13, 23]), correlation fil-
ters (e.g. [10, 22]), and more complex color features, such
as color attributes [14]. Such trackers have been shown to
achieve excellent performance on recent benchmark evalu-
ations (e.g. [27]), whereas trackers based on standard color
models yield inferior performance.

In contrast to this development, we argue that trackers
based on standard color representations can still achieve
state-of-the-art performance. We exploit the observation
that color-based trackers tend to drift towards nearby re-
gions with similar appearance. Using an adaptive object
model which is able to suppress such regions, we can sig-
nificantly reduce the drifting problem, yielding robust and
reliable tracking results. Due to the favorable simplicity of
our representation, it is well suited for time-critical applica-
tions such as surveillance and robotics.

Our contributions are as follows. We present a discrimi-



native object model capable of differentiating the object of
interest from the background. Although it relies on stan-
dard color histograms, this representation already achieves
state-of-the-art performance on a variety of challenging se-
quences. We extend this representation to identify and sup-
press distracting regions in advance which significantly im-
proves the tracking robustness. Additionally, we propose an
efficient scale estimation scheme which allows us to obtain
accurate tracking results as illustrated in Figure 1. Finally,
we extensively evaluate our approach on recent benchmark
datasets to demonstrate its favorable performance compared
to a variety of state-of-the-art trackers.

2. Related Work
In order to model the object appearance, tracking ap-

proaches can either rely on generative or discriminative rep-
resentations. Generative approaches locate the object by
seeking the region most similar to a reference model. Such
trackers are typically based on templates (e.g. [2, 20, 31]),
color representations (e.g. [12, 34, 35]), subspace models
(e.g. [9, 38]), and sparse representations (e.g. [6, 24, 30]).
However, typical rectangular initialization bounding boxes
always include background information which is also cap-
tured by the model. Although several approaches leverage
segmentation methods (e.g. [7, 17]) to improve the gener-
ative model, these still suffer from missing discriminative
capabilities to distinguish the object from its surrounding
background.

Recent benchmark evaluations (e.g. [27, 44]) show that
generative models are often outperformed by discriminative
approaches which incorporate binary classifiers capable of
distinguishing the object from the background. Such track-
ers exploit templates (e.g. [22]), color cues (e.g. [8, 14, 32]),
Haar-like features (e.g. [4, 21, 47]), HOG features (e.g. [13,
23]), and binary patterns (e.g. [15, 25]) to model the ob-
ject appearance. Such models can either be represented
in a holistic way (e.g. [22, 47]) or by parts (e.g. [42, 16])
and patches (e.g. [29, 30, 32]) which have been shown
to perform favorably when tracking highly non-rigid ob-
jects or considering partial occlusions. Due to the success
of discriminative models, a large variety of suitable learn-
ing methods has been explored for visual tracking, such
as structured output SVMs [21], ranking SVMs [5], boost-
ing [3, 18], kernel ridge regression [22, 23], and multiple-
instance learning [4].

To further improve performance, several trackers incor-
porate contextual information (e.g. [15, 19, 45, 48]). Such
approaches distinguish between context provided by sup-
porting and distracting regions. Supporting regions as used
by [15, 19] have different appearance than the target but co-
occur with it, providing valuable cues to overcome occlu-
sions. Distractors, on the other hand, exhibit similar ap-
pearance and may therefore be confused with the target.

Typically, context-aware trackers such as [45, 48] assume
that distractors are of the same object class (e.g. pedestri-
ans) and need to track these distractors in addition to the
target to prevent drifting. In contrast to these approaches,
we impose no assumptions on the object class of distractors.
Moreover, we adapt the object representation such that po-
tentially distracting regions are suppressed in advance and
thus, no explicit tracking of distractors is required.

3. Distractor-Aware Online Tracking
We base our tracking approach on two primary require-

ments for online model-free trackers: First, considering
subsequent frames, useful object models must be able to
distinguish the object from its current surrounding back-
ground. Second, to reduce the risk of drifting towards
regions which exhibit similar appearance at a future time
step, such distracting regions must be identified before-
hand and should be suppressed to ensure a robust tracking
performance. Therefore, we propose a discriminative ob-
ject model which addresses these key requirements in Sec-
tion 3.1. Based on this representation, Section 3.2 demon-
strates how the object can be robustly localized throughout
a video sequence. Furthermore, our discriminative model
allows for efficient scale estimation, as will be discussed in
Section 3.3.

3.1. Distractor-Aware Object Model

To distinguish object pixels x ∈ O from surrounding
background pixels, we employ a color histogram based
Bayes classifier on the input image I . Let HI

Ω(b) denote
the b-th bin of the non-normalized histogram H computed
over the region Ω ∈ I . Additionally, let bx denote the bin b
assigned to the color components of I(x). Given a rectan-
gular object region O (i.e. initial bounding box annotation
or current tracker hypothesis) and its surrounding region S
(see Figure 2a), we apply Bayes rule to obtain the object
likelihood at location x as

P (x∈O|O,S, bx) ≈ P (bx|x∈O)P (x∈O)∑
Ω∈{O,S}

P (bx|x∈Ω)P (x∈Ω)
. (1)

In particular, we estimate the likelihood terms directly from
color histograms, i.e. P (bx|x∈O) ≈ HI

O(bx)/|O| and
P (bx|x∈S) ≈ HI

S(bx)/|S|, where |·| denotes the cardinal-
ity. Furthermore, the prior probability can be approximated
as P (x∈O) ≈ |O|/(|O|+ |S|). Then, Eq. (1) simplifies to

P (x∈O|O,S, bx)=

{
HI

O(bx)

HI
O(bx)+HI

S(bx)
if I(x)∈I(O∪S)

0.5 otherwise, (2)

where unseen pixel values are assigned the maximum en-
tropy prior of 0.5. This discriminative model already al-
lows us to distinguish object and background pixels, see
Figure 2a.



(a) Object-surrounding: P (x∈O|O,S, bx). (b) Object-distractors: P (x ∈ O|O,D, bx). (c) Combined.

Figure 2: Exemplary object likelihood maps for (a) the object-surrounding model and (b) the distractor-aware model illus-
trating the corresponding regions O, S, and D superimposed on the input images. Combining both models in (c) provides a
valuable cue for localization. Hot colors correspond to high object likelihood scores. Best viewed in color.

However, one of the most common problems of color-
based online trackers remains. Namely, that such algo-
rithms may drift to nearby regions which exhibit a similar
appearance compared to the object of interest. To overcome
this limitation, we explicitly extend the object model to sup-
press such distracting regions. Since computing the object
likelihood scores from Eq. (2) can be realized via an ef-
ficient lookup-table, these scores can be computed over a
large search region at a very low computational cost. As
will be discussed in Section 3.2, this allows us to identify
potentially distracting regions in advance and handle them
accordingly.

For now, let us assume we are given the current object
hypothesis O and a set D of potentially distracting regions,
as illustrated in Figure 2b. We can exploit this information
to build a representation capable of distinguishing object
and distractor pixels. Thus, similar to Eq. (2) we define the
object-distractor model as

P (x∈O|O,D, bx)=

{
HI

O(bx)

HI
O(bx)+HI

D(bx)
if I(x)∈I(O∪D)

0.5 otherwise. (3)

Combining the object-background model with the above
distractor-aware representation, we obtain the final object
model as P (x ∈ O | bx) = λpP (x ∈ O |O,D, bx) + (1−
λp)P (x ∈ O |O,S, bx), where λp is a pre-defined weight-
ing parameter. Applying the combined object model (see
Figure 2c) yields high likelihood scores for discriminative
object pixels while simultaneously decreasing the impact of
distracting regions. To adapt the representation to chang-
ing object appearance and illumination conditions, we up-
date the object model on a regular basis using the linear
interpolation P1:t (x ∈ O | bx) = ηP (x ∈ O | bx) + (1 −
η)P1:t−1 (x ∈ O | bx), with learning rate η.

3.2. Localization

We adopt the widely used tracking-by-detection princi-
ple to localize the object of interest within a new frame at
time t. In particular, we extract a rectangular search region

proportional to the previous object locationOt−1 and obtain
the new target location O?t as

O?t = arg max
Ot,i

(sv(Ot,i)sd(Ot,i)), (4)

sv(Ot,i) =
∑

x∈Ot,i

P1:t−1 (x∈O|bx), (5)

sd(Ot,i) =
∑

x∈Ot,i

exp

(
−‖x− ct−1‖2

2σ2

)
, (6)

where sv(·) denotes the vote score based on the combined
object model and sd(·) is the distance score based on the
Euclidean distance to the previous object center ct−1. This
distance term penalizes large inter-frame movements, simi-
lar to the Gaussian and cosine windowing approaches used
by correlation based trackers such as [10, 13, 23].

We densely sample overlapping candidate hypotheses
Ot,i within the search region and compute both the vote
and distance scores for each candidate. This allows us to
efficiently obtain the new object location O?t as well as vi-
sually similar distractors, as such regions yield a high vote
score, too. We consider a candidate Ot,i to be a distrac-
tor if sv(Ot,i) ≥ λvsv(O

?
t ), with λv ∈ [0, 1]. To prevent

selecting ambiguous distractors (e.g. located on the object
itself due to increased scale) we follow an iterative non-
maximum suppression strategy, i.e. after selecting a candi-
date (either O?t or a distractor) overlapping hypotheses are
discarded. After obtaining both the new object location and
the set of distractors, the object model is updated according
to Eqs. (2) and (3) to suppress the background and identi-
fied distracting regions and thus reduce the risk of drifting
at a later time step.

3.3. Scale Estimation

Similar to recent scale-adaptive state-of-the-art trackers
such as [13], we first localize the object in a new frame and
subsequently perform scale estimation. We exploit our ob-
ject model to segment the object of interest for scale adap-
tion via thresholding on P (x∈O | bx). However, choosing



a pre-defined threshold may impede the scale adaption due
to background clutter or fast illumination changes. There-
fore, we propose an adaptive threshold as follows.

Let L denote the object likelihood map obtained by eval-
uating the combined object model at every location of the
search region, as shown in Figure 3a. Then, we compute
the cumulative histograms cLO(b) =

∑b
i=1H

L
O(i)/|O| and

cLS(b) =
∑b
i=1H

L
S (i)/|S| over the object region O and

the surrounding region S, respectively (illustrated in Fig-
ure 3b). We can exploit these cumulative histograms to
compute the adaptive segmentation threshold τ? as

τ? = arg min
τ

(
2cLO (bτ )− cLO (bτ + 1) + cLS (bτ )

)
, (7)

s.t. cLO (bτ ) + cLS (bτ ) ≥ 1.

This formulation penalizes thresholds within flat regions of
the cumulative object histogram cLO, e.g. thresholds within
the range [0.2, 0.3] in Figure 3d. The obtained threshold sig-
nificantly reduces background noise while yielding a suffi-
ciently large number of object pixels.

To adapt the scale of the current object hypothesis O?t ,
we define a safe foreground region (i.e. the inner 80% of
O?t ) and perform a connected component analysis based on
the segmentation result after applying the adaptive thresh-
old (see Figure 3c). Connected components which yield a
high average object likelihood score and intersect the safe
foreground region are labeled as object regions. Computing
the enclosing bounding box over these regions then gives
the scale estimate OSt for the current frame. If the esti-
mated scale change between the current and previous frame
is above a reasonable percentage, we discard the segmen-
tation as unreliable. Otherwise, we use it to update the di-
mension of the object hypothesisOt = λsO

S
t +(1−λs)O?t .

Note that in contrast to recent scale adaption approaches
such as [13, 23], our scale estimation scheme is not limited
to a fixed aspect ratio, as already shown in Figure 1.

4. Evaluation
We evaluate our distractor-aware tracking approach on

two publicly available benchmark datasets, namely the Vi-
sual Object Tracking (VOT) challenge datasets VOT14 [27]
and VOT13 [26]. Considering the number of submitted
tracking approaches, these challenges are the largest model-
free tracking benchmarks to date. In the following, we fo-
cus on a detailed comparison of our approach with state-
of-the-art tracking algorithms. Additional visual results are
included in the supplemental material.

Dataset characteristics. The sequences contained in the
VOT datasets have been collected from well-known track-
ing evaluations, such as the experimental survey on the Am-
sterdam Library of Ordinary Videos (ALOV) [41], the On-
line Tracking Benchmark (OTB) [44], as well as recently

(a) Likelihood map L. (b) Regions O and S. (c) Segmentation.
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(d) Cumulative histograms for estimating the adaptive threshold τ?.

Figure 3: Segmentation example. The corresponding object
and surrounding regions in (b) have been superimposed on
a grayscale representation of (a). See text for details.

published video sequences from various authors (includ-
ing [1, 17, 28, 29, 38]). In particular, the VOT commit-
tee proposed a sequence selection methodology to com-
pile datasets which cover various real-life visual phenom-
ena while keeping the number of sequences reasonably
low. In total, the datasets consist of 16 (VOT13) and 25
(VOT14) sequences capturing severe illumination changes,
object deformations and appearance changes, abrupt mo-
tion changes, significant scale variations, camera motion,
and occlusions.

Evaluation protocol. We follow the protocol of the VOT
benchmark challenges, i.e. trackers are initialized at the first
frame of a video using the ground truth annotation and
re-initialized once they drift away from the target. The
VOT framework provides a standardized analysis using two
weakly correlated performance metrics, namely Accuracy1

(average bounding box overlap) and Robustness2 (number
of re-initializations).

Additionally, the VOT framework provides a ranking
analysis based on these metrics. This ranking considers the
statistical significance of performance differences to ensure
a fair comparison. Trackers are equally ranked if there is
only a negligible difference from a practical point of view.
For a detailed description of the evaluation and ranking
methodology, we refer the interested reader to [26, 27].

Following the VOT evaluation protocol, we keep the pa-
rameters fixed throughout all experiments. We model the
joint distribution of color values in the RGB color cube

1Higher is better (denoted by ↑). 2Lower is better (denoted by ↓).



Tracker Accuracy Robustness Combined
Score↑ Rank↓ Score↓ Rank↓ Rank↓

ACT [14] 0.53 7.66 1.48 7.38 7.52
CMT [33] 0.48 8.89 2.64 9.14 9.02
DSST [13] 0.62 4.78 1.16 6.44 5.61
FoT [43] 0.51 8.37 2.28 9.54 8.95
IIVT [46] 0.47 9.94 3.19 9.66 9.80
KCF [23] 0.62 4.48 1.32 6.76 5.62
LGT [42] 0.46 9.33 0.66 6.20 7.77
MIL [4] 0.39 11.69 2.27 8.96 10.32

OGT [32] 0.54 7.23 3.34 9.86 8.55
PT [16] 0.44 11.02 1.40 7.20 9.11

SPOT [48] 0.48 9.92 2.16 9.36 9.64
Struck [21] 0.51 8.31 2.16 8.84 8.57

noDAT 0.55 6.43 3.68 9.72 8.08
DAT 0.56 6.80 1.08 5.72 6.26
DATs 0.61 5.05 0.84 5.14 5.09

(a) Results VOT14.

Tracker Accuracy Robustness Combined
Score↑ Rank↓ Score↓ Rank↓ Rank↓

ACT [14] 0.60 6.43 0.94 8.12 7.28
CT [47] 0.47 12.52 1.77 9.59 11.06

DFT [39] 0.60 6.56 1.31 9.16 7.86
FoT [43] 0.63 6.05 1.38 8.38 7.21
HT [17] 0.48 11.37 3.64 8.97 10.17
IVT [38] 0.61 6.57 1.81 9.09 7.83
KCF [23] 0.61 6.10 0.88 7.62 6.86
LGT [42] 0.54 8.09 0.28 5.97 7.03
MIL [4] 0.52 10.30 1.48 8.59 9.45
PLT [26] 0.58 7.30 0.00 4.66 5.98

SPOT [48] 0.56 9.40 1.46 8.44 8.92
Struck [21] 0.51 8.49 3.94 7.97 8.23
TLD [25] 0.59 8.27 6.69 12.00 10.13

DAT 0.60 7.04 0.38 6.19 6.61
DATs 0.63 5.64 0.12 5.25 5.45

(b) Results VOT13.

Table 1: Average performance scores and ranking results on the (a) VOT14 and (b) VOT13 benchmark datasets. Best, second
best, and third best results have been highlighted. Note that the VOT rankings are based on statistical significance of the
performance metrics. See Sections 4.1 (VOT14) and 4.2 (VOT13) for details.

with histograms using 10 bins per channel. Additionally,
we use the model weighting factor λp = 0.5 and the update
rate η = 0.1. The search region is set to three times the
dimension of the previous object hypothesis Ot−1 and the
surrounding region is twice the size of Ot. To identify dis-
tracting regions, we use the vote factor λv = 0.5. The scale
update is performed using λs = 0.2.

4.1. Results VOT14 Benchmark

To ensure a fair and unbiased comparison, we use the
original results submitted to the VOT14 challenge by the
corresponding authors or the VOT committee (based on
the corresponding publicly available implementations). We
compare our approach to recent state-of-the-art algorithms
including the winner of the VOT14 challenge, DSST [13],
and two of the top-performing trackers of the online track-
ing benchmark [44], namely Struck [21] and CSK [22].
For the latter we use its recent extension, KCF [23] (i.e.
scale-adaptive results submitted to VOT14). Furthermore,
we include the color attribute based ACT [14], the keypoint
based CMT [33] and IIVT [46], the part based LGT [42],
OGT [32], and PT [16], the discriminative MIL [4], as
well as FoT [43]. Additionally, we provide results for the
context-aware SPOT [48] using their online available im-
plementation.

Overall results. As can be seen from the ranking re-
sults in Table 1a and Figure 4a, our distractor-aware tracker
(DAT) and its scale-adaptive version (DATs) rank amongst
the top trackers both with respect to accuracy and robust-

ness. In the combined ranking our approach outperforms all
competitors due to its favorable robustness. We achieve ac-
curacy scores competitive to state-of-the-art scale-adaptive
trackers (i.e. DSST [13] and KCF [23]), while significantly
reducing the drifting problem, as can be seen from the de-
tailed robustness scores in Table 3. A key finding is that the
proposed discriminative object representation significantly
outperforms other color-based trackers, such as ACT [14]
and OGT [32], as well as trackers based on a combination of
image gradients and color information, e.g. PT [16]. More-
over, note that the top 3 trackers (DATs, DSST, and KCF)
employ scale estimation, whereas the proposed DAT with-
out scale adaption achieves the combined 4th rank, outper-
forming the remaining competitors.

Benefits of distractor-awareness. To demonstrate the
importance of the distractor-aware object representation,
we compare our approach (DAT) with a baseline tracker
only using the discriminative object-background model (i.e.
Eq. (2)), denoted noDAT. Overall, noDAT achieves mid-
range performance (see Table 1a and Figure 4a) due to the
fact that the discriminative model yields competitive accu-
racy. However, without exploiting the knowledge about po-
tential distractors noDAT suffers from drifting, as can be
seen from the detailed robustness scores in Table 3. In-
cluding the distractor-aware representation (DAT) signifi-
cantly reduces this limitation for sequences with visually
similar regions, e.g. basketball, bolt, fish1, jogging, and
skating. On average, noDAT achieves a robustness score
of 3.68, whereas including distractor-awareness improves
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Figure 4: Ranking results on the benchmark datasets of the (a) VOT14 and (b) VOT13 challenges. Top-performing trackers
are located top-right. See Sections 4.1 (VOT14) and 4.2 (VOT13) for details. Best viewed in color.

the result to 1.08 while yielding similar accuracy. Thus, the
distractor-aware object model proves to be an important cue
for creating a robust online tracker.

Robustness to noisy initializations. The VOT frame-
work provides an additional experimental setup which ran-
domly perturbs the initialization bounding boxes. Accord-
ing to the VOT protocol, we perform 15 runs with such
noisy initializations and report the average results. Table 2
compares our approach to the top 5 performing competi-
tors on this noise experiment. Despite the unreliable initial-
izations, both DAT and DATs outperform the top ranking
trackers DSST [13], KCF [23], LGT [42], ACT [14], and
Struck [21]. The proposed object representation allows us
to recover from these initialization errors and performs fa-
vorably both in terms of accuracy and robustness.

Runtime performance. Including the distractor-aware
representation comes at a reasonably low computational
cost. On a PC with a 3.4 GHz Intel CPU our pure MATLAB
prototype of DAT runs at 17 fps, whereas tracking without
distractor information (noDAT) achieves up to 18 fps on av-
erage. The scale estimation step is very efficient, as the
full tracking approach (DATs) still processes 15 fps on av-
erage. Thus, the proposed DAT tracker can already be used
for time-critical application domains, such as visual surveil-
lance or robotics.

Tracker Accuracy Robustness Combined
Score↑ Rank↓ Score↓ Rank↓ Rank↓

ACT [14] 0.49 5.02 1.77 4.56 4.79
DSST [13] 0.57 3.10 1.28 3.98 3.54
KCF [23] 0.57 3.44 1.51 4.28 3.86
LGT [42] 0.46 5.12 0.64 3.54 4.33

Struck [21] 0.48 5.42 2.22 5.00 5.21
DAT 0.55 3.20 1.06 3.38 3.29
DATs 0.58 2.70 1.03 3.26 2.98

Table 2: Average performance scores and ranking results on
the VOT14 benchmark using randomly perturbed initializa-
tions. See text for details.

4.2. Results VOT13 Benchmark

Additionally, we evaluate our approach on the VOT13
benchmark dataset. Similar to the previous evaluation, we
use the original VOT13 challenge results as verified by
the VOT committee. We compare our approach to the
VOT13 challenge winner PLT [26] which is an extension of
Struck [21]. Furthermore, we include CT [47], DFT [39],
FoT [43], HT [17], IVT [38], LGT [42], MIL [4], and
TLD [25]. We also report results for the recent ACT [14],
KCF [23], and SPOT [48] trackers using their publicly
available implementations.

The averaged performance metrics and ranking results
are shown in Table 1b and Figure 4b. Again, our approaches



rank amongst the top-performers of this challenge. In par-
ticular, our scale-adaptive DATs outperforms the VOT13
challenge winner PLT, while the single-scale DAT ranks
third. This demonstrates that our efficient distractor-aware
model performs favorably compared to rather complex
color representations (e.g. ACT [14]) as well as state-of-
the-art HOG based trackers (e.g. KCF [23]).

5. Conclusion
We proposed a generic object tracking approach based

on very efficient discriminative color models. To overcome
the drifting problem of state-of-the-art color based trackers,
we identify distracting regions in advance and adapt the ob-
ject representation to suppress these regions. Our detailed
evaluations on recent benchmark datasets demonstrate that
color based trackers can achieve competitive accuracy on
challenging real-world sequences. Moreover, using the pro-
posed distractor-aware object model significantly improves
the tracking robustness, even if only noisy initializations
are available. Overall, our color-based representation yields
favorable performance compared to recent state-of-the-art
trackers based on more complex features and achieves high
frame rates suitable for time-critical applications.
Acknowledgments. This work was supported by the Aus-
trian Science Foundation (FWF) under the project Ad-
vanced Learning for Tracking and Detection (I535-N23).
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Visual Object Tracking VOT2013 challenge results. In Proc.
VOT (ICCV Workshop), 2013.

[27] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas,
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Sequence DATs DAT noDAT ACT [14] DSST [13] KCF [23] LGT [42] OGT [32]
Acc↑ Rob↓ Acc↑ Rob↓ Acc↑ Rob↓ Acc↑ Rob↓ Acc↑ Rob↓ Acc↑ Rob↓ Acc↑ Rob↓ Acc↑ Rob↓

ball 0.87 0.00 0.67 0.00 0.67 0.00 0.41 0.00 0.56 1.00 0.75 1.00 0.31 1.13 0.72 0.00
basketball 0.61 1.00 0.73 1.00 0.68 26.00 0.66 0.00 0.64 1.00 0.64 0.00 0.50 0.80 0.55 8.93

bicycle 0.54 0.00 0.48 1.00 0.48 1.00 0.46 1.00 0.58 0.00 0.62 0.00 0.53 0.93 0.65 0.20
bolt 0.52 0.00 0.49 1.00 0.47 2.00 0.54 1.00 0.56 1.00 0.49 3.00 0.38 0.67 0.67 23.20
car 0.80 0.00 0.41 0.00 0.41 0.00 0.53 1.00 0.73 0.00 0.70 0.00 0.51 0.80 0.49 0.00

david 0.64 0.00 0.64 0.00 0.61 1.00 0.72 0.00 0.80 0.00 0.82 0.00 0.56 0.00 0.50 0.13
diving 0.41 1.00 0.35 1.00 0.44 5.00 0.20 4.00 0.44 1.00 0.25 4.00 0.33 1.27 0.23 4.40
drunk 0.53 0.00 0.48 0.00 0.44 4.00 0.46 0.00 0.55 0.00 0.53 0.00 0.52 0.00 0.55 1.00

fernando 0.45 0.00 0.44 0.00 0.42 0.00 0.43 1.00 0.34 1.00 0.41 1.00 0.47 0.47 0.35 1.67
fish1 0.72 0.00 0.58 2.00 0.41 6.00 0.44 0.00 0.32 1.00 0.42 3.00 0.36 0.93 0.51 2.13
fish2 0.41 2.00 0.36 3.00 0.43 4.00 0.31 5.00 0.35 4.00 0.26 6.00 0.28 1.80 0.23 5.73

gymnastics 0.58 0.00 0.57 0.00 0.57 0.00 0.51 2.00 0.63 5.00 0.53 1.00 0.48 1.00 0.56 2.73
hand1 0.59 1.00 0.61 0.00 0.63 0.00 0.41 5.00 0.21 2.00 0.56 3.00 0.55 0.00 0.57 1.33
hand2 0.59 0.00 0.56 3.00 0.56 3.00 0.39 8.00 0.52 6.00 0.49 6.00 0.49 1.20 0.49 8.87

jogging 0.72 0.00 0.75 0.00 0.80 6.00 0.70 1.00 0.79 1.00 0.79 1.00 0.35 1.00 0.61 1.73
motocross 0.35 4.00 0.34 4.00 0.34 8.00 0.47 3.00 0.42 4.00 0.36 2.00 0.41 1.00 0.20 5.40
polarbear 0.82 0.00 0.55 0.00 0.57 0.00 0.51 0.00 0.63 0.00 0.78 0.00 0.65 0.00 0.65 0.00

skating 0.51 5.00 0.50 9.00 0.52 14.00 0.50 0.00 0.59 0.00 0.68 1.00 0.32 0.40 0.56 6.93
sphere 0.78 0.00 0.71 0.00 0.71 0.00 0.72 0.00 0.92 0.00 0.90 0.00 0.64 0.00 0.50 0.00

sunshade 0.57 0.00 0.58 0.00 0.54 1.00 0.79 0.00 0.78 0.00 0.76 0.00 0.55 0.40 0.74 0.00
surfing 0.76 0.00 0.85 0.00 0.87 3.00 0.83 0.00 0.90 0.00 0.79 0.00 0.57 0.00 0.70 0.00
torus 0.82 0.00 0.75 0.00 0.65 1.00 0.79 0.00 0.81 0.00 0.85 0.00 0.63 0.00 0.74 0.53
trellis 0.50 0.00 0.51 0.00 0.51 1.00 0.58 2.00 0.80 0.00 0.79 0.00 0.48 0.00 0.68 1.40
tunnel 0.47 7.00 0.34 2.00 0.43 4.00 0.31 0.00 0.80 0.00 0.68 0.00 0.36 1.47 0.50 3.53
woman 0.65 0.00 0.63 0.00 0.68 2.00 0.66 3.00 0.79 1.00 0.74 1.00 0.36 1.13 0.63 3.67
Mean 0.61 0.84 0.56 1.08 0.55 3.68 0.53 1.48 0.62 1.16 0.62 1.32 0.46 0.66 0.54 3.34

Table 3: Detailed results for the VOT14 benchmark dataset comparing our approach to the top 5 competitors. For each
sequence, we report the average accuracy (Acc) and robustness (Rob) scores. Best, second best, and third best results have
been highlighted. For the non-deterministic trackers LGT and OGT, we report the results averaged over 15 runs.
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