
Hough Forests Revisited: An Approach to
Multiple Instance Tracking from Multiple

Cameras

Georg Poier†, Samuel Schulter†, Sabine Sternig, Peter M. Roth, Horst Bischof†

†Institute for Computer Graphics and Vision
Graz University of Technology, Austria

{poier,schulter,bischof}@icg.tugraz.at, sternig.sabine@gmail.com,

p.m.roth@ieee.org

Abstract. Tracking multiple objects in parallel is a difficult task, espe-
cially if instances are interacting and occluding each other. To alleviate
the arising problems multiple camera views can be taken into account,
which, however, increases the computational effort. Evoking the need
for very efficient methods, often rather simple approaches such as back-
ground subtraction are applied, which tend to fail for more difficult sce-
narios. Thus, in this work, we introduce a powerful multi-instance track-
ing approach building on Hough Forests. By adequately refining the time
consuming building blocks, we can drastically reduce their computational
complexity without a significant loss in accuracy. In fact, we show that
the test time can be reduced by one to two orders of magnitude, allow-
ing to efficiently process the large amount of image data coming from
multiple cameras. Furthermore, we adapt the pre-trained generic forest
model in an online manner to train an instance-specific model, making
it well suited for multi-instance tracking. Our experimental evaluations
show the effectiveness of the proposed efficient Hough Forests for object
detection as well as for the actual task of multi-camera tracking.

1 Introduction

Visual object tracking is one of the most important tasks in computer vision,
building the basis for various applications such as surveillance, sports analysis,
and industrial (quality) inspection [24,26,32]. Even though there are considerable
advances in single object tracking (e.g ., [21, 22]), there are still open challenges
for multi-object tracking [38, 40], in particular if multiple instances of the same
class interact.

However, by conducting well elaborated reasoning relying on part-based ap-
proaches (e.g ., [4, 39]) even complex scenarios can be handled very well with
a single camera. Nevertheless, such methods fail if instances are fully occlud-
ing each other. To overcome this problem, recent approaches additionally ex-
ploit temporal information and analyze the tracks of individual instances over
time [9, 13]. However, such methods are condemned to fail if the assumptions
(e.g ., constant velocity) are hurt. A natural way to resolve the problem of similar
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objects occluding each other is to exploit the additional information provided
by multiple cameras [15,26].

The increased amount of data captured by multiple cameras, however, limits
the computational complexity of the employed tracking algorithms. Thus, often
simple techniques like background subtraction or color models are used in order
to locate foreground objects [15,23,30]. However, the simplicity of these methods
usually yields severe problems like mistaken instances or ghost detections. In
contrast, computationally more complex object detection models, such as [35],
are often lacking efficiency and cannot be applied for real-world scenarios.

Thus, the goal of this work is to provide stronger models for tracking multiple
instances using multiple cameras, however, still ensuring short response times
and thus real-time capabilities. In particular, we focus on Hough Forests (HFs)
[19] as underlying object model in a tracking-by-detection setup. In general, HFs
are a powerful and versatile extension of Random Forests (RFs) [8] and have
been successfully applied to various tasks including object detection [27, 36],
tracking [17,33], and pose estimation [34,37].

For real-time tracking, however, their original formulation bears several draw-
backs. For example, the runtime is strictly correlated with the number of training
samples, as we will point out later. Hence, a major advantage of Random Forests,
where the test time is independent from the amount of training data, is lost. This
is especially a problem as the amount of training data is a crucial parameter for
the accuracy of Random Forest based models [11, 18, 34]. Furthermore, as we
also demonstrate, redundant and unnecessary image information is extracted
and processed, indicating an over-determined object description.

Thus, the contribution of this work is twofold. First, we provide an efficient
but still effective object detector based on Hough Forests. Second, this detector
is adopted for online learning to allow real-time tracking from multiple cam-
eras. We first, provide a theoretical as well as empirical analysis of Hough Forest
based object detection, with special emphasis on computational efficiency. Inves-
tigating different aspects such as the classifier complexity, the underlying data
complexity, and the final prediction reveals that the runtime can be drastically
reduced, without a loss in accuracy. In fact, the performance of the proposed
method is on par with the baseline approach, while being one to two orders of
magnitude faster.

Once, having identified and eliminated the critical bottlenecks, Hough Forests
can straightforwardly be applied for tracking. To this end, we first introduce a
novel online learning strategy, where a pre-trained generic object classifier is
adapted to discriminate specific instances on the fly. Second, this strategy – in
contrast to similar approaches – allows integration of information from different
views into one single classifier. This, on the one hand, reduces the complexity
of the classifier as redundant information need not be modeled in parallel. On
the other hand, it provides an elegant way to share features from different views
in a single RF. Finally, the evaluations confirm that in this way an efficient and
effective multi-camera tracking system can be built.
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2 Hough Forests

Hough Forests [19, 27] combine the flexibility of Implicit Shape Models (ISMs)
[25] with the efficiency of Random Forests [1, 8, 11], by integrating part-based
classification and regression into a single model. Given a small image patch,
the goal is to classify if it originates from an object as well as to predict the
possible object location. In the following, we will briefly review the main ideas
of HFs [19]. For more details we would like to refer to, e.g ., [18, 19].

The prediction process of HFs is based on the generalized Hough transform
[3], where the Random Forest represents a codebook of local appearances (i.e.,
small image patches). More specifically, the predictor model at the leafs of the
trees includes a class histogram as well as offset vectors representing the relation
of the observed image patches to a specified position on the object (e.g ., the
object center). These offsets are used to cast votes for the object’s location
and scale. The codebooks are optimized such that the cast votes exhibit small
uncertainty, which is crucial for accurate predictions [19]. In contrast to the
codebook used in [25], the efficiency of the forest framework also permits dense
sampling of local image patches, yielding an additional gain in accuracy.

In order to learn the codebook, a Hough Forest is given a labeled training set
L = {(xi, yi,oi)}, where xi ∈ X = RD and yi ∈ Y = {0, . . . , (C − 1)} 1 represent
the features and the corresponding class label, respectively, and oi ∈ O = R2

is the offset vector. Each tree in the forest aims at splitting the given data into
small subsets by simultaneously minimizing the uncertainty in the class labels
and the offset vectors. For that purpose, a binary splitting test φ(x) is employed
to split the data into two subsets LR and LL. This test is found by generating a
number of possible tests {φk(x)} at random for each node of a tree and selecting
the test φ∗(x) which minimizes either a classification or a regression objective.

The classification objective UY(L, φ(x)) is designed to minimize the class
uncertainty in the resulting sets LR and LL. It is based on the entropy H(L) =

−
∑C−1

y=0 p(y|L) ln p(y|L) computed for each set and weighted according to the
number of samples contained in the respective set. Here p(y|L) denotes the
empirical class probability for class y, estimated from dataset L. The regression
objective UO(L, φ(x)), on the other hand, aims at minimizing the uncertainty
of the offset vectors and is based on their deviation from the mean ō: V (L) =∑

y∈Y\{0}
∑

o∈O(y)
P

‖o− ō‖22. The value of the objective function for a given

test φ(x) is obtained by simply summing up the uncertainties in both sets, i.e.,
UO(L, φ(x)) = V (LL) + V (LR).

In terms of object detection with Hough Forests, a data sample x represents
the appearance of a small image patch. To detect an object, all patches xv of
a given image are associated to a leaf lt of each tree by evaluating the splitting

functions. The class probability pt(y|xv) and the offset vectors o ∈ O(y)
lt

of class
y stored at the leaf are then used to cast votes for an object at position u and
scale s. From the votes accumulated over a number of scales, finally the object
positions and scales are identified.

1 Note that y = 0 for the background class.
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3 Efficient Hough Forests

In the following, we investigate the efficiency of Hough Forests for the task of
object detection. For that purpose, we first determine the relevant parameters for
the different parts of an ISM based detection approach, i.e., feature computation,
matching local image patches to the codebook, and casting votes into the Hough
space. Second, we analyze the effectiveness of these parameters with respect to
run-time and accuracy. We run different experiments on a standard benchmark
dataset, namely TUD-Pedestrian2 [2]. For performance evaluation we employ
the standard PASCAL overlap criterion [16]. To ensure statistically valid results,
each experiment was repeated 10 times and the averaged results are reported.
As we are solely interested in the relative performance changes according to the
specific parameters, the results are shown with respect to the original reference
implementation.

3.1 Complexity Analysis

The first relevant parameter is the run-time for feature computation CF . As
we use a dense sampling strategy, which has shown to be crucial for accurate
detection [19], the features have to be computed for each image pixel. Thus, the
feature computation is independent from n, the number of actually used patches
xi. Thus, for a single scale, CF only depends on the number of feature channels
F and image pixels I: CF = O(FI).

While for the original ISM [25] the cost CM of matching a single data sample
to the codebook linearly scales with the size of the codebook, for codebooks
based on a Random Forest it logarithmically depends on the codebook size. In
fact, CM is estimated as the sum of the cost of matching a sample to a leaf
of each tree within the forest: CM =

∑T
t=1O

(
κ log(|lt|)

)
, where |lt| specifies

the number of leafs of tree t ∈ {1, . . . , T}, and κ denotes the complexity of a
single splitting test. Ignoring that |lt| may slightly differ from tree to tree, we
get CM = O

(
Tκ log(|l|)

)
.

Hence, assuming balanced trees, we finally derive the following overall detec-
tion costs:

C = CF + n
(
CM +

T |OL|
|l|

)
= O

(
FI + nT

(
κ log (|l|) +

|OL|
|l|

))
, (1)

where |OL| is the number of all offsets in the training set.
As our final target application is tracking, where the scale is roughly known,

parameters regarding the scale space, which are essential for the efficiency of
modern object detection systems (see, e.g ., [6, 14]), are not considered in the
following. On the other hand, Eq. (1) reveals that the test time directly depends
on the amount of training data, as for ISM based object detection each training
sample is assigned one offset vector, i.e., |OL| = |L|.
2 http://www.d2.mpi-inf.mpg.de/andriluka_cvpr08

http://www.d2.mpi-inf.mpg.de/andriluka_cvpr08
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In the following, we analyze the parameters identified in Eq. (1). We structure
them into those related to the complexity of the data representation and those
related to the complexity of the classifier.

3.2 Data Complexity

Data complexity is manifested in three parameters, which are discussed in the
following: the number of data samples n extracted from a test image, the number
of feature channels F , and the number of image pixels I at which the features
need to be computed:

Amount of Data Samples: Gall et al . showed [19] that sampling patches
densely results in more accurate detections compared to sampling from interest
points only [25]. On the other hand, nearly dense sampling strategies have proven
to be almost as effective in terms of accuracy, whereas the number of samples
and, thus, the runtime is significantly reduced. Increasing the sampling distance
from one (dense) to two, already results in a speed-up of 40% at the same level
of accuracy (see Fig. 1a).

Feature Channels: Originally, it was proposed to use 32 feature channels,
however, different features may be highly correlated, representing similar infor-
mation (see e.g ., [8]). To this end, evaluations using different subsets of feature
channels reveal that more than half of the channels may be simply omitted with-
out any loss in accuracy. Especially by omitting the min- and max-filtration [19]
the runtime can be reduced by approx. 20% (see next paragraph and Fig. 1b,
respectively).

Object Size: The smaller the scale at which an object can be detected, the
less pixels have to be considered for feature computation. Hence, size matters.
An according evaluation, starting with a unit object height of 100 pixels [19] is
given in Fig. 1b. Moreover, filtration of the feature channels was found to be
unnecessary for smaller scales since noise suppression is implicitly achieved by
down-scaling. In fact, an additional filter step even decreases the discriminability
at smaller scales. Thus – similar to the experiments regarding the number of data
samples and feature channels – this points out that the model is strong enough
to work well on a more compact object description. Please note that all results in
Fig. 1b were generated without filtration of the feature channels but are relative
to the standard setting, i.e., with filtration.

3.3 Classifier Complexity

The complexity of the Hough Forest classifier is given by the number of trees,
their depth, the complexity of a split tests, and by the complexity of the offset
distribution. Due to space limitations we omit discussions on the depth and split
complexity since these parameters did not yield a speed up without sacrificing
accuracy for our experiments:



6 G. Poier, S. Schulter, S. Sternig, P.M. Roth, H. Bischof

0

0.2

0.4

0.6

0.8

1

1 2 3

Sampling Distance 

rel. AuC

rel. test-time

(a)

0

0.2

0.4

0.6

0.8

1

5075100

Object Height 

rel. AuC

rel. test-time

(b)

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15

Number of trees 

rel. AuC

rel. test-time

(c)

Fig. 1. Relative accuracy (in terms of Area under the Curve (AuC)) and relative test
time per image for (a) different sampling distances during detection, (b) models trained
on different object resolutions, and (c) using different forest sizes. For the results in
(b) no min- and max-filtration were used, i.e., 16 feature channels. The values are
relative to the result obtained using the standard setting, i.e., using dense sampling,
object height: 100, patch size: 16 × 16, and using 32 channels (including min- and
max-filtration). The error bars give the standard deviation for AuC.

Number of Trees: The number of trees T of a Random Forest provides a simple
way to trade off accuracy versus runtime. In fact, the runtime scales linearly with
the number of trees in the forest, while the accuracy usually levels up at some
point (c.f . [28]). In our setup, the accuracy shows only a slight increase for T > 4
(see Fig. 1c).

Complexity of the offset distribution: A major drawback of Hough Forests,
limiting their applicability, is that their test time depends on the amount of
offset vectors stored at the leafs, and thus, on the amount of training data.
While in [34] this drawback is addressed by summarizing voting information at
the leaf nodes off-line, the authors of [21] employ a grid-like quantization of
the offset distribution in order to update the distribution incrementally during
online learning. Considering applications which require online learning as well as
computational efficiency, we would like to take advantages of both ideas. Thus,
we apply a grid-like approximation of the offset distribution on a coarse scale.
The corresponding results over different grid resolutions compared to the results
for vote compression using mean-shift as in [20] are shown in Fig. 2.

3.4 Discussion

The results presented in this section clearly show that we can enhance the effi-
ciency of a Hough based object detector without negatively affecting the accu-
racy. In fact, integrating all findings gives an accuracy comparable to the original
approach [19], while the computation is sped up by a factor of 40 (see Fig. 3).
In particular, when combining the adaptions for all described parts the best re-
sults were obtained by using the following setup: two pixel sampling distance
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Fig. 2. Relative accuracy (in terms of Area under the Curve (AuC)) and relative test
time per image: (a) As a function of the number of votes for vote compression by mean
shift, and (b) as a function of the number of cells for vote compression by vote grid.
Values are relative to voting with all offsets arrived at a leaf. The error bars give the
standard deviation for AuC.
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Fig. 3. Precision-Recall curves (a), and accuracy plotted vs. runtime (b) for the original
[19], and our sped-up approach. It can be seen that the loss in accuracy is small, while
the system is sped up by a factor of 40. (image size: 720x576)

in x-/y-direction, an unit object height of 75 pixels, discarding the min-, and
max-filtration of the feature channels, reducing the number of trees from 15 to
5 and summarizing the offset distributions by utilizing grids of 77 cells.

Note that the findings of recent works regarding efficiency of scale space anal-
ysis [6, 14] can be easily integrated, which bears the potential for an additional
speed-up. Moreover, these adaptions are quite general and straightforwardly ap-
plicable to tracking in a tracking-by-detection manner.

4 Multi-Camera Multi-Instance Tracking

In the following, we first introduce a new forest-based multi-camera tracking
method exploiting the findings from the previous section and then demonstrate
the method in comparison to existing approaches for a realistic scenario.
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4.1 Adaptive, Instance-Specific Models

In general, a multi-camera setup consists of several cameras observing the same
scene, typically assuming that the objects are moving on a common ground plane.
In our case, we build on a tracking-by-detection technique using a Hough Forest
as underlying classifier. Thus, our approach is similar to [35], also using Hough
Forest based person detectors, which are then updated online according to [17].
However, our approach differs in several ways, as [35] uses a ground plane voting
and a separate model for each camera. Furthermore, their approach does not
exploit any visual information for discriminating different instances but solely
relies on temporal information based on a particle filter.

In contrast, we apply the original center voting [19]. However, at test time
the votes are offset, such that they actually point to the ground plane. For that
purpose, the offset from center to foot-point is computed based on the scale of
the detected object. In this way, we limit the length of the learned vote vectors
oi, since it was shown that the performance of Hough voting schemes decrease
with the length of those [10, 12, 34]. Hence, we can now vote for the foot-points
of the persons, without increasing the uncertainty in the voting process due to
artificially elongated votes.

To further reduce the model’s complexity, we exploit that an object’s ap-
pearance may be very similar in different views at different points in time. Thus,
instead of learning different models in parallel (i.e., for each camera) we ac-
cumulate all information into a single comprehensive classifier, simultaneously
updated from all views. To this end, we also exploit the ability of Random Forests
to handle a huge amount of data and a significant amount of noise [5, 18, 29],
which could be introduced by the large variability in the data from different
views.

However, we are not interested in detecting generic persons but in distin-
guishing between specific ones, which can be realized by adapting the splitting
tests. Obviously, the splitting tests of a generic person detector are not very dis-
criminative when aiming at separation of specific instances. For example, color
information is not intensively used by a generic forest classifier, as it is not well
suited for distinguishing between foreground and background. However, for in-
stance separation this is apparently one of the most important cues. Hence, a
generic person detector is not an appropriate choice for separation of specific
instances. A Hough Forest – being a part-based detector – trained for person
detection is able to segregate the individual parts of an object. For example, for
person detection, parts like feet, the head, or the torso are clustered together.
The color of each part is highly informative when it comes to discrimination
between object instances. Thus, in order to differentiate between individual in-
stances we extend the pre-trained model online by learning additional splitting
tests, which are specifically optimized to separate the instances occurring in the
scene.

To do so, the data samples extracted from the detected instances are tra-
versed down the trees reaching the respective leafs. Similar to [33] we collect
the samples together with their instance specific offsets at the leafs until a fixed
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number of samples n arrived. Subsequently, a split is optimized on a balanced
sub-sample of m |E| instance samples, where |E| denotes the number of instances
and m < n/|E|. In our experiments, this has shown to be preferable over sam-
pling from the posterior distribution at the node. (For this work we set m = 20
and n = 1.5m |E|.) The process is repeated for three additional depth levels.
Furthermore, in order to maintain the good generalization performance, we keep
the samples from the pre-trained classifier, split them according to the selected
splitting tests, and use them to build reliable statistics at the newly created leafs.
Since only very few additional splits are generated, the samples need not be kept
forever, which would obviously require infinite memory and hamper runtime. In-
stead, after a (pre-)defined number of splits, we keep the tree depth fixed and
discard all collected samples. Subsequently, only the (class, instance, and offset)
statistics are updated.

4.2 Experimental Results

To demonstrate the benefits of our approach, we pre-trained a Hough Forest
on the publicly available INRIA person dataset3 and compared our approach to
three different methods. First, to a simple baseline based on mapping foreground
masks obtained from a background subtraction onto the ground plane. Second,
to Berlcaz et al . [7], which uses K-Shortest Patch (KSP) to link the detections
obtained from probabilistic occupancy maps (POM). Third, to the most related
approach of Sternig et al . [35], which also builds on Hough Forests.

All approaches were evaluated on Set 1 from the publicly available dataset
[31], which shows an indoor scene captured by three different cameras. Consist-
ing of more than 2500 frames (where every tenth frame is annotated and used
for evaluation), the scene shows three persons walking around, regularly occlud-
ing each other. The thus obtained results are presented in Table 1, where we
show the averaged error (localization) on the ground plane. It can be seen that
our single comprehensive classifier (MultiInstanceHF ) outperforms not only the
simple baseline but also the more sophisticated approaches of Berclaz et al . and
Sternig et al . The latter one is of particular interest, as we do not use an addi-
tional particle filter and ensure a much lower computational effort. Furthermore,
illustrative results are given in Fig. 4.

5 Conclusion & Outlook

In this work, we revisited Hough Forests, a prominent approach to object de-
tection, which has been successfully applied to numerous tasks within the field
of computer vision. We pointed out that – using simple means – their runtime
can be reduced by one to two orders of magnitude, while scoring in the same
range of accuracy. This enables their use for applications with limited computa-
tional budget. The gathered insights were then exploited for tracking multiple

3 http://pascal.inrialpes.fr/data/human/

http://pascal.inrialpes.fr/data/human/
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Table 1. Mean pixel errors on ground plane for different approaches on the multi-
camera sequence Set 1 [31].

Method Error (in pixel)

background subtraction 75.7
Berclaz et al . [7] 106.3
Sternig et al . [35] 23.9
MultiInstanceHF 18.8

(a) (b)

(c) (d)

Fig. 4. Illustrative tracking results overlaid on the camera views (a-c) and the ground
plane (d), where the filled circles represent the tracking result and the unfilled the
corresponding ground truth annotations (best viewed in color and high definition).

instances from multiple cameras, where we showed that visual information can
be as effective for instance discrimination as temporal information. This points
out that instance discrimination should not be fully handed over to methods
that only take temporal consistency into account. Instead, our work motivates
an approach where both visual and temporal cues are incorporated.

Acknowledgment This work was supported by the Austrian Science Founda-
tion (FWF) project Advanced Learning for Tracking and Detection in Medical
Workow Analysis (I535-N23).
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