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Abstract. Text localization is the first step when au-
tomatically reading text in images. Since existing
methods often fail when applied to unconstrained im-
ages, in this paper we propose a more robust ap-
proach exploiting different kind of information. In
particular, we first extract textural features, a com-
bination of a stroke filter with a super-pixel segmen-
tation, and then search for connected components.
To finally obtain a text localization, these are subse-
quently analyzed for unary character properties, bi-
nary character similarities, and text line properties.
To demonstrate the benefits of the proposed method,
we evaluate it on three different data sets, showing
promising results.

1. Introduction

Text extraction or Optical Character Recognition
(OCR) has been studied since the 1990s [24], how-
ever, the focus was primary on reading scans of
printed documents. Thus, only little work has been
done on reading text in natural images, but this topic
gained more and more attention during the last five
to ten years [3, 7, 16, 23, 24]. In contrast to OCR
from documents, extracting text from unconstrained
images is rather challenging and suffers from a lot of
problems. These include low resolution, low con-
trast, different text colors, unknown text size, un-
known orientation, color bleeding, or unconstrained
backgrounds [23, 24].

The most successful approaches can be sub-
divided into two groups: methods that describe tex-
ture features [8, 26] and approaches that are based
on extraction and analysis of connected components
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Figure 1: Text localization process: The input image (a)
is filtered for strokes (b) and is segmented into small co-
herent regions. The stroke regions (c) are then analyzed
for connected components to extract the textual properties
(d).

(CCs) [3, 18, 25]. Methods of the first group can
cope better with noisy, degraded, or complex text and
background, however, they usually encounter diffi-
culties in exact localization of the text regions, which
is crucial for the subsequent character recognition.
Thus, for standard benchmark data sets such as IC-
DAR 2003 typically approaches of the second group
yield the better results. However, all of these meth-
ods often fail for small or blurred text as well as
transparent background [3, 16, 25], which are typical
scenarios in practice.

To make the text localization more robust, we pro-
pose to combine both ideas, i.e., texture and region
based methods. A stroke filter, based on the ra-
tio of eigenvalues of the Hessian matrix, is used to



Figure 2: Flowchart of the proposed algorithm: we use a
stroke filter in combination with coherent super-pixels to
extract the connected components which finally form the
text lines.

enhance text regions, whereas an unsupervised seg-
mentation provides coherent image segments. The
segments in enhanced regions are merged based on
semantically meaningful clusters in order to extract
CCs. These are then analyzed for single character
properties as well as relations between neighboring
characters, forming text lines. The whole process is
illustrated in Figure 1 and a flowchart of our algo-
rithm is given in Figure 2.

Bearing in mind that text localization is only the
first step when reading text in natural images, we use
a fairly conservative setup, focusing on high recall in-
stead of building a rather perfectly specific detector.
False positives may be easily rejected in later steps
but not localized text is retrieved laboriously only.

The paper is structured as follows. First, we sum-
marize the related work in Section 2. Then, in Sec-
tion 3 we introduce our approach. Experimental re-
sults and a discussion are given in Section 4 and Sec-
tion 5, respectively. Finally, we summarize and con-
clude the work in Section 6.

2. Related Work

Although there are some slightly varying catego-
rizations [18, 21, 26], methods for text localization
are usually divided into two categories [3, 7, 8, 24]:
texture- and region-based methods.

Texture-based methods work in a top down man-
ner, extracting texture features in order to dis-
criminate between text and background. Thereby,
e.g., spatial variance of intensity, Fourier transform,
Wavelets, and machine learning methods are used
[2, 7, 8, 24]. These methods perform well with noisy,
degraded, or complex text and background. How-
ever, since an image usually has to be scanned at
several scales, major restrictions arise from computa-
tional complexity and integration of results from dif-

ferent scales. In addition, such methods suffer from
difficulties to provide exact localizations.

Region-based methods work in a bottom up fash-
ion. They utilize the observation that text can be
seen as sets of separate CCs. The image is sepa-
rated into small regions, e.g., by using color features,
edge features, or CC methods [16, 18, 24]. Next,
text regions are separated from background by ex-
tracting and analyzing region properties – often in-
cluding an analysis of relations between neighbor-
ing regions. These methods are efficient in extract-
ing text, especially when the background is homo-
geneous. Region-based methods allow for simulta-
neously detecting text at different scales. However,
the main drawbacks of such approaches come from
noisy, multicolored, textured as well as very small
texts. Problems also arise from coalesced character
regions or similarly colored objects.

One very prominent region-based approach is that
of Epshtein et al. [3]. It is based on the observation
that strokes are nestled in edges exhibiting roughly
opposite gradients. CCs are extracted from the out-
put of the so called Stroke Width Transform (SWT),
which seeks to find the value of stroke width for each
image pixel. Components are then analyzed for char-
acter and text line properties.

An approach based on similar ideas is the text ex-
traction scheme of Zhang and Kasturi [25]. After ex-
tracting closed boundaries by an edge detector, "char-
acter energy" and “link energy” are calculated and
subsequently combined to retrieve the probability of
a candidate text region to be a true positive. There-
fore, "character energy" is based on gradient direc-
tions at two "opposing" points on the boundary, and
“link energy” is computed to model the similarity be-
tween two neighboring character regions.

Matas and Zimmermann [15] proposed to use
character classification based on MSERs [14], which
were later also used by Neumann and Matas [16, 17]
in their comprehensive framework for text local-
ization and recognition. In [16] a Support Vector
Machine (SVM) is trained on manually annotated
MSERs for character classification and again for text
line formation. In [17] the text line formation stage is
replaced by Gaussian Mixture Models (GMMs) de-
scribing relational properties of two, three or more
consecutive characters. In order to find the text lines
a graph energy, computed from the distances be-
tween the extracted properties and the corresponding
GMMs, is minimized.



Another approach based on similar ideas, where
parts of our work build on, was presented by Tran
et al. [21]. The authors compute the ratio of the
eigenvalues of the Hessian matrix to detect character
strokes and text lines, respectively. But in contrast
to our work, they aim to extract ridges [20]. Text is
required to induce a ridge at a coarse scale represent-
ing its center line and an amount of short ridges at
smaller scales representing skeletons of characters.

Liu et al. [11] define Haar-like stroke filters,
where three adjacent rectangular regions are ana-
lyzed. To compute a response for stroke regions,
they estimate the three regions intensity means and
the standard deviation of the central region. An ap-
plication to text localization based on the stroke fil-
ter is proposed in [6]. For this purpose, the filter is
combined with an SVM trained on normalized gray
values and constant gradient vector.

Another remarkable approach is that of Chen and
Yuille [2]. They use a boosted cascade of weak clas-
sifiers and carefully designed different kinds of fea-
tures for different stages of the cascade.

Of course, even more machine learning based ap-
proaches exist (see [7, 24]). However, it is difficult
to learn an appropriate model, having to incorporate
such a vast amount of variation. This is also outlined
by Zhang and Kasturi in [25], where they claim that
such approaches still suffer from the insufficiency of
the training samples from different lightnings, distor-
tions, and languages.

3. Proposed Approach

In the following, we introduce our approach for
text localization, which can be divided into three
main parts: the stroke filter, extraction of coherent re-
gions, and connected component analysis. First, we
explain how the stroke filter is modeled (Section 3.1).
We then give a brief description of the mechanism
for super-pixel segmentation (Section 3.2). Finally,
we discuss how the filter response is combined with
the image segmentation in order to obtain connected
components, which are subsequently analyzed for
textual properties (Section 3.3).

3.1. Stroke Filtering

The most elementary and constitutive parts of text
are strokes. This applies to all types of text, indepen-
dently of character set or font style. Furthermore, ev-
ery kind of stroke exhibits a few general properties: it
is an elongated region, which is nearly homogeneous

and different from its lateral regions. Based on this
properties a generic stroke filter can be built. We thus
use a filter based on the analysis of the eigenvalues of
the Hessian matrix.

Local Curvature Analysis The Hessian represents
the second order derivatives, and, thus, describes the
local curvature associated to a point in an image.
By analyzing its eigenvalues and eigenvectors, the
principal directions of the local curvature can be ex-
tracted. This directly gives the direction of smallest
curvature, which corresponds to the direction along
a potential stroke. In such a case the corresponding
eigenvalue is strongly dominated by the eigenvalue
corresponding to the orthogonal direction.

Thus, to analyze the local structure of an image
I , we consider the Taylor expansion in the neighbor-
hood of a point x:

I(x+ δx, s) ≈ I(x, s) + δxT∇s + δxTHsδx, (1)

where∇s andHs are the gradient vector and Hessian
matrix of the image computed in x at scale s. This
represents an approximation of local image structure
up to second order.

Given the eigenvalues λ1 and λ2, where |λ1| ≤
|λ2|, for pixels within a stroke region λ1 will be low
whereas λ2 will be high. In contrast, if both eigen-
values have a similar magnitude, this indicates that
the corresponding region belongs to the background.
Furthermore, the sign of λ2 specifies whether the
pixel belongs to a dark region on bright background
or vice versa.

Hessian Based Stroke Filtering Using the prop-
erties of the Hessian, Frangi et al. [4] proposed a
so called "vesselness" measure, which – for 2D im-
ages – is based on two values: the ratio between the
eigenvalues, and their magnitude. The ratio RB =
λ1/λ2 gives a measurement of "blobness", whereas
the magnitude of the eigenvalues S = ‖H‖F =√
λ21 + λ22 is used to minimize the influence of ran-

dom background noise. In regions of low contrast
(e.g., background regions) eigenvalues will be small
and, therefore, S will be low. In high frequency re-
gions, on the contrary, at least one of the eigenvalues
will be high and, thus, the norm becomes larger.



For computing a normalized response, the follow-
ing combination of the mentioned components was
proposed [4]:

V(s) =

{
0 if λ2 > 0,

exp (−R2
B

2β2 )(1− exp (− S2

2c2
)) otherwise,

(2)
where β and c are parameters to control the sensitiv-
ity of the filter to the measures ofRB and S.

When analyzing V(s) at different scales s, it will
be maximum at a scale that approximately matches
the stroke to detect. The integration of the re-
sponses for different scales therefore considers only
the maximum response for each image pixel: V =
maxs V(s).

Using (2) enables us to enhance bright strokes on
dark background. In contrast, when searching for
dark strokes on bright background, we have to con-
sider the sign of λ2. It is positive for dark-on-bright
and negative for bright-on-dark structures. Hence,
for filtering dark strokes on bright background, we
simply have to exchange the corresponding con-
straint in (2).

A stroke filter response is computed over two sep-
arate scale-ranges. This is necessary since a sin-
gle response for all scales would blend responses in
an undesirable manner, and, thus, causes problems
when extracting CCs; especially, for finer structures.
See Figure 1(b) for an output of our stroke filter at
the smaller scale-range.

3.2. Extract Coherent Segments

The subsequent OCR demands for accurately lo-
calized text regions. This is only achievable by a
rather exact knowledge about the expansion of sin-
gle characters, and therefore requires segmentation
on the pixel level. State-of-the-art methods utilize
local adaptive binarization [18], edge based segmen-
tation [3, 25], or MSERs [16, 17] to this end.

Since, in many situations this is a fairly critical
task, we propose to use small, coherent regions from
a conservative unsupervised segmentation (superpix-
els). In this way, we get nearly perfectly segmented
characters, while drastically reducing computational
cost in subsequent steps.

There exist a great number of superpixel segmen-
tation methods, but in particular, we use quick shift1

1For our implementation we used the code provided by An-
drea Vedaldi and Brian Fulkerson (http://www.vlfeat.org/).
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Figure 3: Example for extraction of CCs, showing images
of intermediate steps. The original image (a) is filtered for
strokes, obtaining a normalized response (b) where lighter
colors correspond to higher responses. Furthermore, an
unsupervised segmentation is applied yielding small co-
herent regions. Here, for better visualization a color is
randomly assigned to each segment (c). From these seg-
ments – in combination with regions exhibiting a mini-
mum filter response (d) – foreground regions are extracted
(e), which are subsequently refined/disconnected based on
color statistics (f).

[5, 22], because it can easily be parallelized on a
graphics processing unit (GPU). Figure 1(c) and Fig-
ure 3(c) show examples for thus obtained segmenta-
tions. Please be referred to [22] for further details.

3.3. Connected Component Analysis

Knowing the location of strokes as well as having
a superpixel segmentation on hand enables us to re-
strict subsequent computations to the superpixels on
stroke regions.

Extraction of Connected Components When
considering CCs of superpixels on stroke regions,
we observe that components are likely to contain
more than one character (See Figure 3 for an ex-
ample). Thus, merged character regions are discon-
nected based on color statistics of the compound su-
perpixels.

More specifically, a k-means clustering of the su-
perpixels’ mean colors is employed, followed by a
region growing on the superpixels based on calcu-
lated cluster memberships. Assuming that the color
values in high contrasted regions are much wider
spread than in regions of low contrast, different con-
trast conditions are taken into account by defining the
merging criterion for region growing based on the ex-
pansion of data points within a cluster.



Examination for textual properties Having ob-
tained the connected components, where each single
character is represented by a single connected com-
ponent, we sift out text regions in three steps. First,
the components are filtered based on single character
properties. Then, neighboring components are linked
and filtered based on two component similarities, re-
spectively. Finally, links which do not exhibit rela-
tional properties of three or more characters (i.e., text
lines) are removed.

For identifying components which certainly do
not contain characters, stroke width measurements
bear great potential [3, 25]. We are able to obtain
such information directly from the stroke filter.

This is based on the observation that the filter re-
sponse will be maximum at a scale that approxi-
mately matches the stroke to detect. Thus, the fi-
nally considered measurements for single character
properties include aspect ratio, minimum/maximum
stroke width to area ratio, area of bounding box to
median stroke width ratio, and variance of stroke
widths.

From the remaining components a neighborhood
graph is built. Components are considered as neigh-
bors if their geometric and spatial relationship fulfills
certain conditions. Similar to [18, 25] any two com-
ponents i and j obeying the following rule are con-
sidered to be neighbors:

‖ci − cj‖2 ≤ 2 min
(
max(wi, hi),max(wj , hj)

)
,

(3)

where c specifies the centroid, and w and h are com-
ponent width and height, respectively.

Neighboring components are now checked against
a number of binary relationship properties, including
color, height, width, stroke width, overlap of bound-
ing boxes, and number of pixels. Furthermore, in-
spired by [21], we utilize the relationship between
angle of the link between the two components and
directions of their strokes.

For every three subsequently linked components
we then evaluate the centroid angle as proposed in
[17]. This is based on the observation that the angle
between lines connecting the centroids of three fol-
lowing letters in a text line is limited. Finally, links
between text lines are removed by checking the angle
between two components against the median angle of
the graph it belongs to.

Integration of Results

Results from the four cues (bright and dark strokes,
each at two scale-ranges) are finally integrated.
Thereby, each text region is assigned a confidence
based on stroke filter response. With highly overlap-
ping text regions, the region exhibiting smaller con-
fidence is removed.

4. Experimental Results

To demonstrate the benefits of the proposed ap-
proach, we performed experiments on three differ-
ent data sets: the ICDAR 2003 evaluation dataset2, a
dataset consisting of TV screen captures (in the re-
mainder referred to as “VideoOCR”), and a third one
containing images of railroad wagons (“WagonID”).

The text regions in all data sets are subject to
many different sources of variation, such as contrast,
size, color, orientation, or degradation. In addition,
we are facing different challenges with the differ-
ent data sets. For instance, images from VideoOCR
dataset are often of low quality or low resolution,
and, thus, the text is small and degraded. The Wag-
onID dataset is acquired from a line scan camera,
as a result, color channels may exhibit varying dis-
placements throughout an image. Furthermore, the
text sometimes shows very low contrast, or is even
strongly contaminated.

Since there were no annotations available for the
VideoOCR dataset, we performed a quantitative eval-
uation on the ICDAR 2003 and the WagonID dataset
only. The annotations for ICDAR 2003 contain rect-
angles representing the bounding boxes for each sin-
gle word. Since our task doesn’t require separation
of text lines into single words, the output of our al-
gorithm is a set of rectangles containing whole text
lines. Hence, an evaluation as proposed for the IC-
DAR 2003 dataset [13] wouldn’t give meaningful
results, as the ground-truth rectangles are thereby
paired with the detected ones.

Instead, in our evaluation we compare the ground-
truth and detection on pixel level. For each image we
have a set of ground-truth pixels T p (i.e., the pixels
within the annotated rectangles) and a set of detected
pixels Dp. The recall is then defined as the number
of correctly detected pixels divided by the number of
ground-truth pixels: Recall = |T p∩Dp|

|T p| .

2http://algoval.essex.ac.uk/icdar/Datasets.html
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Figure 4: Text region (“Start”) not localized by our ap-
proach due to the low response of the stroke filter. The
original image (a) and the filter response for correspond-
ing scale-range (b) obtained with standard parameters
(used throughout all evaluations) are shown. This is
mainly due to the strong degradation.

Since, in terms of precision, we are not interested
in the number of falsely detected pixels, but the num-
ber of falsely detected regions (i.e., the rectangles),
the precision is defined on a region basis. A detected
rectangle is counted as correct if the overlap between
the rectangle and at least one ground-truth rectan-
gle is more than 50%. With respect to this, the pre-
cision score represents the number of correctly de-
tected rectangles, denoted c, divided by the number
of detected rectangles Dr: Precision = c

|Dr| .
In this way, for the WagonID dataset a recall of

0.84 at a precision of 0.42 is obtained. Detailed re-
sults for the ICDAR 2003 dataset are given in Ta-
ble 1. Please note that the results of our method
are not directly comparable to the other ones listed,
due to the different evaluation procedure. Still, those
should act as reference points. Selected results from
all data sets are shown in Figures 5, 6, and 7.

Algorithm Precision Recall
Pan et al. [18] 0.67 0.71
Zhang and Kasturi [25] 0.73 0.62
Epshtein et al. [3] 0.73 0.60
Neumann and Matas [17] 0.60 0.60
proposed method 0.48 0.71

Table 1: Detection results on the ICDAR 2003 dataset.

5. Discussion

The evaluation shows that our method is able to
handle a lot of the mentioned variations, even in
cases where existing methods fail. This is observed
especially with very small, degraded or blurred text,
where edge based approaches often encounter prob-
lems [3, 25].

Some false negatives come from transparent back-
ground, showing similar colors as the foreground

(Figure 5), too low stroke filter response (Figure 4),
and single or strongly connected characters, respec-
tively (Figure 6). The latter one results from the
fact that a minimum number of characters is required
for a text line. Text lines, where even the filter
encounter problems may be addressed through per-
forming checks on the frequency of strokes within
the stroke filter response instead on extracted com-
ponents, only. Missed text regions on the WagonID
dataset are mainly due to the high level of degrada-
tion, primarily caused by the shift of color channels,
in combination with small text size.

The arising high number of false positives could
be reduced by a number of measures. Specificity of
the stroke filter may be increased by using contour
information from the border of strokes, where gra-
dients must roughly be opposite3. The analysis of
components against character and text line proper-
ties could be extended further and has potential to
significantly improve the overall performance. More
specifically, in analysis of single components one
could make use of further simple features as well as
more complex descriptions, e.g., based on an Implicit
Shape Model [10] for the specially shaped elements,
characters are composed of. Repetitive patterns (Fig-
ure 5) may be removed by the shape filter proposed
in [12] for this task, or some even more sophisticated
method as those regarding local self similarities [19].

6. Conclusion

We presented a hybrid method for text localiza-
tion, based on textural features and a connected com-
ponent analysis. We aimed to overcome problem
cases, where recently proposed methods, based on
a preceding edge detection step, are likely to fail
[3, 25]. Thus, we used a filter design which doesn’t
obligatorily require edges to be present at stroke bor-
ders and utilized its output in combination with a su-
perpixel segmentation of the image in order to obtain
connected components. We finally end up by analyz-
ing them against single character properties, as well
as text line properties. Promising results prove the
potential of the presented approach.

3Similar ideas are used with eigensystem analysis of the Hes-
sian in the field of medical image analysis [1, 9].



Figure 5: Selected qualitative results obtained for the evaluation on the ICDAR dataset [13].

Figure 6: Selected results on the VideoOCR dataset. Note that even the timestamps of only one pixel stroke width, added
to some of the images (upper left corners), as well as text exhibiting a slightly curved bottom line are correctly localized.

Figure 7: Selected results on the WagonID dataset. Results are generated on images downscaled by half.
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