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Abstract. Large neural networks trained on small datasets are increas-
ingly prone to overfitting. Traditional machine learning methods can
reduce overfitting by employing bagging or boosting to train several di-
verse models. For large neural networks, however, this is prohibitively
expensive. To address this issue, we propose a method to leverage the
benefits of ensembles without explicitely training several expensive neu-
ral network models. In contrast to Dropout, to encourage diversity of
our sub-networks, we propose to maximize diversity of individual net-
works with a loss function: DivLoss. We demonstrate the effectiveness of
DivLoss on the challenging CIFAR datasets.

1 Introduction

Ensemble methods such as bagging [1], boosting (e.g. [2]), or more specifically
Random Forests [3], have shown great success in improving generalization per-
formance of machine learning methods. They combine several diverse classifiers
to a single predictor, e.g. by averaging their responses. This reduces the general-
ization error compared to the individual classifiers, since an ensemble of diverse
classifiers reduces the variance term in the bias-variance trade-off.

Unfortunately, traditional ensembling methods such as bagging or boosting
are prohibitively expensive for neural networks. Large neural networks need sev-
eral days to train, e.g. [4, 5]. Further, especially for real-world applications with
real-time requirements, evaluating an ensemble of several networks at test time
is computationally too expensive. Additionally, for systems with low memory
capacity, such as embedded systems, employing large ensembles is infeasible.

Previous work [6] proposes Dropout to randomly omit neurons of the hidden
layers to implement efficient model averaging for neural networks. This can be
interpreted as an efficient combination of an exponential number of different
neural networks. However, we found that individual sub-networks trained by
Dropout have low diversity. This is due to the fact that these sub-networks
share all their parameters with each other and only rely on random feature sub-
sampling to encourage diversity. Further, Dropout is applied on the hidden layers
of a neural network.
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In contrast to this we focus on efficient model averaging on the output layer of
a neural network. To this end, we divide the last hidden layer of a neural network
into several, possibly overlapping, groups and optimize a loss function for each
of the groups individually rather than over the full output layer. We group the
neurons during training such that the ensemble can be mapped back to a regular
neural network. By doing this no additional computational cost is incurred at
runtime. Instead of relying on sub-sampling of training samples and features,
as done by Dropout, we propose a loss function to maximize diversity of our
individual network predictors. With this loss function we can effectively balance
diversity and discriminativeness of our sub-networks and achieve competitive
accuracy to Dropout. We name our method DivLoss.

As our experiments show, sub-networks trained with DivLoss have a larger
diversity compared to sub-networks trained with Dropout. Further, we demon-
strate that our method can outperform Dropout on the CIFAR-10 and CIFAR-
100 datasets. Finally, we show that our method benefits from the decorrelation
of hidden units, similar to [7].

The remainder of this paper is structured as follows. In Section 2 we discuss
related work. Next, in Section 3 we review preliminaries on learning theory and
introduce our DivLoss. In Section 4 we demonstrate effectiveness of our method
in several experiments.

2 Related Work

Improving performance of neural networks for supervised learning problems has
recently received a lot of attention from the research community. There is a lot
of work which is complementary to our method.

A simple, yet effective way to improve accuracy is data augmentation, e.g. [4].
During training, before showing an input sample to the network, a transforma-
tion can be applied on the training sample, which preserves the label of the
sample. For example mirroring, crops, affine transformations and photometric
transformations can be used for image categorization.

Another way to improve neural networks are activation functions. Recently
proposed activation functions are more expressive than standard activation func-
tions such as sigmoid or tanh, or are presumably easier to optimize than standard
regularization functions, e.g. [8–12].

Since deeper networks are exponentially more expressive than shallow net-
works, and training very deep networks is challenging due to exploding and
vanishing gradients [13], there is a line of work which focuses on enabling train-
ing of deeper neural networks. These methods add residual connections or use
gating functions from lower to higher layers to enable a better gradient flow in
the network and reduce the vanishing and exploding gradient problem [14, 15].

Further, some recent contributions focus on improving optimization algo-
rithms for training deep neural networks. They propose accelerated first-order
gradient methods specifically designed for neural networks, e.g. [16–19]. These
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methods focus on reducing the training time (i.e. fewer iterations), and presum-
ably let the network converge to a better local minimum. Additionally, Ioffe et
al. [20] leverage batch statistics to normalize inputs to activation functions. This
reduces the internal covariate shift and significantly accelerates training.

Further, there are methods which aim to improve the weight initialization of
neural networks. This is especially useful for training very large neural networks,
as these models do not converge if the weight initialization is not carefully tuned,
e.g. [9, 21–23].

Since networks presumably perform better if their hidden features are dis-
criminative, several methods propose auxiliary loss layers on top of hidden layers
to regularize neural networks [24, 25]. Further, Cogswell et al. [7] use auxiliary
functions to decorrelate hidden neurons. This enables the network to learn more
diverse features and reduces redundancy in the representation of deep networks.

Some methods change the structure of the networks, e.g. by adding additional
1× 1 convolutions on top of convolutional layers [26], using layers of multiple
scales [27], adding an “Inception” layer, consisting of convolutions of different
sizes combined with max-pooling [24] or replacing 5× 5 convolutions with 3× 3
convolutions [5].

Closely related to our method are contributions which leverage the benefits of
ensembles to improve generalization performance of neural networks. Recently,
Hinton et al. [28] propose to leverage the “dark knowledge” of neural networks
to train a network on the predictions of an ensemble to improve accuracy of the
new model. The ensemble predictions are used as soft-labels in combination with
the original labels to train a new network achieving better accuracy compared
to individual networks of the ensemble. This idea is extended by Romero et
al. [29] to train a wide teacher network and a smaller network, which mimics the
predictions of the teacher network on the output and hidden layers. In contrast
to this kind of work, we leverage the benefits of ensembles without explicitly
training several full networks to improve performance of a single neural network.
We argue that our method is complementary to these approaches, as better
individual predictors result in better ensemble performance. This results in more
accurate soft-labels which are useful for these methods.

Another promising line of research focuses on improving accuracy by efficient
model averaging. The most prominent work is Dropout [6], which randomly
omits hidden units from the network during training. Wan et al. [30] generalize
this idea to randomly omit weights of the network during training. Stochastic
Pooling [31] introduces a pooling method which samples the activations of the
receptive fields, rather than just taking the max or the mean. These methods
rely on random noise to increase diversity of neural networks. In contrast to
these methods we propose a loss function to increase diversity.

Most closely related to our work is the pioneering work of negative cor-
relation learning [32], which also uses a loss function to reduce correlation of
different networks in an ensemble. However, networks trained with negative cor-
relation learning do not share parameters, which is prohibitively expensive for
training large neural networks. Further, negative correlation learning focuses on
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non-computer vision related regression problems and penalizes the correlation
of predictions. We show that optimizing cross entropy can achieve better ac-
curacy compared to negative correlation learning for computer vision related
classification tasks. Further, we compare this method in a more modern setting,
with larger networks, larger datasets and recent contributions such as ReLU
activations or Dropout.

3 Towards Efficient Neural Network Ensembles

Shared Parameters Hidden Layer

divided into 

Groups

Input Image

maximize diversity

across classi�ers

minimize 

misclassi�cation

error

Ensemble

Classi ers

Fig. 1. We divide the last hidden layer into several possibly overlapping groups. Neu-
rons of each group are combined into a classifier. For each of these classifiers we sep-
arately optimize a loss which minimizes the training error (e.g. cross-entropy). To
increase diversity of the classifiers we add a separate loss between classifiers.

Given a fully annotated dataset, we want to efficiently train a neural net-
work ensemble to obtain a single highly accurate neural network model. However,
training and evaluating several independent neural networks on a dataset is com-
putationally expensive, especially for very large networks. Hence, we propose to
share most parameters between the individual models, as illustrated in Fig. 1. We
divide the last hidden layer into several groups, which is indicated by the respec-
tive color. Groups might overlap and share parameters with each other. Further,
in contrast to standard ensembles, we train our network ensemble jointly and
not sequentially. With this strategy expensive computations for shared parame-
ters can be re-used among different neural network models. Additionally, due to
parameter sharing, we can map our networks back to a regular neural network
at test time. Hence, DivLoss does not impose any additional computational cost
at test time.

As we will discuss in Section 3.1, one key-requirement for ensembles is to
reduce correlation among individual models and make them diverse. However,
by sharing the feature representation as well as the training set, the individual



Efficient Model Averaging for Deep Neural Networks 5

classifiers will make highly correlated decisions. To address this issue, we pro-
pose to maximize the pairwise cross entropy between different classifiers of the
ensemble. As we will see, this increases the diversity of classifiers and improves
generalization performance.

3.1 Learning Theory

One well-known theoretical result in machine learning is the bias-variance trade-
off, e.g. [33]. It states that the generalization error can be decomposed into a bias
and variance term. Here, we briefly review the main results of Ueda et al. [34],
which analyze the bias-variance trade-off in context of neural network ensembles.
For the sake of clarity, we stick to the notation introduced by Ueda et al.

The purpose of learning methods is to construct a model f(x; θ) that ap-
proximates an unknown target function g(x). θ is a parameter vector which
is estimated by leveraging a set of i.i.d. samples zN = {z1, z2, . . . , zN}, where
zi = (xi, yi), xi ∈ Rd, yi ∈ R and N is the total number of training samples. zN

is the realization of a random sequence ZN = {Z1, . . . , ZN}, whose ith compo-
nent consists of a random vector Zi = (Xi, Yi). Hence, each zi is generated from
an unknown joint probability function p(x, y). The parameters θ of the neural
network are estimated by an optimization algorithm given the dataset zN :

θ̂(zN ) = arg min
θ

N∑
i=1

(yi − f(xi; θ))
2/N. (1)

Note that since θ̂ depends on a zN , the estimated predictor f(x; θ̂(zN )) is also
a realization of a random variable f(x;ZN ). Further, Ueda et al. [34] introduces
a new random variable Z0 = (X0, Y0) ∈ Rd+1, which has a distribution identical
to that of Zi, but is independent of Zi for all i. The generalization error of the
estimator can then be defined as

GErr(f) = EZN

{
EZ0

{[
Y0 − f(X0;ZN )

]2}}
, (2)

where EZ0
{·} and EZN {·} denotes expectation with respect to the distri-

bution Z0 and ZN , respectively. This generalization error decomposes into the
well-known bias and variance terms

GErr(f) = EX0

{
V ar{f |X0}+Bias{f |X0}2

}
+ σ2, (3)

where σ2 denotes the irreducible noise, V ar{f |X0 = x0} and Bias{f |X0 =
x0} are conditional variance and bias given X0 = x0

V ar{f |X0} = EZN

{(
f(X0;ZN )− EZN {f(X0;ZN )}

)2}
, (4)

Bias{f |X0} = EZN

{
f(X0;ZN )

}
− g(X0). (5)
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For an ensemble, let f1, f2, . . . , fM denote M estimators, where the mth
estimator is separately trained on zN(m), i.e. the training set for the mth estimator,
m = 1, . . . ,M . The output of the ensemble is the average of the estimators:

f (M)
ens (x) =

1

M

M∑
m=1

fm(x; zN(m)) (6)

Ueda et al. [34] derive the following generalization error of the ensemble

estimator GErr(f
(M)
ens ) =

EX0

{
1

M
V ar(X0) +

(
1− 1

M

)
Cov(X0) +Bias(X0)2

}
+ σ2, (7)

where V ar(·), Bias(·) and Cov(·) are variance, bias and covariance of the M
estimators, defined as follows

V ar(X0) =
1

M

M∑
m=1

V ar{fm|X0},

Cov(X0) =
1

M(M − 1)

∑
m

∑
m′ 6=m

Cov{fm, fm′ |X0},

Bias(X0) =
1

M

M∑
m=1

Bias{fm|X0}. (8)

Interestingly, the correlation between individual estimators Cov(X0) is part
of this generalization bound. Hence, low correlated and diverse classifiers are
desirable to achieve good ensemble performance. Similar results were observed
for other popular ensemble methods, such as Random Forests. For this specific
learning method Breiman et al. [3] show an upper bound on the error which
depends on the strength (i.e. inverse proportional to the bias) and correlation
between individual models.

Motivated by these results, in addition to reducing the variance term, we aim
to reduce Cov(X0) of our ensemble. Unfortunately, directly minimizing Cov(X0)
is impossible, since the distribution of p(x, y) is unknown so we cannot compute
expectations over it. Ensemble methods typically subsample the training set or
features to reduce correlation among estimators [3]. In the context of neural
networks these ideas have been leveraged by Dropout [6], which subsamples
different hidden features for each network for each training sample. In contrast
to this work, we propose using a loss function to increase the diversity among
several networks in the following section.

3.2 Efficient Model Averaging for Deep Neural Networks

To create our individual predictors we divide the last hidden layers into several,
possibly overlapping, groups and optimize a loss function for each of these groups
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separately (recall Fig. 1). The architecture of our ensemble method allows map-
ping it back to a regular neural network at test time. Hence, by our ensemble
method, no additional computational cost is incurred at runtime and negligi-
ble additional cost is incurred at training time. Training time is dominated by
computing the forward and backward passes of the convolution layers.

For the sake of clarity, to avoid cluttering the notation, we here consider only
non-overlapping groups of hidden units. To implement overlapping groups we
simply share a subset of weights between classifiers. Let xi denote the activations
of the last hidden layer (i ∈ {1 . . .H}) and W the output weight matrix W ∈
RH×D with entries wij , where H is the number of hidden neurons and D the
number of outputs units of the neural network. We group C non-overlapping
neurons in the hidden layer to classifiers. For classifiers with softmax activation,
we define the logit (i.e. the inputs to the last softmax nonlinearity) cbj of such
a classifier as

cbj =

b·C∑
i=(b−1)·C

xi · wij + bbj , (9)

where bbj denotes the bias term, b is the block index and j ∈ {1, . . . , C}
indicates the output class.

We define the ensemble logit as average of the B = H/C individual classifiers

oj =
1

B

B∑
b=1

cbj . (10)

The final classifier output is defined as softmax function over oj . By setting
our method up this way, we can map it back to a regular neural network at
test time, hence, imposing no additional runtime overhead. For non-overlapping
groups we can push the scaling factor 1

B back into the last weight matrix W .
For overlapping groups we have to scale weights which are used by multiple
classifiers by an appropriate scaling factor. The ensemble prediction can then
be computed by a simple forward pass. Note that by setting our network up
this way, it corresponds to taking the geometric mean of the individual classifier
softmax outputs and re-normalizing them to a probability distribution:

σ(oj) =
e

1
B ·

∑B
b=1 cbj

Z
=

(∏B
b=1 e

cbj
) 1

B

Z
(11)

=

(∏B
b=1 σ(cbj) · Zb

) 1
B

Z
=

(∏B
b=1 σ(cbj)

) 1
B

Ẑ
,

where Zb denotes the normalization for the softmax activation of the bth
classifier, Z denotes the normalization for the softmax of the classifier ensemble
and
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Ẑ =
Z(∏B

b=1 Zb

) 1
B

=

∑D
j=1

[(∏B
b=1 Zb

) 1
B
(∏B

b=1 σ(cbj)
) 1

B

]
(∏B

b=1 Zb

) 1
B

(12)

=

D∑
j=1

(
B∏
b=1

σ(cbj)

) 1
B

.

We see that the geometric mean of the normalizations of the individual clas-

sifier, i.e.
(∏B

b=1 Zb

) 1
B

, is independent of j, can be pulled out of the sum and

cancels with the denominator. Hence, the ensemble output is proportional to the
geometric mean of the responses of the individual classifiers.

We want both, our final ensemble and our individual classifiers to be dis-
criminative on our training set. To this end, we minimize the cross entropy on
both, the ensemble predictions and the predictions of the individual classifiers
by introducing the loss

Ldiscr =

N∑
i=1

(
H(y(i), σ(o(i))) + λparts ·

(
1

B

B∑
b=1

H(y(i), σ(c
(i)
b ))

))
, (13)

where N is the total number of training samples and y(i) is the label of the
ith training sample. With a slight abuse of notation σ(o(i)) denotes the softmax

activations of the full ensemble for the ith sample, σ(c
(i)
b ) denotes the softmax

activation for the ith sample of the bth classifier. The parameter λparts is a
hyperparameter which balances the influence of the individual classifiers and
the ensemble and is set by (cross-)validation. We typically sweep it out on a log
scale, i.e. 2{0,1,2,3}. Finally,H(p, q) denotes the cross entropy between probability
distributions p and q.

3.3 Enforcing Diversity

Naively applying Equation (13) to a learning problem will result in several indi-
vidual classifiers, which all have highly correlated predictions. Hence, according
to the bias-variance-correlation trade-off there is no benefit in such a setup. To
address this problem, we propose to maximize the cross entropy between all clas-
sifier pairs. Cross entropy is employed in logistic regression and in most neural
networks for classification as loss function. It measures the dissimilarity between
two probability distributions and is typically used to minimize dissimilarity be-
tween ground-truth label and predicted label in supervised learning problems.

In contrast to that, to encourage diversity for different classifiers, we propose
to maximize the cross entropy (i.e. maximize dissimilarity or minimize similar-
ity) between all pairs of classifiers. More formally, we define the following loss
function:
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Ldiversity =
1

B · (B − 1)

N∑
i=1

B∑
b=1

∑
b′ 6=b

−H(σ(c
(i)
b ), σ(c

(i)
b′ )), (14)

where N is the number of samples, B the number of classifiers, σ(c
(i)
b ) denotes

the output for the ith sample from the bth classifier and H is the cross entropy
between the two classifiers.

Our final loss function L is a combination of Ldiscr and Ldiversity:

L = Ldiscr + λdiversity · Ldiversity (15)

where λdiversity is a hyperparameter, balancing the influence of the diversity
loss and the discriminative loss. The parameter is set by (cross-)validation on
a log scale, i.e. 10{2,3,4}. We call this loss function DivLoss, as it encourages
diversity between individual predictors of an ensemble.

3.4 Loss Function on Hidden Layers

Shared Parameters Arbitrary Hidden Layer

divided into 

Groups

Classi ers Ensemble

Auxiliary Loss

Regular Feed-Forward

Pass

Fig. 2. We can apply our method on top of any hidden layer in a neural network.

Compared to Dropout, our method is applied only on the output layer of a
neural network, and not on an arbitrary hidden layer. For very large networks,
however, it might be beneficial to apply regularization already on top of hidden
layers. To address this issue, inspired by deeply supervised networks [24, 25], we
propose to apply our ensemble layer on top of intermediate hidden layers as
auxiliary layer (see Fig. 2). During training time, we can divide any hidden layer
of a network into possibly overlapping groups, as indicated by the corresponding
color, and optimize our loss on them. The next layer in the regular feed forward
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pass receives all neurons from this hidden layer as input (i.e. it does not operate
on individual groups).

Note that this setup does not introduce any additional computational cost
during test time, since these auxiliary layers are just used during training time,
and not during test time. In Section 4.3 we show that this setup can indeed
improve accuracy.

4 Evaluation

In this section we provide a detailed evaluation of our method on CIFAR-10
and CIFAR-100 [35]. These datasets each consist of 50, 000 training images and
10, 000 test images of size 32 × 32. CIFAR-10 has 10 object classes, wheras
CIFAR-100 has 100 object classes. Both datasets have a uniform class distribu-
tion, i.e. there are 6, 000 images per class in CIFAR-10, from which 1, 000 are in
the test set, and 600 images per class in CIFAR-100, from which 100 are in the
test set. For pre-processing, following [7], we subtract the mean of the training
set from the images.

We run our experiments on a regular desktop machine with a NVIDIA GTX
770 GPU and a Core i5-4570 CPU with 3.20 GHz and implement our method
in Theano [36]. For training parameters (learning rate, momentum, weight de-
cay) we use the standard Caffe learning parameters for the CIFAR-10 Quick
architecture. As network architecture we use a larger version of the CIFAR-10
Quick architecture, which is proposed by Cogswell et al. [7]. The architecture is
C-64× 5× 5, MP-3× 3(2× 2), C-64× 5× 5, AP-3× 3(2× 2), C-128× 5× 5, AP-
3× 3(2× 2), FC-128, FC-128, FC-D, where C-F × S × S, denotes a convolution
layer with F filters of size S×S, MP-N ×N(S×S) denotes a max pooling layer
of size N ×N with stride S × S, AP-N ×N(S × S) denotes an average pooling
layer of size N ×N with stride S×S, and FC-N denotes a fully connected layer
of size N . Each layer except the last two fully connected layers are followed by
a ReLU nonlinearity. The last fully connected layer is our output layer, which
has an output dimensionality of D = 10 in our CIFAR-10 experiments and a
dimensionality of D = 100 in our CIFAR-100 experiments and uses a softmax
nonlinearity. The last hidden layer uses no nonlinearity (i.e. is a linear layer).

4.1 Comparison with Negative Correlation Learning

In this section we compare maximizing cross-entropy loss between classifiers to
minimizing the correlation, as proposed by negative correlation learning [32].
Hence, we directly penalize the correlation of the ensemble for a training sample
with the following function:

1

D

D∑
j=1

B∑
b=1

∑
b′ 6=b

(σ(cbj)− σ(oj)) · (σ(cb′j)− σ(oj)), (16)

where D is the number of classes, cbj are logits of the bth classifier for the jth
class and oj is the logit of the ensemble output. We also experimented by directly
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penalizing the logits as opposed to their softmax activations, but achieved best
results with the above formulation. We compare negative correlation learning to
the cross entropy loss and the absolute correlation, i.e.:

1

D

D∑
j=1

B∑
b=1

∑
b′ 6=b

|(σ(cbj)− σ(oj)) · (σ(cb′j)− σ(oj))| . (17)

We run the experiments on CIFAR-10 and summarize the results in Table 1.
We observe more accurate results for maximizing cross-entropy than for mini-
mizing correlation. We hypothesize that this is because cross-entropy is a more
natural fit to measure diversity for classifiers which output a probability distri-
bution compared to correlation. Further, penalizing the absolute value of the
correlation works better for classification problems, since it encourages classifers
to be weakly correlated, as opposed to negatively correlated.

Table 1. Comparison to Negative Correlation Learning on CIFAR-10.

Method Test Acc.

Cross Entropy 82.3
Absolute Correlation 81.28
Negative Correlation 80.9
Baseline 80.86

4.2 Diversity

In this section we analyze the effect on the diversity of our ensemble and compare
it to a network trained with Dropout. To measure diversity, we count the number
of disagreements of all classifier pairs.

0.5

B · (B − 1)

B∑
b=1

∑
b′ 6=b

1

N

N∑
i=1

fb(xi) 6= fb′(xi), (18)

where B is the number of classifiers and fb(xi) is the bth classifier output for the
ith sample (i.e. the label prediction). The higher this number, the more diverse
the classifier outputs are.

Since Dropout is an approximate average of an exponential number of neural
networks, we sub-sample 16 sub-networks and analyze their correlation on the
validation set. We execute this experiment 10 times and compare this to a net-
work trained with our method consisting of 16 sub-networks on CIFAR-10. We
report the diversity of individual sub-networks, the average accuracy of these 16
individual sub-networks and the accuracy of the full ensemble in Table 2. Since
for the Dropout experiments, we sub-sample 16 sub-networks and repeat the
experiment 10 times, we report mean and standard deviation of the diversity
and the average accuracy of the individual sub-networks.
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Interestingly, in Table 2 we see that our method trains sub-networks which
are more diverse on the validation set compared to Dropout. Further, individual
sub-networks are less accurate compared to Dropout, but complement each other
better, since we tie them together with a global loss.

Table 2. Diversity of a network trained with Dropout and our method on CIFAR-10.

Method Diversity Avg. Sub-Network Acc. Ensemble Acc.

Dropout 0.071 ± 0.0025 0.799 ± 0.00073 81.07
Ours 0.240 0.744 82.3

4.3 CIFAR-10

In this section, we evaluate our method on the CIFAR-10 dataset. To make a fair
comparison, we use the same architecture as proposed in [7], i.e. we double the
number of hidden units and convolution filters of the Caffe 10 Quick architecture
and add an additional fully connected layer to our network. This architecture will
be denoted “Baseline”. We split the training set into 10, 000 validation images
and 40, 000 training images to determine hyperparameters (i.e. our weighting pa-
rameter, dropout rates, DeCov [7] hyperparameters). Our method benefits from
a large number of non-overlapping groups, as diversity can be easier maximized
if no parameters are shared among groups. To enable a fair comparison to ex-
isting work, we fix the hidden layer size to 128. We divide the last hidden layer
into non-overlapping groups with 8 hidden units, as sub-networks with a smaller
number of hidden units fail in our experiments to learn anything meaningful.
As in [7] our network takes 32 × 32 patches as input and we do not apply any
kind of data augmentation. We shuffle the training dataset after each epoch and
employ early stopping.

We apply our ensembling method on top of the output layer of the neural net-
work and report our results in Table 3. We see that our method can significantly
outperform Dropout [6] and achieves similar results to DeCov [7]. Additionally,
our method can benefit from DeCov as well as Dropout. We hypothesize that
DeCov helps a neural network to develop more decorrelated features, which help
building more diverse classifiers. With Dropout the generalization performance
of individual networks of our ensemble increases, hence the performance of the
full ensemble improves. For a fair comparison, we also apply re-shuffling and
early stopping to DeCov [7], which improves the overall accuracy by 0.38.

To show that our method works on auxiliary layers, we additionally apply our
loss on the first fully connected layer. We observe a notable increase in accuracy
from 82.3 to 83.44 for our method.

4.4 CIFAR-100

We re-use the same network architecture for the CIFAR-100 experiment. Since
the number of hidden units (128) is quite small compared to the number of
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Table 3. CIFAR-10 classification accuracy.

Method Test Acc.

DeCov [7] 81.68
DeCov + re-shuffling & early stopping 82.06
Baseline 80.86
Dropout 81.07
DivLoss 82.3
DivLoss + Dropout 82.52
DivLoss + Decov 82.95

classes, we perform weight sharing for our classifiers. We fix the number of hid-
den units of a single classifier to 64 and randomly group hidden units to a
classifier. We use 16 classifiers in our experiments. Further, we split the dataset
into 10, 000 validation images and 40, 000 training images and determine our
hyperparameters (i.e. the weighting parameter, dropout rates, DeCov hyperpa-
rameter) on the validation set.

Our results are summarized in Table 4. All 3 regularization methods (Di-
vLoss, Dropout, DeCov) achieve similar results on CIFAR-100 and can signif-
icantly improve over a baseline method which just uses weight decay as regu-
larization. Further, we observe that we can combine DivLoss with Dropout and
DeCov, to increase accuracy.

Table 4. CIFAR-100 classification accuracy.

Method Test Acc.

DeCov [7] 45.10
DeCov + re-shuffling & early stopping 49.61
Baseline 47.38
Dropout 49.44
DivLoss 49.42
DivLoss + Dropout 49.9
DivLoss + DeCov 50.08

When we additionally apply our loss function as auxiliary layer on the first
fully connected layer, we observe an increase in accuracy from 49.42 to 50.32.

5 Conclusion

We proposed an ensemble method which improves the generalization perfor-
mance of neural networks by efficient model averaging. Motivated by learning
theory, we propose to optimize a loss function to increase the diversity of the
individual classifiers of the ensemble. Our method can be trained end-to-end
with stochastic gradient descent and momentum. Further, we showed that our
method outperforms or achieves competitive performance compared to Dropout
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and DeCov on the challenging CIFAR datasets. Since we setup our method so
that it can be mapped back to a regular neural network, no additional runtime
cost is incurred at test time. At training time we impose negligible additional
runtime cost for computing the responses and the loss for our sub-networks. This
overhead is, however, negligible, since most of the time during training is spent
computing forward and backward passes of convolution layers.

Our experiments show that our method benefits especially from very wide
networks where the number of hidden units is large compared to the number of
classes. In such networks diversity of sub-networks can be better maximized as
they have less shared parameters.

Compared to Dropout, which is an approximate ensemble of exponentially
many classifiers sharing the same parameters, our method relies on a smaller
number of classifiers. To enforce diversity, Dropout relies on randomly omitting
neurons from the hidden layers. In contrast to that, our method employs a loss
function to encourage diversity of individual classifiers. Due to backpropagation,
the diversity also affects the hidden layers (i.e. the feature representation) of the
network and, similar to Dropout, encourages a diverse feature representation.

Future work will analyze larger sub-networks consisting of several layers with
separate (non-shared) weights.
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