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Region matching for omnidirectional images using virtual camera planes
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Abstract This paper proposes a new method for interest
region matching in omnidirectional images, which uses vir-
tual perspective camera planes. Perspective views are gen-
erated for each detected region depending on the region
properties. This removes the distortions from the omnidirec-
tional imaging device and enables the use of state-of-the-art
wide-baseline algorithms designed for perspective cameras.
We successfully applied our new method to mobile robot lo-
calization. Our approach was used to create landmark cor-
respondences for motion estimation and map building. Ex-
perimental results for region matching, 3D reconstruction
for map building and motion estimation will be shown.

1

One of the most important problems in computer vision
is the search for correspondences in images from different
viewpoints. This process of matching points or regions be-
tween different views of a scene is well researched for per-
spective images. Recently a respectable number of local im-
age detectors have been developed (4€e 70, 12, 9, 8§,

11, 7]) to afford robust solutions for wide-baseline stereo,
structure from motion, ego-motion estimation or robot nav-
igation. The most advanced methods normalize each de-
tected region using a local affine frame (LAF) to deal with
the distortion introduced by perspective projection. Differ-
ent methods for LAF constructions are possible and depend
on the interest or region detector used. The first approach
was introduced by Baumberg et al] pased on grayscale
covariance matrices. Tuytelaars and van Gool proposed an
ellipse-fitting method 19, 20] for intensity based and edge
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based interest regions. Odrzalek and Matas proposed several

normalization methods e.g.14] for their MSER detector.

proach for matching in omnidirectional images is proposed
in [18]. It uses adaptive windows around detected Harris
points to generate normalized patches used for comparison,
always supposing that the displacement of the omnidirec-
tional system is significantly smaller than the depth of the
surrounding scene, i.e. there is no significant scale change
in the vicinity of the interest point.

As shown in [L3] it is possible to generate a perspective
view out of the information given by the omnidirectional
image (if the mirror parameters are known). Several per-
spective views are generated using user-selected parameters
like viewing direction, focal length and image size. Bj [

a method is proposed to simulate the motion of virtual per-
spective cameras based on several omnidirectional images.

In this paper we present a method to apply standard wide-
baseline region matching to images from a catadioptric cam-
era system. In a first step interest regions are detected using
a method which is unaffected by the non-linear distortions
(like the MSER-Regions). Next, virtual perspective cam-
eras are generated for each detected region and each region
is re-sampled to obtain a perspective image. Finally stan-
dard methods can be employed for region matching. In our
case we normalize the image with an LAF and extract SIFT
descriptors 9] for feature matching.

Section2 describes the camera model for the omnidirec-
tional camera. In sectio we describe the generation of
perspective views using virtual camera planes. Section
gives the details about correspondence detection. Motion
estimation and 3D reconstruction from omnidirectional im-
ages are outlined in secti@n Experimental results are given
in section6 and finally we draw conclusions in secti@n

2 Central Panoramic Camera

One of these used the covariance matrices of region borders The catadioptric system used in this work is a combination

and a direction found by an extremal point to normalize the
regions shape

However, such methods cannot be directly applied to im-
ages of non-perspective cameras like omnidirectional imag-
ing devices. Omnidirectional cameras introduce non-linear
distortions because of their use of hyperbolic or other curved
mirrors (see Figurd and Figure5). Furthermore no nor-
malization method has been established for omnidirectional
cameras. On the other hand, omnidirectional cameras pro-
vide a lot of benefits. One advantage is the 366ld-of-
view which results in the effect that corresponding points
can only disappear in the case of an occlusion. One ap-

of a perspective camera and a hyperbolic mirror. Geometric
background of such a system and transformation between
world coordinates and image coordinates are presented in
[17,15] or [4].

Figure3illustrates the geometric configuration. The camera
is mounted in a way that its optical axis coincides with the
z-axis of the mirror and the focal-poirt lies in one of the

two focal-points of the mirro". This is achieved by a two
step calibration process, in which first the perspective cam-
era is calibrated to obtain the camera calibration maffix
and second the whole system is calibrated using an optical
calibration method shown irL[f]. Figure 3 also illustrates
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the concept of the virtual camera plane (VCP). Instead of
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normal tovog, andis = veg X t1 as the vector-product be-

imaging rays projected onto the curved mirror surface we tweenvce andt; are used as the basis-vectors to define the

are imaging the intersections of the rays with a virtual plane.
In general the position and rotation of the introduced camera
plane can be arbitrary, however, it should be chosen in a way
to minimize the perspective distortions.

3 Virtual Camera Plane

The use of virtual cameras for creating perspective views
can be divided into following steps:

1. Detect regions in omnidirectional image
2. Compute mirror coordinates regions

3. Establish VCP for every region

4. Compute region border in virtual image
5. Resample mirror image to VCP

Since the geometry might be distorted the radiometry
does not change too much between two views. Therefore
the Maximally Stable Extremal Regions (MSER) provide
the needed stability for distinguished regions under great
viewpoint changes for omnidirectional images.

Figure 1. Detected MSER regions in an omnidirectional image
captured in the room-sized environment used for the experiments.

We start by detecting regions using the MSER detector.
For each detected region the center of gravity (CoG) in im-
age coordinates is computed, using the pixels from the re-
gion boundary. The CoG of each region will be the origin of
the coordinate system for the corresponding VCP. Next, the
CoG and the regions border points are transformed into the
coordinate system of the mirror, yielding the coordinates on
the mirror surfac& . With the known 3D coordinates of
the region a virtual camera plane (VCP) in 3d space can be
defined for this region. The ray connecting the focal point of
the mirror F/ with X defined byveg = F' + AX g is
used as the normal vector of the VCP respectively the opti-
cal axis of the virtual camera. The origin of the VCP is given
by X but can also moved along the vecterp. The dis-
tance of the plane origin t8” defines the focal-length of the
VCP. Two extra vectors; = [—vca(y), vea (), vea(2)],
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VCP in the mirror coordinate system. With the given origin
coordinates of the plane given by-s and the two plane
vectorst; andts every point on the VCP can be reached by
Xvep = aXog + bty + cto, WwhereXy ¢ p is the 3D coor-
dinate of a point on the VCP and b,c are the lengths of the

vectorst; andts.

Figure 2: Virtual perspective images generated for the three se-
lected regions shown in Figude The shown images are bigger as
used for region normalization to depict the effect of the removed
mirror distortion more clearly.

The region border is transformed into image coordinates
of the virtual image by directly computing the intersection
of the rays going through the mirror points of the border
and the virtual camera plane. They also define the size of
the VCP. To generate the image of the virtual camera the
points on the VCP are projected to the image plane and the
intensity values are generated using bilinear interpolation.
The discretization steps used for the basis-vectors define the
geometric resolution of the VCP. Depending on the regions
position on the mirror surface different resolutions are ob-
tained for a constant discretization value. In this work the
interpolation intervals on the VCP are set always constant
and do not vary with the mirror coordinates.

4 Finding Correspondences

4.1 Region Normalization

Now the problem of finding corresponding regions in om-
nidirectional images is reduced to the correspondence prob-
lem in perspective images. This problem has been treated
by many publications. The current solution is to resample
the detected regions into a canonical coordinate system. Lo-
cal affine frames presented for region normalization used by
Tuytelaars in 19] or Obdrzalek and Matad ff] transform a
given region into such a canonical frame, if possible. The
region is assumed to be planar. For this case the affine trans-
formation is a good approximation for perspective distor-
tions of the detected regions. To establish such a local affine
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Figure 3: Geometric configuration of the used catadioptric system
including the VC-plane concept.

frame the two-dimensional transformation from the actual

region to the normalized form has to be found. To deter-

mine this transformation, 6 independent constrains have to
be found, because of the six degrees of freedom of the 2D
affine transformation.

Starting from the perspective view on the virtual camera

plane, the center of gravity and the convex hull are calcu-
lated from the regions border points in coordinates of the
VC-image.

Figure 4: Normalization of a region. Centroid and convex-hull
points are estimated from the region border in the VC-image. Mul-
tiple normalized frames are generated using different combinations
of points. Finally feature vectors describing the normalized patches
are computed using orientation histograms.

To establish the local affine frame (LAF), the CoG and
two points of the convex hull, each point providing two con-
straints, are used to define the two basis vectors of the LAF,
as described inl[4]. The constructed LAF defines an affine
transformation into a canonical coordinate system with rect-
angular axes and unit length. Resampling the image region
with this transformation yields the normalized image patch.
Each triple of CoG and two border points yields a new LAF.
To limit the number of constructed frames per region, only

(]

4.2 Matching of detected Regions

After the normalization several patches are generated for ev-
ery region. Matching is done using SIFT descriptors ex-
tracted from the normalized image patch&% [ For ev-

ery LAF normalization a SIFT feature vector is extracted.
Corresponding features are detected by nearest neighbor
search in the feature space. To increase robustness back-
ward matching is performed. Regions satisfying the match-
ing conditions in both directions are stored as correspond-
ing. Examples of matched regions are shown in Fidure

e .

Mirror views

__VCviews

Matching normalized patches

Figure 5: Matching results for view (first two columns) and scale
changes. In the first row different views of two regions in the omni-
directional image are shown. The generated virtual camera images
for each region are shown in the second row. As can be seen only
perspective distortions are present in the images. Last row shows
four corresponding normalized frames found by the matching pro-
cess.

4.3 Point Correspondences

A drawback of using a region-based detector is that even for
large regions only few points, in our case three, are known
for a later 3D reconstruction. Also the accuracy of the used
points is not necessary high. We therefore detect additional
point correspondences within the matched image regions.
For every pair of regions the two best matching frames are
used. Harris points are detected in the first frame. Due to
normalization the search area for a corresponding point in
the second frame is known. There is no need to compute
points also in the second frame, they can just be projected.
For higher accuracy the correspondence is refined by area
based correlation in the second frame. In addition sub-pixel
accuracy is achieved by an interpolation method described
in [16]. The process of finding corresponding points be-
tween matched normalized frames is shown in Fidire

5 Egomotion Estimation and 3D
Reconstruction

The established correspondences from seetican be used

to estimate the motion between the two given catadiop-
tric cameras. The corresponding points of all regions are
back-projected to their mirror surfaces and normalized to

| Xg| = 1. The epipolar geometry for central panoramic
cameras proposed it ] allows to solve the egomotion, be-
cause we assume one camera has moved to another position,

boundary corner points are used. Results of a virtual camera by solving a set linear equations. The corresponding points

image and normalization of a region are shown in Figure

in mirror coordinates in the two images, knownXg; and
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VC-Image 1

VC-Image 2

Figure 6: Corresponding points in normalized frames of two
matched regions

Xpgo, are used to estimate the essential maliky solv-
ing the equationX 7, EX g1 = 0. Rotation and translation
can be extracted from the essential matrix ($8e [To deal
with possible outliers within the matched points a RANSAC
algorithm [3] is used.

Figure 7: Mid-point reconstruction by using two corresponding
points on the mirror surface.

To estimate the 3D coordinates from two corresponding
points the mid-point method is used. The shortest transver-
sal of the two rays given byl = X g1 Fy andp2 = XgoFb
is computed (see Figurg.

6 Experiments

In the experiments the proposed method is used on a mobile
robot (Peoplebot), finding corresponding regions and points
between two images in a real-world environment. One of
our offices at the institute with size of about#5is selected
to be the test environment, including furniture, posters and
other natural stuff as possible regions. The needed ground-
truth for motion and reconstruction was created using the
Peoplebots odometry and the laser range finder, refined in an
off-line process using the commercial software ScanStudio
from ActivMedia®. The virtual camera plane method for
omnidirectional images is able to estimate motions within
this environment without the need for any artificial land-
marks resulting in a 3D reconstruction of detected regions.
First, we need to generate features for every image taken
in the environment. To obtain useful results for motion es-

1scanStudio is available from http://www.activrobots.com/
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timation, detected regions should be spread as good as pos-
sible over the whole visible space. In an off-line task sev-
eral matchings between positions are computed and motion
estimation was done. In Figuthe results of the match-

ing between two positions is shown. As expected we obtain
good results on posters and parts of the furniture. Also ho-
mogeneous parts of the walls, reflections or areas around
illuminations are matched. This results in a set of about
140 motions (results with a bad conditioned essential ma-
trix are discarded). The translations between two images
were among 300mm and 1100mm. The results of the ego-
motion estimation between images are transferred into the
world coordinate system of the robot using the scale infor-
mation of the odometry and the measured position in the
robot path. In the world coordinate system the estimated
positions can be compared with the given ground-truth and
errors of the motions are computed. Estimated motions are
shown in Figure9. The solid black line defines the mo-
tion of the robot given by its odometry. Positions, where
images are captured, are marked with green diamonds and
numbered. Estimated motions are shown with dashed red
lines and only motions with a motion error smaller 30mm
are plotted for better visualization, which are about 30% of
all motions. The egomotion estimation performs well in ar-
eas where corresponding regions can be detected with an
adequate resolution. Especially the motions made between
the first 9 positions near the wall and also positions from
25 to 30 perform very well. But also for long distances
enough correspondences are matched, so good estimations
are achieved e.q22 — 25 or 1 — 5 where we have base-
lines of 1061mm and 1092mm. Over all tested motions a
median motion error of 45mm was achieved. The errors for
all tested motions are shown in Figuté. Most of the high
error values in motion estimation are caused by degenerated
alignment of points, e.g. a majority of the correspondences
is located on a single plane or point correspondences are
badly distributed.

From the estimated motion between two images and the
corresponding points the reconstruction of the regions was
done for all image pairs. The accuracy of the reconstruc-
tion depends on the accuracy of the motion estimation. The
shown reconstruction in Figurk is made with a baseline
of 725 mm and a rotation of 34between the two mir-
ror positions. The green plotted laser-map points gives us
a visual ground-truth for the reconstruction, which shows
that a really good reconstruction result can be achieved by
our method. Points, lying on two opposite walls, are re-
constructed with a good accuracy and even the flower pot
at the window, also visible and matched in Fig@ehas
a good position. As emphasized in our experiments also
shown in ], the reliable space for reconstruction and re-
construction accuracy increases with the baseline between
two images, if matching accuracy is equal. We have to deal
with the fact that we loss resolution and accuracy by mov-
ing over greater distances, but need this motion to get good
reconstructions. As shown in the experiments, we fulfill the
need for a matching method between two omnidirectional
images with a wide baseline.
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Figure 11: Reconstruction result for two images with a baseline of 725mm and a rotatiorf afidn mm-coordinates. The green plot

shows the map obtained by the laser range finder. Crosses mark the reconstructed matched regions and the circles mark the used came
positions. The matched regions are reconstructed at their correct position, most of them are posters at the walls (the laser map does not sho

the complete outline of the walls because of obstructions). Points lying in the motion direction of the robot are not plotted.

7 Conclusion

In this work we presented a new method for region matching
in omnidirectional images. By introducing a virtual camera
plane for each detected interest region it is possible to do
matching as in the case of perspective cameras. Thus stan-
dard methods from wide-baseline stereo can be applied. In
the experiments MSER regions were detected in the omnidi-
rectional images. After re-sampling to perspective images,
normalization by a LAF was performed and a SIFT descrip-
tor was calculated. The experiments show that we obtain
reliable and accurate region matches. The detected corre-
spondences were successfully used for 3D reconstruction
and motion estimation.

It should be stressed that the proposed method is not re-
stricted to the catadioptric camera system we used. The
method of the virtual camera planes can be applied to other
configurations too.
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