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Abstract This paper proposes a new method for intere
region matching in omnidirectional images, which uses vi
tual perspective camera planes. Perspective views are g
erated for each detected region depending on the regi
properties. This removes the distortions from the omnidire
tional imaging device and enables the use of state-of-the-
wide-baseline algorithms designed for perspective camer
We successfully applied our new method to mobile robot
calization. Our approach was used to create landmark co
respondences for motion estimation and map building. E
perimental results for region matching, 3D reconstructio
for map building and motion estimation will be shown.

1 Introduction

One of the most important problems in computer visio
is the search for correspondences in images from differe
viewpoints. This process of matching points or regions b
tween different views of a scene is well researched for pe
spective images. Recently a respectable number of local i
age detectors have been developed (see [10, 20, 12, 9, 8,
11, 7]) to afford robust solutions for wide-baseline stereo
structure from motion, ego-motion estimation or robot nav
igation. The most advanced methods normalize each d
tected region using a local affine frame (LAF) to deal wit
the distortion introduced by perspective projection. Diffe
ent methods for LAF constructions are possible and depe
on the interest or region detector used. The first approa
was introduced by Baumberg et al. [1] based on grayscale
covariance matrices. Tuytelaars and van Gool proposed
ellipse-fitting method [19, 20] for intensity based and edge
based interest regions. Odrzalek and Matas proposed sev
normalization methods e.g. [14] for their MSER detector.
One of these used the covariance matrices of region bord
and a direction found by an extremal point to normalize th
regions shape

However, such methods cannot be directly applied to im
ages of non-perspective cameras like omnidirectional ima
ing devices. Omnidirectional cameras introduce non-line
distortions because of their use of hyperbolic or other curv
mirrors (see Figure1 and Figure5). Furthermore no nor-
malization method has been established for omnidirection
cameras. On the other hand, omnidirectional cameras p
vide a lot of benefits. One advantage is the 360◦ field-of-
view which results in the effect that corresponding poin
can only disappear in the case of an occlusion. One a
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proach for matching in omnidirectional images is propose
in [18]. It uses adaptive windows around detected Harr
points to generate normalized patches used for comparis
always supposing that the displacement of the omnidire
tional system is significantly smaller than the depth of th
surrounding scene, i.e. there is no significant scale chan
in the vicinity of the interest point.

As shown in [13] it is possible to generate a perspectiv
view out of the information given by the omnidirectiona
image (if the mirror parameters are known). Several pe
spective views are generated using user-selected parame
like viewing direction, focal length and image size. In [6]
a method is proposed to simulate the motion of virtual pe
spective cameras based on several omnidirectional image

In this paper we present a method to apply standard wid
baseline region matching to images from a catadioptric ca
era system. In a first step interest regions are detected us
a method which is unaffected by the non-linear distortion
(like the MSER-Regions). Next, virtual perspective cam
eras are generated for each detected region and each re
is re-sampled to obtain a perspective image. Finally sta
dard methods can be employed for region matching. In o
case we normalize the image with an LAF and extract SIF
descriptors [9] for feature matching.

Section2 describes the camera model for the omnidire
tional camera. In section3 we describe the generation of
perspective views using virtual camera planes. Section4
gives the details about correspondence detection. Moti
estimation and 3D reconstruction from omnidirectional im
ages are outlined in section5. Experimental results are given
in section6 and finally we draw conclusions in section7.

2 Central Panoramic Camera

The catadioptric system used in this work is a combinatio
of a perspective camera and a hyperbolic mirror. Geomet
background of such a system and transformation betwe
world coordinates and image coordinates are presented
[17, 15] or [4].
Figure3 illustrates the geometric configuration. The came
is mounted in a way that its optical axis coincides with th
z-axis of the mirror and the focal-pointC lies in one of the
two focal-points of the mirrorF . This is achieved by a two
step calibration process, in which first the perspective ca
era is calibrated to obtain the camera calibration matrixK
and second the whole system is calibrated using an opti
calibration method shown in [17]. Figure3 also illustrates
1
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the concept of the virtual camera plane (VCP). Instead
imaging rays projected onto the curved mirror surface w
are imaging the intersections of the rays with a virtual plan
In general the position and rotation of the introduced came
plane can be arbitrary, however, it should be chosen in a w
to minimize the perspective distortions.

3 Virtual Camera Plane

The use of virtual cameras for creating perspective view
can be divided into following steps:

1. Detect regions in omnidirectional image

2. Compute mirror coordinates regions

3. Establish VCP for every region

4. Compute region border in virtual image

5. Resample mirror image to VCP

Since the geometry might be distorted the radiomet
does not change too much between two views. Therefo
the Maximally Stable Extremal Regions (MSER) provid
the needed stability for distinguished regions under gre
viewpoint changes for omnidirectional images.

Figure 1: Detected MSER regions in an omnidirectional imag
captured in the room-sized environment used for the experimen

We start by detecting regions using the MSER detecto
For each detected region the center of gravity (CoG) in im
age coordinates is computed, using the pixels from the
gion boundary. The CoG of each region will be the origin o
the coordinate system for the corresponding VCP. Next, t
CoG and the regions border points are transformed into t
coordinate system of the mirror, yielding the coordinates o
the mirror surfaceXCG. With the known 3D coordinates of
the region a virtual camera plane (VCP) in 3d space can
defined for this region. The ray connecting the focal point o
the mirrorF ′ with XCG defined byvCG = F ′ + λXCG is
used as the normal vector of the VCP respectively the op
cal axis of the virtual camera. The origin of the VCP is give
by XCG but can also moved along the vectorvCP . The dis-
tance of the plane origin toF ′ defines the focal-length of the
VCP. Two extra vectorst1 = [−vCG(y), vCG(x), vCG(z)],
2
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normal tovCG, andt2 = vCG× t1 as the vector-product be-
tweenvCG andt1 are used as the basis-vectors to define t
VCP in the mirror coordinate system. With the given origi
coordinates of the plane given byXCG and the two plane
vectorst1 andt2 every point on the VCP can be reached b
XV CP = aXCG + bt1 + ct2, whereXV CP is the 3D coor-
dinate of a point on the VCP and b,c are the lengths of t
vectorst1 andt2.

Figure 2: Virtual perspective images generated for the three s
lected regions shown in Figure1. The shown images are bigger as
used for region normalization to depict the effect of the remove
mirror distortion more clearly.

The region border is transformed into image coordinat
of the virtual image by directly computing the intersectio
of the rays going through the mirror points of the borde
and the virtual camera plane. They also define the size
the VCP. To generate the image of the virtual camera t
points on the VCP are projected to the image plane and
intensity values are generated using bilinear interpolatio
The discretization steps used for the basis-vectors define
geometric resolution of the VCP. Depending on the regio
position on the mirror surface different resolutions are o
tained for a constant discretization value. In this work th
interpolation intervals on the VCP are set always consta
and do not vary with the mirror coordinates.

4 Finding Correspondences

4.1 Region Normalization

Now the problem of finding corresponding regions in om
nidirectional images is reduced to the correspondence pr
lem in perspective images. This problem has been trea
by many publications. The current solution is to resamp
the detected regions into a canonical coordinate system. L
cal affine frames presented for region normalization used
Tuytelaars in [19] or Obdrzalek and Matas [14] transform a
given region into such a canonical frame, if possible. Th
region is assumed to be planar. For this case the affine tra
formation is a good approximation for perspective disto
tions of the detected regions. To establish such a local affi
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Figure 3: Geometric configuration of the used catadioptric syste
including the VC-plane concept.

frame the two-dimensional transformation from the actu
region to the normalized form has to be found. To dete
mine this transformation, 6 independent constrains have
be found, because of the six degrees of freedom of the
affine transformation.
Starting from the perspective view on the virtual came
plane, the center of gravity and the convex hull are calc
lated from the regions border points in coordinates of th
VC-image.

Figure 4: Normalization of a region. Centroid and convex-hul
points are estimated from the region border in the VC-image. Mu
tiple normalized frames are generated using different combinatio
of points. Finally feature vectors describing the normalized patch
are computed using orientation histograms.

To establish the local affine frame (LAF), the CoG an
two points of the convex hull, each point providing two con
straints, are used to define the two basis vectors of the LA
as described in [14]. The constructed LAF defines an affine
transformation into a canonical coordinate system with rec
angular axes and unit length. Resampling the image reg
with this transformation yields the normalized image patc
Each triple of CoG and two border points yields a new LAF
To limit the number of constructed frames per region, on
boundary corner points are used. Results of a virtual cam
image and normalization of a region are shown in Figure4.
,

a

4.2 Matching of detected Regions

After the normalization several patches are generated for
ery region. Matching is done using SIFT descriptors e
tracted from the normalized image patches [9]. For ev-
ery LAF normalization a SIFT feature vector is extracted
Corresponding features are detected by nearest neigh
search in the feature space. To increase robustness ba
ward matching is performed. Regions satisfying the matc
ing conditions in both directions are stored as correspon
ing. Examples of matched regions are shown in Figure5.

Figure 5: Matching results for view (first two columns) and scale
changes. In the first row different views of two regions in the omn
directional image are shown. The generated virtual camera ima
for each region are shown in the second row. As can be seen o
perspective distortions are present in the images. Last row sho
four corresponding normalized frames found by the matching pr
cess.

4.3 Point Correspondences

A drawback of using a region-based detector is that even
large regions only few points, in our case three, are know
for a later 3D reconstruction. Also the accuracy of the use
points is not necessary high. We therefore detect addition
point correspondences within the matched image regio
For every pair of regions the two best matching frames a
used. Harris points are detected in the first frame. Due
normalization the search area for a corresponding point
the second frame is known. There is no need to compu
points also in the second frame, they can just be project
For higher accuracy the correspondence is refined by a
based correlation in the second frame. In addition sub-pix
accuracy is achieved by an interpolation method describ
in [16]. The process of finding corresponding points be
tween matched normalized frames is shown in Figure6.

5 Egomotion Estimation and 3D
Reconstruction

The established correspondences from section4 can be used
to estimate the motion between the two given catadio
tric cameras. The corresponding points of all regions a
back-projected to their mirror surfaces and normalized
‖XH‖ = 1. The epipolar geometry for central panorami
cameras proposed in [17] allows to solve the egomotion, be-
cause we assume one camera has moved to another posi
by solving a set linear equations. The corresponding poin
in mirror coordinates in the two images, known asXH1 and
3
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Figure 6: Corresponding points in normalized frames of two
matched regions

XH2, are used to estimate the essential matrixE by solv-
ing the equationXT

H2EXH1 = 0. Rotation and translation
can be extracted from the essential matrix (see [5]). To deal
with possible outliers within the matched points a RANSAC
algorithm [3] is used.

Figure 7: Mid-point reconstruction by using two corresponding
points on the mirror surface.

To estimate the 3D coordinates from two correspondin
points the mid-point method is used. The shortest transv
sal of the two rays given byp1 = XH1F1 andp2 = XH2F2

is computed (see Figure7).

6 Experiments

In the experiments the proposed method is used on a mob
robot (Peoplebot), finding corresponding regions and poin
between two images in a real-world environment. One
our offices at the institute with size of about 15m2 is selected
to be the test environment, including furniture, posters a
other natural stuff as possible regions. The needed grou
truth for motion and reconstruction was created using t
Peoplebots odometry and the laser range finder, refined in
off-line process using the commercial software ScanStud
from ActivMedia 1. The virtual camera plane method for
omnidirectional images is able to estimate motions with
this environment without the need for any artificial land
marks resulting in a 3D reconstruction of detected regions

First, we need to generate features for every image tak
in the environment. To obtain useful results for motion e

1ScanStudio is available from http://www.activrobots.com/
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timation, detected regions should be spread as good as p
sible over the whole visible space. In an off-line task se
eral matchings between positions are computed and mot
estimation was done. In Figure8 the results of the match-
ing between two positions is shown. As expected we obta
good results on posters and parts of the furniture. Also h
mogeneous parts of the walls, reflections or areas arou
illuminations are matched. This results in a set of abo
140 motions (results with a bad conditioned essential m
trix are discarded). The translations between two imag
were among 300mm and 1100mm. The results of the eg
motion estimation between images are transferred into t
world coordinate system of the robot using the scale info
mation of the odometry and the measured position in t
robot path. In the world coordinate system the estimat
positions can be compared with the given ground-truth a
errors of the motions are computed. Estimated motions a
shown in Figure9. The solid black line defines the mo-
tion of the robot given by its odometry. Positions, wher
images are captured, are marked with green diamonds a
numbered. Estimated motions are shown with dashed r
lines and only motions with a motion error smaller 30mm
are plotted for better visualization, which are about 30%
all motions. The egomotion estimation performs well in a
eas where corresponding regions can be detected with
adequate resolution. Especially the motions made betwe
the first 9 positions near the wall and also positions fro
25 to 30 perform very well. But also for long distance
enough correspondences are matched, so good estimat
are achieved e.g.22 → 25 or 1 → 5 where we have base-
lines of 1061mm and 1092mm. Over all tested motions
median motion error of 45mm was achieved. The errors f
all tested motions are shown in Figure10. Most of the high
error values in motion estimation are caused by degenera
alignment of points, e.g. a majority of the correspondenc
is located on a single plane or point correspondences
badly distributed.

From the estimated motion between two images and t
corresponding points the reconstruction of the regions w
done for all image pairs. The accuracy of the reconstru
tion depends on the accuracy of the motion estimation. T
shown reconstruction in Figure1 is made with a baseline
of 725 mm and a rotation of 34◦ between the two mir-
ror positions. The green plotted laser-map points gives
a visual ground-truth for the reconstruction, which show
that a really good reconstruction result can be achieved
our method. Points, lying on two opposite walls, are re
constructed with a good accuracy and even the flower p
at the window, also visible and matched in Figure8, has
a good position. As emphasized in our experiments al
shown in [2], the reliable space for reconstruction and re
construction accuracy increases with the baseline betwe
two images, if matching accuracy is equal. We have to de
with the fact that we loss resolution and accuracy by mo
ing over greater distances, but need this motion to get go
reconstructions. As shown in the experiments, we fulfill th
need for a matching method between two omnidirection
images with a wide baseline.



Thomas Mauthner, Friedrich Fraundorfer, and Horst Bischof [←]

Figure 11: Reconstruction result for two images with a baseline of 725mm and a rotation of 34◦ given mm-coordinates. The green plot
shows the map obtained by the laser range finder. Crosses mark the reconstructed matched regions and the circles mark the used camera
positions. The matched regions are reconstructed at their correct position, most of them are posters at the walls (the laser map does not show
the complete outline of the walls because of obstructions). Points lying in the motion direction of the robot are not plotted.
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7 Conclusion

In this work we presented a new method for region matchin
in omnidirectional images. By introducing a virtual camer
plane for each detected interest region it is possible to
matching as in the case of perspective cameras. Thus s
dard methods from wide-baseline stereo can be applied.
the experiments MSER regions were detected in the omni
rectional images. After re-sampling to perspective image
normalization by a LAF was performed and a SIFT descri
tor was calculated. The experiments show that we obta
reliable and accurate region matches. The detected co
spondences were successfully used for 3D reconstruct
and motion estimation.

It should be stressed that the proposed method is not
stricted to the catadioptric camera system we used. T
method of the virtual camera planes can be applied to oth
configurations too.
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