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Abstract. In action recognition recently prototype-based classification
methods became popular. However, such methods, even showing compet-
itive classification results, are often limited due to too simple and thus
insufficient representations and require a long-term analysis. To compen-
sate these problems we propose to use more sophisticated features and
an efficient prototype-based representation allowing for a single-frame
evaluation. In particular, we apply four feature cues in parallel (two for
appearance and two for motion) and apply a hierarchical k-means tree,
where the obtained leaf nodes represent the prototypes. In addition, to in-
crease the classification power, we introduce a temporal weighting scheme
for the different information cues. Thus, in contrast to existing methods,
which typically use global weighting strategies (i.e., the same weights are
applied for all data) the weights are estimated separately for a specific
point in time. We demonstrate our approach on standard benchmark
datasets showing excellent classification results. In particular, we give a
detailed study on the applied features, the hierarchical tree representa-
tion, and the influence of temporal weighting as well as a competitive
comparison to existing state-of-the-art methods.

1 Introduction

Recently, human action recognition has been of growing interest in Computer
Vision, where typical applications include visual surveillance, human computer
interaction, or monitoring systems for elderly people. Thus, a variety of ap-
proaches have been proposed introducing new features, representations, or clas-
sification methods. Since actions can be described as chronological sequences,
special attention has been paid to how to incorporate temporal information.
In general, this can be realized either by keeping a very strict spatial-temporal
relation on the features (e.g., by spatio-temporal volumes [1, 2] or descriptors
[3–5]) or on the representation level [6, 7]. For such approaches the classification
is typically performed on single-frame basis and the analysis of longer sequences
is based on a simply majority voting or on averaging over multiple frames. If
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spatial-temporal consistency is totally ignored [8] only whole sequences can be
analyzed. One effective way for directly describing temporal information, that
showed great success in the past, is the usage of prototypes, e.g., [6–9].

In general, prototype-based learning methods can be described by a prototype
space X = {x1, . . . , xn}, which is defined as a set of representative samples xj

describing the data (prototypes), and a distance function ρ [9]. In particular,
for action recognition the data is split into a smaller set of reference templates
referred to as prototypes [7], key-poses [8], or pose-primitives [6].

Weiland and Boyer [8] used foreground segmentations to create a set of sil-
houette exemplars, so called key-poses, using a forward selection process. The
final action description is achieved by comparing the occurrence frequency of
key-poses in a video. Although they presented excellent results, they completely
neglected the temporal ordering of prototypes within a sequence and showed only
recognition results on complete videos. Similarly, Elgammal et. al. [9] modeled
an action as a sequence of silhouette prototypes using an HMM for incorporating
temporal constrains and being more robust to small deviations. To incorporate
temporal context in a prototype-based representation, Thurau and Hlavac [6]
introduced n-grams models. They define sub-sequences of n frames and describe
the transitions between prototypes by n-dimensional histograms. However, the
required number of samples to fill the n-dimensional histograms is high and the
temporal ordering is very strict. Furthermore, the representation of n-grams is
getting difficult if n > 3. Experimentally, they showed state-of-the-art results on
sequences with lengths of around 30 frames. Since shape information clearly gives
only limited information on single-frame basis Lin et al. [7] recently proposed to
create prototypes in a joined shape-motion space using binary foreground sil-
houettes for shape and flow features as introduced in [10]. The prototypes are
trained and represented efficiently using hierarchical k-means, leading to real-
time evaluation performance. Finally, the temporal information is incorporated
using Dynamic Time Warping (DTW). Although DTW is a powerful method
for aligning temporal sequences, as a drawback it only compares one sequence
to another and cannot handle transitions between different actions. Again only
results on sequence level are shown.

Even though showing competitive recognition results, existing prototype-
based action recognition methods are limited due to a required long-term anal-
ysis (i.e., on a whole sequence) and mainly rely on accurate segmentations – at
least for learning the shape prototypes (e.g., [6, 8, 7]). In praxis, however, per-
fect segmentations are often not available and short and fast actions such as in
sports analysis should be recognized. Hence, the goal for human action recogni-
tion should be to robustly classify on a short sequence length. Schindler and van
Gool [5] showed that if a more sophisticated representation is used human action
recognition can also be performed from very short sequences (snippets). They
use motion and appearance information in parallel, where both are processed in
similar pipelines using scale and orientation filters. The thus obtained features
are then learned by using a Support Vector Machine. Their approach showed
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impressive results, reaching state-of-the-art results even though only short se-
quences of 5-7 frames are used.

Hence, the goal of this paper is to introduce an efficient action recognition
approach working on short-frame level that takes advantage of prototype-based
representations such as fast evaluation, multi-class capability, and sequential in-
formation gain. In particular, we propose to use four information cues in parallel,
two for appearance and two for motion, and to independently train a hierarchi-
cal k-means tree [11] for each of these cues. To further increase the classification
power, we introduce a temporal weighting scheme from temporal co-occurrences
of prototypes. Hence, in contrast to existing methods that are using different cues
(e.g., [5, 12]) we do not estimate global weights, which allows us to temporally
adapt the importance of the used feature cues. Moreover, even using temporal
context we can still run a frame-wise classification! The benefits of the proposed
approach are demonstrated on standard benchmark datasets, where competi-
tive results on short frame basis as well as when analyzing longer sequences are
shown.

The reminder of the paper is organized as follows. First, in Section 2 we intro-
duce our new action recognition approach consisting of an efficient prototype-
based representation and a temporal feature weighting scheme. Next, in Sec-
tion 3, we give a detailed analysis of our method and compare it to existing
approaches on standard datasets. Finally, we summarize and conclude the paper
in Section 4.

2 Temporal Action Learning

In the following, we introduce our new prototype-based action recognition ap-
proach which is illustrated in Fig. 1. To gain different kind of information, we
apply four feature cues in parallel, two for appearance and two for motion (Sec-
tion 2.1). For these cues we independently train hierarchical k-means trees [11],
which provide several benefits such as very efficient frame-to-prototype matching
and an inherent multi-class classification capability (Section 2.2). To incorporate
temporal information, we further estimate temporal weights for the different fea-
ture cues. In particular, from temporal co-occurrences of prototypes we learn a
temporal reliability measure providing an adaptive weight prior for the evalua-
tion step (Section 2.3). In this way during evaluation at a specific point in time
the most valuable representations get higher temporal weights increasing the
overall classification power (Section 2.4).

2.1 Features

In contrast to existing prototype-based action recognition methods, which mainly
use segmentation results to represent the data, we apply four more sophisticated
feature cues in parallel, two describing the appearance and two describing the
motion, respectively. In particular, for appearance these are the Histogram of
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Fig. 1. Prototype-based action recognition: For each feature cue f a hierarchical k-
means tree T f is estimated, where the leaf nodes of T f are treated as prototypes ϕ.
In addition, to allow for a prototype-based classification, for each prototype ϕ the
probabilities p(c|ϕ) are estimated, where c is the corresponding action class.

Gradients (HOG) descriptor [13] and the Locally Binary Patterns (LBP) de-
scriptor [14]. HOG estimates a robust local shape description using a histogram
binning over the gradient orientation a local normalization whereas LBPs, origi-
nally introduced for texture description, are valuable due to invariance to mono-
tonic gray level changes and robustness to noise. Thus, both have shown to be
very valuable for human detection as well as for action recognition. To describe
the motion information, we adapted both methods to describe a motion field
obtained from an optical flow estimation: Histogram of Flow (HOF) and Locally
Binary Flow Patterns (LBFP). In the following, we give the details on these
descriptors given the image It ∈ Rm×n at time t.

HOG As first step in the HOG calculation, we have to estimate the gradi-
ents gx(x, y) and gy(x, y). For each position (x, y) the image It is filtered by
1-dimensional masks [−1, 0, 1] in x and y direction [13]. Then, we calculate the
magnitude m(x, y) and the signed orientation ΘS(x, y):

m(x, y) =
√
gx(x, y)2 + gy(x, y)2 (1)

ΘS(x, y) = tan−1 (gy(x, y)/gx(x, y)) . (2)

To avoid problems due to intensity changes and to make the descriptor more
robust, we transform the signed orientation ΘS into an unsigned orientation:
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ΘU (x, y) =
{
ΘS(x, y) + π θS(x, y) < 0
ΘS(x, y) otherwise .

(3)

To estimate the HOG descriptor, we divide the image It into non-overlapping
cells of size 10× 10. For each cell, the orientations ΘU are quantized into 9 bins
and weighted by their magnitude m. Groups of 2 × 2 cells are combined in
overlapping blocks and the histogram of each cell is normalized using the L2-
norm of the block. The final descriptor is built by concatenation of all normalized
blocks. For speed issues we avoid the tri-linear interpolation.

HOF In contrast to HOGs, which are estimated from only one frame, for esti-
mating HOFs the motion has to be estimated from two frames. In particular,
to estimate the optical dense flow field, we apply the method proposed in [15],
which is publicly available via OFLib1. In fact, the GPU-based implementation
allows a real-time computation of the features. Given It, It−1, the optical flow
describes the shift from frame t−1 to t with the disparity Dt, where dx(x, y) and
dy(x, y) denote the disparity components in x and y direction at location (x, y).
We then compute the HOF descriptor similar as described above by applying
Eqs. (2) and (3). However, the gradients gy(x, y) and gx(x, y) are replaced by
the disparity components dy(x, y) and dx(x, y). Moreover, to capture different
motion directions for same poses, we use the signed orientation ΘS and quantize
the orientation into 8 bins. The other parameters such as cell/block combination
are the same as described above.

LBP An LBP pattern p is constructed by binarization of intensity differences
between a center pixel and a number of n sampling points with radius r. The
pattern p is assigned 1 if the intensity of a sampling point has a higher intensity
than the center pixel and 0 otherwise. The final pattern is formed by the 0− 1
transitions of the sampling points in a given rotation order. To avoid ambiguities
due to rotation and noise we restrict the number of allowed 0−1 transitions to a
maximum u, hence, defining uniform patterns LBPu

n,r. For our final description
we build LBP 4

8,1 pattern histograms for each cell and sum up the nonuniform
patterns to one bin (see [14] for more details). To finally estimate the LBP
descriptors, similar to [16], we keep the cell-based splitting of the HOGs and
extract pattern histograms as described before for each cell.

LBFP Motivated by the relation between HOG and HOF we directly apply
LBPs on optical flow as well. Integrating direction information into LBP de-
scriptors is quite difficult since due to noise in the dense optical flow field the
orientation information is sometimes misleading. However, LBPs are known to
be robust against such clutter, also appearing in texture, and therefore they are
a considerable choice for an additional complementary flow feature. In particu-
lar, we keep the cell structure of the appearance LBP and compute the LBFP
histograms on the flow magnitude m(x, y), which is computed using Eq. (1) from

1 http://gpu4vision.icg.tugraz.at/
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dy(x, y), dx(x, y). Although the description is slightly simpler compared to HOF,
it is more robust in presence of noise. In general, the same parametrization as for
LBP is used. Please note that LBFP are not related to Local Trinity Patterns
[17], which are computed on video volumes.

2.2 Learning a Prototype-based Representation

Having the feature descriptions discussed in Section 2.1 with respect to a proto-
type-based representation two main issues have to be considered. First, how to
select a representative set of prototypes. Second, if the number of prototypes
is increasing, simple nearest neighbor matching gets infeasible and a more effi-
cient method is required. In particular, we solve both problems by applying a
hierarchical k-means clustering, which is also known as Vocabulary Tree [11].

Given the training set S, we first perform a k-means clustering on all training
samples s. According to the cluster indices, the data S is then split into subsets
(branches of the vocabulary tree), and each subset is clustered again using k-
means clustering. This process is repeated recursively until no samples are left in
a branch of the tree or if the maximum depth is reached. The thus obtained leaf
nodes of the tree are then treated as prototypes ϕ. Hence, only two parameters
are required: the split number k and a maximum hierarchy depth L, allowing to
generate a maximum number of kL prototypes. During evaluation, a test sample
is matched to a prototype by traversing down the tree, using depth-first-search,
until it reaches a leaf node.

As illustrated in Fig. 1, we independently build a vocabulary tree T f for each
feature cue f . Thus, for each cue f we obtain prototypes ϕf

j , i.e., the leaf nodes

of tree T f , from which we can build the prototype sets Φf =
{
ϕf

1 , . . . , ϕ
f
N

}
. To

enable a multi-class classification (i.e., one class per action), we have to estimate
the class probability distribution p(c|ϕ) for all prototypes ϕ. Let Sc ⊂ S be
the set of all samples belonging to class c and Sϕ,c ⊂ Sc be the set of all
samples belonging to class c matching the prototype ϕ. Then the probability
that a sample s matching the prototype ϕ belongs to class c can be estimated
as p(c|ϕ) = |Sϕ,c|

|Sc| . If no samples from class c reached the prototype ϕ, i.e.,
|Sϕ,c| = 0, the probability is set to p(c|ϕ) = 0.

Illustrative thus obtained classification results are shown in Fig. 2. The first
row gives a color-coded view of different actions whereas in the second row (a) the
corresponding prototypes and (b) the correct classifications are visualized. It can
be seen that for correct classifications over time different prototypes are matched,
leading to representative prototype sequences. This clearly shows that the variety
in the data can be handled well by using our prototype-based description.

2.3 Learning Temporal Weights

However, from Fig. 2(b) it also can be recognized that the classification re-
sults for the single cues are very weak. Hence, the goal would be to combine
these results to improve the classification results. The naive approach to fuse
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(a) prototype sequences (b) classification

Fig. 2. Single cue prototype-based classification: (a) sequences (color-coded prototype
numbers) of matched prototypes for each feature cue and (b) classification results,
where red indicates a correct classification (second row). The actions (first row) are
color-coded in the range 1− 10, respectively.

the results from different information cues would be to use majority voting or to
estimate a mean over all decisions. Such approaches, however, totally neglect the
information given by temporal constraints. Thus, in the following we introduce
a more sophisticated information fusion strategy based on temporal weighting.
The main idea is to exploit the knowledge which cues provided reliable results
during training to assign temporal adaptive weights to the feature cues during
evaluation.

Given the prototype sets Φf the key idea is to estimate the reliability of a
feature cue for the prototype transitions ϕf

i → ϕf
j . This is similar to prototype

frequencies or transition statistics as used in [8, 6], which, however, require long
sequences to get sufficient data to estimate the discriminative votes. Instead, we
consider these transitions only in a short time frame introducing temporal bags,
which is illustrated in Fig. 3(a).

A temporal bag2 bti,m is defined as set of m prototypes ϕj , which followed
the prototype ϕi at time t: bti,m =

{
ϕt+1, . . . , ϕt+m

}
. Once all bags bti,m were

estimated (i.e., for each occurrence of ϕi) these are combined to a global bag
Bi =

{
b1i,m, . . . , b

T
i,m

}
, where T is the number of temporal bags bti,m. Then from

Bi we can estimate the temporal co-occurrences of ϕi and ϕj . In particular,
we calculate a co-occurrence matrix C, where ci,j integrates all cases within
Bi where a prototype ϕi was followed by ϕj : ci,j =

∑T
t=1 |ϕj ∈ bti,m|. Having

estimated the co-occurrence matrix C, we now can compute a temporal reliability
measure wi,j . Let ni,j be the number of samples that were classified correctly by
prototype ϕj ∈ Bi, then we set the reliability weight to wi,j = ni,j

ci,j
.

This is illustrated in Fig. 3(a). The bag Bi contains 7 instances of ϕh and 8
instances of ϕj . While prototype ϕj classified all 8 frames correctly, ϕh provided

2 Since these calculations are performed for each cue f , in the following for reasons of
readability we skip the superfix f in the notation.
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the correct class for only two samples. Thus, yielding reliability weights of wi,h =
2/7 and wi,j = 1. If this procedure is repeated for all prototypes in all feature
cues this finally yields to four co-occurrence matrices Cf and four reliability
matrices Wf , which can then be used during the test stage as illustrated in
Fig. 3(b).

(a) (b)

Fig. 3. Temporal weighting for feature cues: (a) during training the weights wi,j for
temporal co-occurrences of prototypes ϕi and ϕj of a feature cue are estimated; (b)
during evaluation these weights are used to temporally change the importance of that
features cue.

2.4 Recognition Using Temporal Weights

Once we have estimated the hierarchical trees T f and the prototype reliabil-
ity matrices Wf as introduced in Sections 2.2 and 2.3, we can perform action
recognition using the following classification problem:

p(c|t) =
4∑

f=1

wf
t p
(
c|ϕf

t

)
, (4)

where wf
t is the weight of the feature cue f and ϕf

t the identified prototype for
cue f at time t. The crucial step now is to estimate the weights wf

t , which is
illustrated in Fig. 3(b).

For that purpose, we use the information given by the past, i.e., the identified
prototypes per cue, to estimate temporal weights. In particular, considering a
temporal bag of size m we estimate the prototype transitions ϕf

i → ϕf
j , where

i = t − m, . . . , t − 1 and j = t. Based on these selections using the reliability
matrices Wf we can estimate the m corresponding weights wi,j . Finally, the
weight wt

t is estimated by averaging the m weights wi,j over the temporal bag.
This recognition process is demonstrated in Fig. 4, where the first row illus-

trates three actions, the second row the identified prototypes, and the last row
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the corresponding weights. It clearly can be seen that the same action is char-
acterized by different prototypes and also that the weights are changing over
time.

Fig. 4. On-line adapted feature weights obtained from our temporal reliability measure:
color-coded actions (first row), matched prototypes of each feature cue (second row),
and estimated weights (third row).

3 Experimental Results

In the following, we demonstrate our prototype-based action recognition ap-
proach, where we run several experiments on publicly available action recognition
benchmark data sets, i.e., Weizmann and KTH. We first give a detailed analysis
of prototype-based action recognition and show that temporal information can
be useful to improve the classification results. Then, we give a detailed compari-
son to recently published state-of-the-art action recognition approaches. In both
cases, the given results were obtained by a leave-one-out cross-evaluation [18,
19] (i.e., we used all but one individuals for training and evaluated the learned
model for the missing one).

3.1 Benchmark Datasets

Weizmann Dataset The Weizmann human action dataset [1] is a publicly avail-
able dataset, that originally contains 81 low resolution videos (180×144) of nine
subjects performing nine different actions: running, jumping in place, bending,
waving with one hand, jumping jack, jumping sideways, jumping forward, walk-
ing, and waving with two hands. Subsequently, a tenth action, jumping on one
leg, was added [20]. Illustrative examples for each of these actions are shown in
Figure 5.



10 Mauthner et al.

Fig. 5. Examples from the Weizmann human action data set.

KTH Dataset The KTH human action dataset, originally created by [3], consists
of 600 videos (160× 120), with 25 persons performing six human action in four
different scenarios: outdoors (s1 ), outdoors with scale variation (s2 ), outdoors
with different clothes (s3 ), and indoors (s4 ). Illustrative examples for each of
these actions are shown in Figure 6.

Fig. 6. Examples from the KTH action data set.

3.2 Analysis of Prototype-based Learning

First of all, we give a detailed analysis of our proposed prototype-based action
recognition approach, where we analyze the influence of the parameters of the
hierarchical k-means tree and the bag size for the temporal weighting. For that
purpose, we run several experiments varying these parameters on the Weizmann
data set. The corresponding results are given in Fig. 7. Three main trends can
be recognized. First, increasing the temporal bag size, which was varied between
3 and 9 increases the classification accuracy. However, using a bag size greater
than 5 has only little influence on the classification performance. Second, increas-
ing the number of prototypes (using different tree parameters, i.e., split criteria
and depth) increases the classification power. However, if the number of possible
prototypes gets too large, i.e., too many leaf nodes are weakly populated, the
classification power is decreased - the optimum number is around 28. Third, it
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can be seen that using the proposed weighting scheme the single cue classifi-
cation results as well as a naive combination can clearly be outperformed. In
addition, Fig. 7(b) shows that averaging the single cue classification results over
the temporal bags almost reaches the classification result if the whole sequences
are analyzed.
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Fig. 7. Classification results on the Weizmann data set with different numbers of pro-
totypes by varying parameters for hierarchical k-means tree and temporal bags: (a)
single frame results and (b) bag averaged results.

Next, we compare different evaluation strategies in detail for the Weizmann
as well as on the KTH data set: (a) single frame evaluation, (b) averaging the
single frame results over temporal bags, (c) analyzing the whole sequence (using
a majority voting). In addition, we show results (on single frame basis) without
using the temporal weighting: (d) analyzing the best single feature cue and (e)
a naive feature combination (majority voting). Based on the results in Fig. 7
for the remaining experiments we set the bag size to 5 and used a binary split
criterion. The thus obtained results are summarized in Table 1 for the Weizmann
data set and in Table 2 for the KTH data set.

single frame bag avg. all video best feature comb. features #proto.

28 92.4% 94.5% 97.8% 60.1% 84.6% 122

212 92.4% 94.2% 100.0% 70.2% 89.9% 614
Table 1. Overview of recognition results on the Weizmann-10 data set using 2-means
clustering on a maximal depth of 8 and 12, respectively.

From Table 1 the benefits of the proposed method can clearly be seen. In fact,
considering a tree-size of 28 the best single feature cue provides a classification
result of approximative 60%. If the four cues are naively combined the overall
classification result can improved to 85%. However, using the proposed temporal
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weighting (using a bag size of 5) an improvement of the classification-rate of 7%,
by further averaging over the bag even of 9% can be obtained. If the whole
sequence is analyzed, we finally get a correct classification rate of 98%, which
can further be improved to 100% if the tree depth is increased.

The same trend can be recognized for the KTH data set in Table 2, where
we split the results for the four sub-sets. In particular, there is a significant im-
provement using the proposed method compared to the best single feature cue
and the naive combination. However, as can be seen, the single frame classifi-
cation results can be improved only a little by averaging over the whole bag.
However, if the whole sequences are analyzed still a considerable improvement
can be recognized.

single frame bag avg. all video best feature comb. features #proto.

s1 92.7% 92.7% 97.3% 69.4% 90.1% 113

s2 89.1% 90.6% 94.7% 59.0% 82.0% 118

s3 93.4% 94.5% 98.7% 71.0% 88.0% 116

s4 91.6% 91.7% 98.7% 63.0% 91.9% 109
Table 2. Overview of recognition results on KTH data set using 2-means clustering
on a maximal depth of 8.

3.3 Comparison to State-of-the-Art

Next, we give a comparative study of our approach compared to state-of-the-
art action recognition methods on the Weizmann and the KTH data set. Since
different authors used different versions of the Weizmann data set, i.e., 9 vs.
10 actions, we split the Weizmann experiment into two parts. In particular, we
compared our approach to Schindler & van Gool [5] and to Thurau & Hlaváč
[6], which are the most similar methods to ours - also providing an analysis
on short frame basis - and to recent methods reported the highest classification
results. The thus obtained results are given in Tables 3–4. The best classification
results when analyzing the whole sequence are set boldface, respectively.

From Table 3 it can be seen that we obtain competitive results on short frame
basis as well as when analyzing the whole sequence. In fact, it can be seen that
we obtain comparable results to Schindler & v. Gool and that we clearly can
outperform the approach of Thurau & Hlaváč on short frame basis. Moreover,
when analyzing the whole sequence for both data sets we obtain classification
results of 100%. Finally, we carried out the same experiments on the KTH data
set showing the results in Table 4. Again, it can be seen that we obtain compet-
itive results on short frame basis as well as when analyzing the whole sequence,
even (significantly) outperforming most state-of-the-art methods an all four data
sets. In particular, also on this data set we outperform the approach of Schindler
& van Gool on short frame basis and yield the best overall performance for the
full sequence analysis!
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method rec.-rate #frames

proposed 94.9% 1/5
100.0% all

Schindler [5] 93.5% 1/2
& v. Gool 96.6% 3/3

99.6% 10/10

Blank et al. [21] 99.6% all

Jhuang et al. [22] 98.8% all

method rec.-rate #frames

proposed 92.4% 1/5
94.2% 5/5

100.0% all

Thurau 70.4% 1
& Hlaváč [6] 94.4% 30/30

Gorelick et al. [20] 98.0% all

Lin et al. [7] 100.0% all

Fathi & Mori [23] 100.0% all

(a) Weizmann-09 (b) Weizmann-10

Table 3. Recognition rates and number of frames used for different approaches reported
for the Weizmann data set. The best results are shown in bold-face, respectively.

method s1 s2 s3 s4 average # frames

proposed 92.7% 89.1% 86.1% 91.3% 89.8% 1/5
92.6% 90.6% 94.5% 91.7% 92.4% 5/5
97.3% 94.7% 98.7% 98.7% 97.4% all

Schindler & v. Gool [5] 90.9% 78.1% 88.5% 92.2% 87.4% 1/2
93.0% 81.1% 92.1% 96.7% 90.2% 7/7

Lin et al. [7] 98.8% 94.0% 94.8% 95.5% 95.8% all (NN)
97.5% 86.2% 91.1% 90.3% 91.3% all (proto.)

Yao and Zhu[24] 90.1% 84.5% 86.1% 91.3% 88.0% all

Jhuang et al. [22] 96.0% 87.2% 91.7% 95.7% 92.7% all
Table 4. Recognition rates and number of required frames for different approaches
reported for the KTH data set. The best results are shown in bold-face, respectively.

4 Conclusion

In this paper, we addressed the problem of weighting different feature cues for ac-
tion recognition. Existing approaches are typically limited due to a fixed weight-
ing scheme, where most of the benefits get lost. In contrast, we propose a tempo-
ral weighting, where the weights for different features cues can change over time,
depending on the current input data. In particular, we use a prototype-based
representation, which has previously shown to provide excellent classification
results. However, in contrast to existing methods using simple segmentation we
apply more sophisticated features to represent the data. We compute HOG and
LBP descriptors to represent the appearance and HOF and LBFP descriptors for
representing motion information. For each of these feature cues we estimated a
prototype-based representation by using a hierarchical k-means tree allowing for
very efficient evaluation. These cues are evaluated using temporal weights show-
ing an increasing performance, which was demonstrated on standard benchmark
datasets, i.e., Weizmann and KTH.
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