
On Robustness of On-line Boosting - A Competitive Study

Christian Leistner Amir Saffari Peter M. Roth Horst Bischof
Institute for Computer Graphics and Vision

Graz University of Technology
{leistner,saffari,pmroth,bischof}@icg.tugraz.at

Abstract

On-line boosting is one of the most successful on-line
algorithms and thus applied in many computer vision ap-
plications. However, even though boosting, in general, is
well known to be susceptible to class-label noise, on-line
boosting is mostly applied to self-learning applications such
as visual object tracking, where label-noise is an inher-
ent problem. This paper studies the robustness of on-line
boosting. Since mainly the applied loss function determines
the behavior of boosting, we propose an on-line version of
GradientBoost, which allows us to plug in arbitrary loss-
functions into the on-line learner. Hence, we can easily
study the importance and the behavior of different loss-
functions. We evaluate various on-line boosting algorithms
in form of a competitive study on standard machine learn-
ing problems as well as on common computer vision appli-
cations such as tracking and autonomous training of object
detectors. Our results show that using on-line Gradient-
Boost with robust loss functions leads to superior results in
all our experiments.

1. Introduction
Currently, boosting [8] is one of the best and thus one of

the mostly applied classification methods in machine learn-
ing. It has been extensively discussed and analyzed, both
theoretically and experimentally, and many different vari-
ants of boosting techniques have been proposed for dif-
ferent applications [25, 18, 26, 10, 12]. In particular, the
seminal work of Viola and Jones [27] brought boosting to
computer vision, which also paved its way for a wide range
of applications. However, boosting is proven, again from
both, the theoretical and the experimental point of view,
to be sensitive to label noise. This issue was discovered
relatively early and, hence, different more robust methods
[16, 18, 5, 10, 7, 6, 15, 17] have been proposed.

Originally, boosting was developed for off-line learn-
ing, i.e., all training samples must be given in advance.
However, for many applications in computer vision such

as tracking or background modeling the required data can-
not be provided in advance. To overcome these problems
Oza [19] proposed an on-line version of boosting1. More-
over, he showed that if the algorithm is running for infinite
time, the on-line version converges to the off-line version
of boosting. Based on these findings several methods for
computer vision applications were developed. In particu-
lar, Javed et al.[13] were the first to use on-line boosting
in order to train a visual object detector, while Grabner and
Bischof [11] proposed an on-line version for feature selec-
tion and demonstrated excellent real-time tracking results.
Later, Pham and Cham [21] presented an asymmetric on-
line boosting version and Wu and Nevatia [28] showed en-
couraging self-learning results on the task of pedestrian de-
tection.

However, most of the these vision applications (e.g.,
tracking or detection) use variants of self-learning classi-
fiers, where noise is inherent and hard to avoid. For in-
stance, even an accurate classifier with 95% accuracy still
introduces 5% label noise into the next iteration of a self-
learning process. If the algorithm is not able to cope with
the noise, it will be accumulated and intensified over next
iterations which might result in problems such as drifting
or a complete failure of the method. Some previous authors
realized that problem and tried to circumvent it, e.g., via us-
ing additional learners in order to get only very conservative
updates [23] or by taking more robust weak learners in or-
der to improve the tracking systems [20]. Yet, few of them
considered modifying the learning algorithm itself.

Although for on-line boosting robustness is highly im-
portant, in contrast to the off-line case, up to now this is-
sue has not been studied. Thus, as the first contribution of
this work, we study the robustness of on-line boosting for
feature selection in terms of label noise. In particular, we
follow the work of Long et al. [15], who showed that the
loss function has not only high influence to the learning be-
havior but also on the robustness. Especially convex loss

1In this work, we distinguish “on-line” from “incremental” learning.
An on-line method has to discard a sample after learning (no memory); in
contrast, an incremental learning method is allowed to store it for later use.



functions (typically used in boosting) are highly suscepti-
ble to random noise. Hence, to increase the robustness the
goal is to find more suitable less noise sensitive loss func-
tions. For that purpose, we first introduce a generic boosting
algorithm, which we call On-line GradientBoost, where ar-
bitrary loss functions can be plugged in easily. In fact, this
method extends the GradientBoost algorithm of Friedman et
al. [9] and is similar to the AnyBoost algorithm of Mason et
al. [18]. Based on this algorithm, we develop different on-
line boosting methods using the loss functions proposed for
robust off-line boosting algorithms.

We also study the effect and the influence of different
on-line weak learners for the overall behavior of on-line
boosting. These theoretical considerations are confirmed
by experimental results. In particular, we split our exten-
sive experimental study into three parts. First, we study the
different on-line boosting methods on a couple of different
machine learning benchmark datasets for both, noise-free
and noisy data. Second, we show the benefits of robust on-
line boosting for the application of tracking, where prob-
lems such as occlusions typically lead to drifting. Finally,
we investigate two co-training methods, where we show that
due to the introduced robustness we can cope with wrongly
generated labels, which allows to train efficiently competi-
tive classifiers.

2. Robust Boosting
AdaBoost is highly susceptible to noise, where we talk

about label noise, if a sample was assigned a wrong label
during the labeling process of the data. This sensitivity
comes from the fact that AdaBoost increases the weight of
a mis-classified sample in each iteration. This re-weighting
strategy allows boosting to concentrate on hard samples
while easy samples are less emphasized. However, if the
sample has a wrong label and the previous weak learners
are assigning the true (but hidden) label to the sample, Ad-
aBoost still will consider this as a mis-classification and
dramatically (exponentially) increase its weight. This can
finally corrupt the learning result. Therefore, the perfor-
mance of the boosting algorithm will be highly dependent
on the presence of such noisy samples.

In the case of off-line boosting, Maclin and Optiz [16]
were one of the first to note the sensitivity of the AdaBoost
algorithm [8] to label noise. Later, Dietterich [5] con-
ducted more experimental studies analyzing different en-
semble building methods and also noted the sensitivity of
AdaBoost to label noise. Mason et al. [18] was one of
the first to analyze boosting algorithms in the context of
functional gradient descent. They also proposed a theoreti-
cally inspired loss-function and a boosting algorithm using
that loss called DoomII, which showed increased robust-
ness to label noise. Next, in their seminal work Friedman et
al. [10] showed the connection of boosting algorithms to the

stage-wise additive logistic regression methods from the ap-
plied statistics domain. Based on minimizing the negative
log-likelihood, they proposed a loss-function and a corre-
sponding boosting algorithm called LogitBoost, which also
showed to be more resistant to label noise. Domingo and
Watanabe [6] and Freund [7] also investigated this issue
by proposing the MadaBoost and BrownBoost methods, re-
spectively, which also try to decrease the label noise sen-
sitivity of AdaBoost. Fast forwarding to recent works in
this field, Long and Servedio [15] analyzed different con-
vex loss-functions used in designing boosting algorithms
and showed that from a theoretical point of view all of these
methods will be sensitive to the label noise.

Recently, Masnadi-Shirazi and Vasconcelos [17] studied
the problem of loss-function design from the perspective of
probability elicitation in statistics and, based on this, de-
rived a non-convex loss-function for boosting. This algo-
rithm, denoted as SavageBoost, has shown to be highly re-
sistant to the presence of label noise while also converging
fast in case of no noise.

2.1. Loss-Functions

By reviewing robust off-line boosting algorithms in the
previous section, we can realize that most of the efforts in
order to remedy the noise sensitivity weakness of boosting
has been mainly focused on designing better loss-functions.
In Figure 1 we depict a few of the loss-functions commonly
used in boosting and other machine learning methods. The
corresponding loss-functions used in this figure are shown
in Table 1. Here, y ∈ {−1,+1} are the binary labels of a
sample x and F (x) is the real output of the classifier with
the decision rule of ŷ = sign(F (x)). Traditionally, yF (x)
is called the classification margin of a sample. In fact, if the
margin is negative, there is a mis-classification.

Figure 1. Different loss functions used in boosting and supervised
machine learning methods.

From Figure 1 it is clear that the main difference between
these loss functions is how they deal with mis-classified
samples. There are two scenarios for mis-classification of a



Losses Functions

0-1 Loss `0−1(yF (x)) = I(yF (x) < 0)

Exponential [8] `exp(yF (x)) = exp(−yF (x))

Logit [10] `log(yF (x)) = log(1 + exp(−yF (x)))

DoomII [18] `doom(yF (x)) = 1− tanh(yF (x))

Savage [17] `sav(yF (x)) = 1/(1 + exp(2yF (x)))2

Hinge `hin(yF (x)) = max(0, 1− yF (x))

Table 1. Loss functions used in Figure 1.

sample: (1) The sample is noise-free and it is the learning
model which is not able to classify it correctly. (2) The sam-
ple has a label noise and the learning model is recovering its
true (but hidden) label.

More specifically for a binary problem, let yn be a noisy
label, i.e., yn = −yt, where yt is the true label. If y = yt 6=
ŷ, we have to consider the first case; if y = yn 6= ŷ (and
equally ŷ = yt), the second one. For both cases, the higher
the confidence of the classifier F (x) the more the margin
will be located towards the left part of Figure 1.

It clearly can be seen that different loss functions behave
differently in such situations by covering different parts of
the mis-classification spectrum. AdaBoost, which uses the
exponential loss, has the most aggressive penalty for a mis-
classification. This justifies why AdaBoost dramatically in-
creases the weight of mis-classified samples. Going further,
one can see that Logit and Hinge losses are less aggressive
and their penalty increases linearly on the left side of the fig-
ure. In contrast, DoomII and Savage follow totally different
strategies. First, their loss-functions are non-convex. Sec-
ond, they almost give up on putting pressure over the clas-
sifier when there is a severe mis-classification (i.e., F (x) is
large). Notably, DoomII gives up much earlier but main-
tains a higher overall penalty compared to the Savage loss.

2.2. On-line GradientBoost

To allow a comparison of different loss functions, we
propose an on-line formulation of the GradientBoost [9]
for feature selection, which we call On-line GradientBoost.
GradientBoost performs stage-wise functional gradient de-
scent over a given loss function [18, 10, 9]. More specifi-
cally, for a loss `(·), we want to find a set of base functions
or weak learners {f1(x), · · · , fM (x)} and their correspond-
ing boosting model

F (x) =
M∑

m=1

fm(x) (1)

which minimizes this loss.
Given a loss function `(·) and a training dataset, X =

{(x1, y1), · · · , (xN , yN )}, xn ∈ RD, yn ∈ {−1,+1}, the
empirical loss is

L(F (x)) =
N∑

n=1

`(ynF (xn)). (2)

At stage t of GradientBoost, we are looking for a base
function which has the maximum correlation with negative
direction of the loss function. This can be written as

ft(x) = arg max
f(x)

−∇LT f(x), (3)

where ∇L is the gradient vector of the loss at Ft−1(x) =∑t−1
m=1 fm(x). This can be simplified to

ft(x) = arg max
f(x)

−
N∑

n=1

yn`
′(ynFt−1(xn))f(xn). (4)

where `′(·) shows the derivatives of the loss with re-
spect to Ft−1. Denote the sample weight as wn =
−`′(ynFt−1(xn)). Thus, the optimization is equivalent to
maximizing the weighted classification accuracy

ft(x) = arg max
f(x)

N∑
n=1

wnynf(xn). (5)

Based on these derivations, we propose an on-line ver-
sion of this algorithm, which we show in Algorithm 1. As
in [11] we keep a fixed set of weak learners and perform
boosting on the selectors. The mth selector maintains a
set of K weak learners Sm = {f1

m(x), · · · , fK
m (x)} and

at each stage it selects the best performing weak learners.
The optimization step Eq.(5) is then performed iteratively
by propagating the samples through the selectors and updat-
ing the weight estimate λm according to the negative deriva-
tive of the loss function. Thus, the algorithm is independent
of the used loss function.

In Figure 2 we plot the functions for the weight updates
for different popular loss functions. As can be seen, the
exponential loss has an unbounded weight update function,
while all other loss functions are bounded between [0, 1].
Most importantly, Logit and Hinge weight update functions
saturate at 1, as the margin decreases, while the weights of
Doom and Savage fades out.

2.3. On-line Weak Learners

For the method described in Algorithm 1 we need on-line
weak learners. Traditionally, decision trees or stumps have
successfully been used for off-line boosting. For the on-
line boosting, e.g., Grabner and Bischof, [11], it is assumed
that the feature responses are Gaussian distributed, where
the means µ+, µ− and the standard deviations σ+, σ− are
estimated with the help of a Kalman filter.

Some variants of on-line GradientBoost, e.g., RealBoost,
need confidence-rated weak predictions. Therefore, we use



Algorithm 1 On-line GradientBoost
Require: A training sample: (xn, yn).
Require: A differentiable loss function `(·).
Require: Number of selectors M .
Require: Number of weak learners per selector K.

1: Set F0(xn) = 0.
2: Set the initial weight wn = −`′(0).
3: for m = 1 to M do
4: for k = 1 to K do
5: Train kth weak learner fk

m(x) with sample
(xn, yn) and weight wn.

6: Compute the error:
ek
m ← ek

m + wnI(sign(fk
m(xn)) 6= yn).

7: end for
8: Find the best weak learner with the least total

weighted error: j = arg min
k

ek
m.

9: Set fm(xn) = f j
m(xn).

10: Set Fm(xn) = Fm−1(xn) + fm(xn).
11: Set the weight wn = −`′(ynFm(xn)).
12: end for
13: Output the final model: F (x)

Figure 2. Weight update functions for different loss functions.

on-line histograms as weak learners since they can be easily
calculated on-line. Following [10] we use the probabilistic
output of the classifier in form of

f(x) = 0.5 log
p+(x)

1− p+(x)
, (6)

where p+(x) is the probability of a sample to be positive.
Histograms can also inherently describe multi-modal distri-
butions, which as we show in the experiments is also helpful
for algorithms which in principle do not require confidence-
rated predictions.

3. Experimental Results
The goals of the experiments are trifold. First, we com-

pare the performance of the novel On-line GradientBoost al-

gorithm with the traditional on-line boosting method. Sec-
ond, we investigate which loss function behaves best in case
of label noise. Third, we analyze the effect of using on-line
histograms instead of stumps 2. Therefore, we organized
an extensive set of experiments by using benchmark ma-
chine learning datasets, benchmark tracking videos, and co-
training of object detectors 3.

3.1. Machine Learning Experiments

For the machine learning experiments we chose 8 bench-
mark datasets from UCI and LIBSVM repositories, which
are shown in Table 2. We compare the performance of
on-line AdaBoost and GradientBoost by using exponential,
Logit, DoomII, and Savage losses. Note, when using expo-
nential loss, we get the on-line formulation of RealBoost of
Friedman et al. [10]. For these experiments, we randomly
introduce label noise into the training set and train the on-
line classifiers for 5 epochs. We repeat all these experiments
for 3 times and report the average test errors. We also re-
peat these experiments for two different weak learners dis-
cussed in Section 2.3. This yields in total 192 experiments
per classifier, which hopefully shows clearly which methods
perform best in presence of noise. For multi-class datasets,
we used an one-vs-all strategy and incorporated the ratio
between positive and negative samples in the initial weight
of samples.

Dataset # Train # Test # Class # Feat.

DNA 1400 1186 3 180

Letter 15000 5000 26 16

Magic 9510 9510 2 10

Pendigits 7494 3498 10 16

SatImage 3104 2000 6 36

Shuttle 30450 14500 7 9

Splice 1000 2175 2 60

USPS 7291 2007 10 256

Table 2. Datasets used in machine learning experiments.

Figures 3(a) and 3(b) show the test error with respect to
the amount of label noise in the training set for each clas-
sifier and each dataset by using stumps and histograms, re-
spectively. The main outcome of these experiments is that
on average On-line GradientBoost using Logit or Savage
losses performs best. Even though using the DoomII loss
function provides excellent results outperforming the oth-
ers for some datasets, the results obtained by using Logit
and Savage loss-functions are consistently among the best.

2Note that due to performance issues we do not use the features pro-
posed in [20].

3Source code is available under www.ymer.org/amir/software/online-
gradient-boosting



Additionally, as it can be seen, the Real loss-function
does not perform very well when using stumps, but is com-
petitive when the weak learner is switched to histograms.
The reason for this behavior could be attributed to the
fact that stumps are not able to return probabilistic outputs
which are required by on-line GradientBoost losses. By
referring to Figure 2, we can see that for the Real loos-
function does not provide a bounded weight update func-
tion, and therefore, without a probabilistic estimates, the
sample weights grow unbounded. Additionally, by com-
paring these two figures it becomes clear that, in general,
histograms are better than stumps; especially, for AdaBoost
and RealBoost significant improvements can be achieved.

Figure 4 shows the number of wins for each classifier
over different noise levels over all datasets and weak learn-
ers. As can be seen, SavageBoost wins more than all other
methods, but LogitBoost gains more and more wins if the
noise level is increased, while SavageBoost has no win
when the noise level is at its maximum.

3.2. Visual Tracking

In this experiment, we evaluated on-line GradientBoost
on various publicly available tracking scenarios and com-
pared it to a state-of-the-art tracker based on on-line Ad-
aBoost [11]. For GradientBoost, we chose the logistic loss,
since the theoretical considerations as well as experimental
results on the machine learning data show that this method
can be considered a suitable trade-off between accuracy and
robustness. Note that we skipped the results for Savage-
loss since it performs similar to the logit-loss. We also use
histograms with 32 bins as weak learners. For both, Ad-
aBoost and GradientBoost, the same implementation frame-
work with the same features was used. Since the main pur-
pose of this experiment is the comparison of the two on-line
algorithms for the tracking task, we only use simple Haar-
features, did not implement any rotation and scale search,
and abstained from any other engineering, although these
things would definitely help to improve the tracking results.
For both on-line boosting methods we used 50 selectors
each of them having 150 features.

Datasets Our datasets consist of three publicly available
sequences presenting various types of lighting, pose, scale
and appearance changes. The first “Occluded Face” was
taken from [1] 4. Then, we took the famous “David In-
door” sequence from Ross et al. [22] and “Rotating Girl”
from [2]. All sequences are grey-scale and resized to 320 x
240 pixels.

The detailed results of our experiments are depicted in
Figure 5, where the x-axes indicate the Euclidian distance

4Please note that we do not compare to [1], because it uses much better
features and our focus lies on the comparison of the different boosting
algorithms

to the ground-truth. Some representative results are given
in Figure 6. As can be seen, the performance of the two
on-line boosting methods for the task of visual tracking can
vary a lot between the different sequences. An important
insight, however, is the more noise robust GradientBoost
method never performs worse than AdaBoost and, e.g., in
the “David Indoor”-scene performs superior to the base-line
algorithm.

3.3. Visual Co-training of Person Detectors

In this experiment, we analyze the robustness of on-line
boosting on training a pedestrian detector on both labeled
and unlabeled data using co-training [3], which is another
typical application of on-line boosting. As for tracking, we
compare on-line GradientBoost with a logit-loss to on-line
AdaBoost for feature selection.

3.3.1 Single-view co-training

For this experiment, we adapted the co-training approach
of Levin et al. [14], who co-trained two boosted off-line
classifiers (one for gray-value images and the other from
background subtracted images) to learn a car detector. In
particular, we trained the initial classifiers using only 25 la-
beled positives samples, which are then updated by on-line
co-training.

To demonstrate the learning progress, after a pre-defined
number of processed training frames t we saved a classifier
(i.e., t = 0, t = 250, t = 500, and t = 750), which was then
evaluated on an independent test sequence (i.e., the current
classifier was evaluated but no updates were performed!).
To analyze the detection results, we compare precision-
recall-curves (RPC) obtained from a a 50% overlap crite-
rion. The corresponding curves for AdaBoost and Gradi-
entBoost are illustrated in Figure 7(a) and Figure 7(b), re-
spectively. It clearly can be seen that using the non-robust
learner the system fails completely. In fact, the wrong up-
dates cannot be handled and the classifier is degraded. In
contrast, even starting from a similar initial level, using Gra-
dientBoost, finally, a competitive classifier can be obtained.

3.3.2 Multi-view co-training

In this experiment, we followed the approach presented in
[24], which showed that incorporating an additional camera
(i.e., an additional geometric cue) into the co-training pro-
cess can significantly improve the training results. In par-
ticular, for the multi-camera co-training strategy the multi-
ple views on the data are realized by multiple camera views,
mapping the local image coordinate systems onto each other
by using a homography.

Again, as in Section 3.3.1, we run the same experiment
for the standard on-line AdaBoost as well as for the on-



(a) Stumps (b) Histograms

Figure 3. Results for machine learning experiment when (a) stumps and (b) histograms are used as weak learners: test error is shown with
respect to the label noise level. Classifiers: AdaBoost (blue), Real (green), Logit (red), DoomII (cyan), Savage (magenta).

(a) Stumps (b) Histograms

Figure 4. Different number of wins for machine learning experiment when (a) stumps and (b) histograms are used as weak learners:
test error is shown with respect to the label noise level. Classifiers: AdaBoost (blue), Real (green), Logit (red), DoomII (cyan), Savage
(magenta).

(a) David (b) Girl (c) Faceocc
Figure 5. Comparison of On-line GradienBoost with Logit loss (OLB) with On-line AdaBoost (OAB) on four state-of-the-art tracking
sequences. As can be seen, our method significantly outperforms boosting on all sequences.



Figure 6. Comparison of OLB and OAB on three public sequences.

(a) AdaBoost (b) GradientBoost
Figure 7. Single-view Co-training using (a) the non-robust on-line AdaBoost algorithm and (b) the robust On-line GradientBoost algorithm.

line GradientBoost. The thus obtained results for one of the
two views are shown in Figure 8(a) and Figure 8(b), respec-
tively. In contrast to the results shown in Section 3.3.1 it can
be seen that for both methods finally competitive classifiers
are obtained. In fact, the geometric constraints provide a
very strong cue and only very valuable samples are used for
updating; hence, the on-line learner has to handle a reduced
amount of noise. Although GradientBoost converges a bit
faster, we can conclude that for such a more robust scenario
AdaBoost is sufficient to deliver sufficient results.

4. Conclusion

We studied the robustness of on-line boosting for feature
selection against class-label noise. Since it was shown that
the applied loss-function has high impact on the behavior of
boosting, we proposed a novel boosting algorithm On-line
GradientBoost, that provides a flexible way to plug in and
test different kinds of loss-functions. Based on this algo-
rithm we were able to analyze different loss-functions and
their influence on the robustness of on-line boosting. Ad-

ditionally, we studied the behavior depending on different
weak learners. We run experiments for machine learning
data as well as for real-world applications (i.e., tracking and
object detection) and showed that a more noise robust on-
line learner combined with simple histogram-based weak
learners can significantly improve the results in the pres-
ence of noise. In this work, we mainly considered the influ-
ence of different loss functions. However, for future work,
we also plan to investigate the influence of other strategies
that might help improving the robustness of on-line boost-
ing, for instance, methods based on solving linear programs
similar to νLP -Boost [4] or BrownBoost [7].

Acknowledgment

This work was supported by the Austrian Joint Research
Project Cognitive Vision under projects S9103-N04 and
S9104-N04 and the Austrian Science Fund (FWF P18600),
by the FFG projects AUTOVISTA (813395) and EVis
(813399) under the FIT-IT programme.



(a) AdaBoost (b) GradientBoost
Figure 8. Multi-view Co-training using (a) the non-robust on-line AdaBoost algorithm and (b) the robust On-line GradientBoost algorithm.

References
[1] A. Adam, E. Rivlin, and I. Shimschoni. Robust fragments-

based tracking using the integral histogram. In Proc. CVPR,
2006.

[2] S. Birchfeld. Elliptical head tracking using intensity gradi-
ents and color histograms. In Proc. CVPR, 1998.

[3] A. Blum and T. Mitchell. Combining labeled and unlabeled
data with co-training. In Proc. COLT, 1998.

[4] A. Demiriz, K. Bennett, and J. Shawe-Taylor. Linear pro-
gramming boosting via column generation. Machine Learn-
ing, 46:225–254, 2002.

[5] T. Dietterich. An experimental comparison of three meth-
ods for constructing ensembles of decision trees: Bagging,
boosting, and randomization. Machine Learning, 40:139–
157, 1998.

[6] C. Domingo and O. Watanabe. MadaBoost: A modification
of AdaBoost. In Proc. COLT, 2000.

[7] Y. Freund. An adaptive version of the boost by majority al-
gorithm. In Proc. COLT, 2000.

[8] Y. Freund and R. Schapire. Experiments with a new boosting
algorithm. In Proc. ICML, 1996.

[9] J. Friedman. Greedy function approximation: A gradient
boosting machine. The Annals of Statistics, 29(5):1189–
1232, 2001.

[10] J. Friedman, T. Hastie, and R. Tibshirani. Additive logis-
tic regression: a statistical view of boosting. The Annals of
Statistics, 38(2):337–374, 2000.

[11] H. Grabner and H. Bischof. On-line boosting and vision. In
Proc. CVPR, 2006.

[12] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements
of Statistical Learning. Springer, August 2001.

[13] O. Javed, S. Ali, and M. Shah. Online detection and clas-
sification of moving objects using progressively improving
detectors. In Proc. CVPR, 2005.

[14] A. Levin, P. Viola, and Y. Freund. Unsupervised improve-
ment of visual detectors using co-training. In Proc. ICCV,
2003.

[15] P. M. Long and R. A. Servedio. Random classification noise
defeats all convex potential boosters. In Proc. ICML, 2008.

[16] R. Maclin and D. Opitz. An empirical evaluation of bagging
and boosting. In Proc. National Conf. on Artificial Intelli-
gence, 1997.

[17] H. Masnadi-Shirazi and N. Vasconcelos. On the design of
loss functions for classification: theory, robustness to out-
liers, and savageboost. In Advances NIPS, 2008.

[18] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Advances in
Large Margin Classifiers, chapter Functional gradient tech-
niques for combining hypotheses, pages 221–247. MIT
Press, Cambridge, MA., 1999.

[19] N. Oza and S. Russell. Online bagging and boosting. In
Proc. Artificial Intelligence and Statistics, 2001.

[20] T. Parag, F. Porikli, and A. Elgammal. Boosting adaptive
linear weak classifiers for online learning and tracking. In
Proc. CVPR, 2008.

[21] M.-T. Pham and T.-J. Cham. Online asymetric boosted clasi-
fiers for object detection. In Proc. CVPR, 2007.

[22] D. Ross, J. Lim, and M. Yang. Adaptive proballistic visual
tracking with incremental subspace update. In Proc. ECCV,
2004.

[23] P. M. Roth and H. Bischof. Machine Learning Techniques for
Multimedia, chapter Conservative Learning for Object De-
tectors, pages 139–158. Springer, 2008.

[24] P. M. Roth, C. Leistner, H. Grabner, and H. Bischof. Multi-
Camera Networks, Principles and Applications, chapter On-
line Learning of Person Detectors by Co-Training from Mul-
tiple Cameras, pages 313–334. Academic Press, 2009.

[25] R. E. Schapire and Y. Singer. Improved boosting using
confidence-rated predictions. Machine Learning, 37(3):297–
336, 1999.

[26] R. E. Schapire and Y. Singer. Boostexter: A boosting-
based system for text categorization. Machine Learning,
39(2/3):135–168, 2000.

[27] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proc. CVPR, 2001.

[28] B. Wu and R. Nevatia. Improving part based object detection
by unsupervised, online boosting. In Proc. CVPR, 2007.


