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Abstract

Random Forests (RFs) have become common-
place in many computer vision applications. Their
popularity is mainly driven by their high computa-
tional efficiency during both training and evaluation
while still being able to achieve state-of-the-art ac-
curacy.

This work extends the usage of Random Forests to
Semi-Supervised Learning (SSL) problems. We show
that traditional decision trees are optimizing multi-
class margin maximizing loss functions. From this
intuition, we develop a novel multi-class margin def-
inition for the unlabeled data, and an iterative deter-
ministic annealing-style training algorithm maximiz-
ing both the multi-class margin of labeled and un-
labeled samples. In particular, this allows us to use
the predicted labels of the unlabeled data as addi-
tional optimization variables. Furthermore, we pro-
pose a control mechanism based on the out-of-bag
error, which prevents the algorithm from degrada-
tion if the unlabeled data is not useful for the task.
Our experiments demonstrate state-of-the-art semi-
supervised learning performance in typical machine
learning problems and constant improvement using
unlabeled data for the Caltech-101 object catego-
rization task.

1. Introduction
There has been recent interest in using Random

Forests (RFs) [4] for computer vision. RFs have
demonstrated to be better or at least comparable
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to other state-of-the-art methods in both classifica-
tion [4, 2] and clustering [12]. While obtaining state-
of-the-art results, RFs possess several properties that
make them particularly interesting for computer vi-
sion applications. First, they are very fast in both
training and evaluation. Additionally, they can eas-
ily be parallelized, which makes them interesting for
multi-core and GPU implementations [16]. RFs are
inherently multi-class, therefore they do not require
to build several binary classifiers for a multi-class
problem. Compared to boosting and other ensemble
methods, RFs are more robust against label noise [4].

In contrast, RFs suffer from the same disadvan-
tages as other popular discriminative learning meth-
ods: they need a huge amount of labeled data in
order to achieve good performance. This paper ad-
dresses this particular weakness by proposing a semi-
supervised learning (SSL) [19, 6] algorithm for RFs
allowing the algorithm to make use of both labeled
and unlabeled training data. In fact, the speed, the
inherent parallelism as well as the insensitivity to la-
bel noise makes RF an interesting candidate for SSL.

Another problem with most SSL methods is that
they only focus on binary problems. Multi-class
problems are often decomposed to a set of binary
tasks with 1-vs-all or 1-vs-1 strategies. Considering
the fact that most of the state-of-the-art SSL methods
have high computational complexity, such a strategy
can become a problem when dealing with a large
number of samples and classes. Therefore, the ability
of RFs to handle multi-class tasks makes them very
attractive for SSL problems.

When training RFs, the individual trees have to
be kept as diverse as possible while their agreement
among the labeled samples is enforced. Thus, in or-
der to incorporate unlabeled data one of the main ob-
stacles is to preserve the diversity of the trees while
making them agree on unlabeled data in order to
increase the margin. This is the main reason why
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traditional regularized loss functions or previous ap-
proaches for SSL with trees (e.g., [9]) cannot be di-
rectly applied to RFs because regularization usually
destroys the diversity. Therefore, we propose a SSL
algorithm for RFs that is based on Deterministic An-
nealing [13]. Using this approach, labels of the un-
labeled data can be efficiently treated as additional
optimization variables. The margin can be used as
the regularization term for the unlabeled samples.
Due to the efficiency of RFs the whole algorithm is
quite fast during training. Another nice feature of the
resulting algorithm is that by measuring the out-of-
bag-error we can monitor the usefulness of the un-
labeled data (we call this “airbag mechanism”). We
derive the new algorithm theoretically and demon-
strate in various experiments the advantages of our
method compared to other SSL algorithms such as
semi-supervised Boosting and TSVMs.

In Section 2.1, we present a brief overview on
semi-supervised learning methods and RFs. In Sec-
tion 3, we derive our new semi-supervised learning
algorithm for random forests. Experimental results
on Caltech 101 and machine learning datasets, com-
parisons to other SSL approaches and a detailed em-
pirical analysis of our approach are presented in Sec-
tion 4. Finally, the paper concludes with Section 5.

2. Related work & Notations

2.1. SSL Overview

In supervised learning one deals with a labeled
dataset Xl ⊆ X ×Y = {(x1, y1), . . . , (x|Xl|, y|Xl|)},
xi ∈ X ⊆ RM and yi ∈ Y = {1, · · · ,K},
where K is the number of classes. In contrast, un-
supervised methods aim to find an interesting (nat-
ural) structure in X using only unlabeled input data
Xu ⊆ X = {x1, . . . ,x|Xu|}. In semi-supervised
learning (SSL), the algorithm is provided with both
labeled Xl and unlabeled Xu data (usually |Xl| �
|Xu|). Since the unlabeled data can be obtained sig-
nificantly easier than labeled samples, the main goal
is to exploit the statistics of Xu in order to decrease
the number of required labeled samples.

Many different approaches to SSL (e.g., see [19,
6] for an overview) have been proposed, most meth-
ods assume an underlying structure that correlates
the unlabeled data with some class label and, hence,
makes them informative.

Many semi-supervised learning algorithms use
the unlabeled samples to regularize the supervised

loss function in the form of:∑
(x,y)∈Xl

`(y, h(x)) + λ
∑

x∈Xu

`u(h(x)), (1)

where h(·) is a binary classifier, and `u(·) encodes
the regularizer based on the unlabeled samples. The
regularization paradigm can be further subdivided
into two main approaches:

Manifold Assumption Some algorithms try to in-
fer the cluster or manifold structure of the feature
space with unlabeled samples and use it as an addi-
tional cue for the supervised learning process, for ex-
ample cluster kernels [7], label propagation [20] or
Laplacian SVMs [1]. The latter two are graph-based
methods where `u has the form of

`u(h(x)) =
∑

x′∈Xu

x′ 6=x

s(x,x′)‖h(x)− h(x′)‖2, (2)

where s(x,x′) is a similarity function. Using this
regularization term, one can enforce the classifier
to predict similar labels if the samples are similar.
While graph-based methods are quite powerful, the
pair-wise terms increase their computational com-
plexity.

Another interesting approach, termed expecta-
tion regularization (ER), was proposed by Mann et
al. [11] and developed further for semi-supervised
boosting by Saffari et al. [14, 15], which improves
both computational efficiency and robustness com-
pared to previous methods. ER is a method for
exponential-family parametric models where the ba-
sic idea is to augment the label-likelihood objective
function with a term that encourages the model pre-
dictions on unlabeled data to match prior expecta-
tions (e.g., label priors).

Large Margin Approaches Another class of
methods such as Transductive Support Vector Ma-
chines (TSVM) [8, 17], tries to maximize the mar-
gin of the unlabeled samples by avoiding dense re-
gions of the feature space for the decision boundary.
For example, variants of Transductive Support Vec-
tor Machines (TSVM) [8] maximize the margin for
the unlabeled samples by

`u(h(x)) = max(0, 1− |h(x)|). (3)



2.2. Random Forests

A Random Forest (RF) [4] is an ensemble of de-
cision trees. Each tree in the forest is built and tested
independently from other trees, hence the overall
training and testing procedures can be performed in
parallel. During the training, each tree receives a new
bootstrapped training set generated from the original
training set by subsampling with replacement. We
refer to those samples which are not included dur-
ing the training of a tree as the Out-Of-Bag (OOB)
samples of that tree. These samples can be used to
compute the Out-Of-Bag-Error (OOBE) of the tree
as well as for the ensemble which is an unbiased es-
timate of the generalization error [3].

During training, each decision node of the tree
creates a set of random tests and then selectes the best
among them according to some quality measurement
(e.g., information gain or Gini index). The trees are
usually grown to their full size without pruning.

We denote the nth tree of the ensemble as
fn(x) = f(x, θn) : X → Y , where θn is a ran-
dom vector capturing the various stochastic elements
of the tree (such as the randomly subsampled training
set or selected random tests at its decision nodes). We
also denote the entire forest as F = {f1, · · · , fN},
where N is the number of trees in the forest. We can
write the estimated probability for predicting class k
for a sample as

p(k|x) =
1
N

N∑
n=1

pn(k|x), (4)

where pn(k|x) is the estimated density of class la-
bels of the leaf of the nth tree. The final multi-class
decision function of the forest is defined as

C(x) = arg max
k∈Y

p(k|x). (5)

Breiman [4] defined the classification margin of a
labeled sample (x, y) as

ml(x, y) = p(y|x)−max
k∈Y
k 6=y

p(k|x). (6)

It is obvious that for a correct classification
ml(x, y) > 0 should hold. Therefore, the general-
ization error is given by

GE = E(X,Y )(ml(x, y) < 0), (7)

where the expectation is measured over the entire dis-
tribution of (x, y). It has been shown by Breiman [4]

that this error has an upper bound in form of

GE ≤ ρ̄1− s2

s2
, (8)

where ρ̄ is the mean correlation between pairs of
trees in the forest 1 and s is the strength of the en-
semble (i.e., the expected value of the margin over
the entire distribution).

3. Semi-Supervised Learning with Ran-
dom Forests

As discussed in Section 2.1, there exist two main
regularization approaches to semi-supervised learn-
ing. Since we target applications with a large amount
of data and manifold regularization leads to algo-
rithms that are at least quadratic, i.e.O(n2), in terms
of number of samples, in this work, we chose to use
a maximum margin approach. In particular, we pro-
pose to exploit the additional unlabeled data in order
to maximize the margin over the entire random for-
est. Since RFs are multi-class classifiers, in the fol-
lowing we will define the margin maximizing prop-
erties of decision trees for multi-class problems and
subsequently define the margin over the unlabeled
samples. Based on that, we propose to optimize a
regularized loss function with the usage of Determin-
istic Annealing.

3.1. Margin for Multi-Class Classification

Recently, Zou et al. [21] extended the concept
of Fisher-consistent loss functions [10] from binary
classification to the domain of multi-class problems.
This concept provides an understanding about the
success of margin-based loss functions and their sta-
tistical characteristics.

Let g(x) = [g1(x), · · · , gK(x)]T be a multi-
valued function. g(x) is called a margin vector, if

∀x :
K∑

i=1

gi(x) = 0. (9)

In such a case, one can define the margin for the ith

class as gi(x) and the true margin as gy(x). For a
Fisher consistent loss function, this quantity is natu-
rally linked to the optimal Bayes decision rule [21].

We define a loss function `(gy(x)) to be a margin
maximizing loss if `′(gy(x)) ≤ 0 for all values of gy .
Therefore, an optimization based on this kind of loss

1The correlation is measured in terms of the similarities of the
predictions.



functions will lead to maximizing the true margin.
In this respect, the exponential loss of boosting, the
hinge loss of SVM, and the negative log-likelihood
loss of statistical models are all margin maximizing
loss functions.

For decision trees, local tests at each node are
selected based on a score which measures the pu-
rity of the node. Usual choices are the entropy
(L(Rj) = −

∑K
i=1 p

j
i log(pj

i )) or the Gini index
(L(Rj) =

∑K
i=1 p

j
i (1 − pj

i )), where pj
i is the la-

bel density of class i in node j. In the following
Theorem, we relate such scores to multi-class mar-
gin maximizing loss functions and show that one can
pick any margin maximizing loss function and derive
a local score measurement.

Theorem 3.1. Given a margin maximizing loss func-
tion `(gy(x)), the local score for a decision nodeRj

is defined as L(Rj) =
∑K

i=1 p
j
i `(p

j
i − 1

K ).

Proof. We can write the empirical loss at this node
as

L(Rj) =
1
|Rj |

∑
(x,y)∈Rj

`(gy(x)). (10)

Defining the margin vector as gj(x) = [pj
1 −

1
K , · · · , p

j
K−

1
K ]T , we can develop the empirical loss

as

L(Rj) =
1
|Rj |

∑
(x,y)∈Rj

K∑
i=1

I(y = i)`(pj
i −

1
K

)

=
1
|Rj |

K∑
i=1

`(pj
i −

1
K

)
∑

(x,y)∈Rj

I(y = i)

=
K∑

i=1

pj
i `(p

j
i −

1
K

).

Using the results of Theorem 3.1, we can see that
the entropy score minimizes the calibrated negative
log-likelihood while the Gini index is related to the
hinge loss function. Thus, we can conclude that tra-
ditional decision trees greedily optimize multi-class
maximum margin criteria.

3.2. Margin for the Unlabeled Data

Now that we have a better understanding with re-
spect to the maximum margin behaviour of the deci-
sion trees, the extension of this concept to unlabeled
data is straight-forward. In the absence of a label,

there is no known true margin, therefore, we define
the margin as:

mu(xu) = max
i∈Y

gi(xu). (11)

Note that the predicted label for an unlabeled sample
is C(x) = arg max

i∈Y
gi(xu). Hence, this is equivalent

to the margin of the labeled samples, given in Eq (6),
but only using the predicted label.

3.3. Learning

Similar to the traditional regularization-based
semi-supervised learning methods, we also regular-
ize the loss for the labeled samples with a loss over
the unlabeled samples. Based on the definition of the
margin for unlabeled samples, we use the same loss
function used to grow the trees in a forest also to be
the loss for the unlabeled samples. We can write the
overall loss as

L(g) =
1
|Xl|

∑
(x,y)∈Xl

`(gy(x))+

+
α

|Xu|
∑

x∈Xu

`(mu(x)), (12)

where α defines the contribution rate of the unlabeled
samples.

Note that this loss is convex when training only
on labeled data (standard RF algorithm). Using addi-
tional unlabeled data makes the loss non-convex be-
cause also the labels of the unlabeled samples have
to be optimized. We need a (global) optimization
method over the forest that is highly resistant to local
minima.

In this work, we formulate the optimization pro-
cess in a Deterministic Annealing (DA) framework.
DA is a homotopy method where an eventually dif-
ficult combinatorial optimization problem is rewrit-
ten in an easier form and then gradually deformed
to its original version [13]. In particular, in a first
step the discrete variables are treated as random vari-
ables over which a space of probability distributions
is defined. In the second step, the original problem
is replaced by a continuous optimization term. Al-
though DA cannot guarantee a global optimal solu-
tion, the method has proven to be a both fast and
robust optimization technique. Note that Sindhwani
et al. [17] used a similar approach for developing a
semi-supervised kernel machine. Using DA, we treat
unknown labels of the unlabeled samples as addi-
tional optimization variables. Additionally, the ran-
dom nature of DA allows us to keep high diversity



among the trees, which is a necessity (as can be seen
in Eq.(8)) for an improvement of the generalization
error of the forest.

3.3.1 Deterministic Annealing Optimization

We apply deterministic annealing to iteratively solve
Eq (12), by introducing a distribution over the pre-
dicted labels of unlabeled samples, p̂, and enforcing
a controlled uncertainty into the whole optimization
process. We write the new loss function as

LDA(g, p̂) =
1
|Xl|

∑
(x,y)∈Xl

`(gy(x))+ (13)

+
α

|Xu|
∑

x∈Xu

K∑
i=1

p̂(i|x)`(gi(x))+

+
T

|Xu|
∑

x∈Xu

K∑
i=1

H(p̂),

where T is the temperature parameter and H(p̂) =
−

∑K
i=1 p̂(i|x) log(p̂(i|x)) is the entropy over the

predicted distribution. Note that when the tempera-
ture is high, the dominating term is the entropy which
needs to be minimized. Hence, at such stages, the
model will maintain a large amount of uncertainty.
As the system cools down, by decreasing the temper-
ature T 7→ 0, the optimization process will mainly
operate over the original loss function Eq (12).

For a given temperature level, the learning prob-
lem can be written as

(g∗, p̂∗) = arg min
g,p̂

LDA(g, p̂). (14)

We use a two step algorithm to solve this optimiza-
tion problem. At the first step, we fix the distribution
p̂ and optimize the learning model, and at the second
step, we fix the learning model and find the optimal
distribution. Note that both individual steps are con-
vex optimization problems.

In detail, for a given distribution over the unla-
beled samples, we randomly choose a label accord-
ing to p̂. We repeat this process independently for
every tree in the forest. At this stage, the optimiza-
tion problem for the nth tree becomes

g∗n = arg min
g

1
|Xl|

∑
(x,y)∈Xl

`(gy(x))+

+
α

|Xu|
∑

x∈Xu

`(gŷu(x)), (15)

where ŷu is the randomly chosen label for this sam-
ple according to the distribution p̂. Since the margin
maximizing loss function is convex, this loss func-
tion is also convex.

After we trained the random forest, we enter the
second stage where we find the optimal distribution
according to

p̂∗ =arg min
p̂

α

|Xu|
∑

x∈Xu

K∑
i=1

p̂(i|x)`(gi(x))+

+
T

|Xu|
∑

x∈Xu

K∑
i=1

p̂(i|x) log(p̂(i|x)). (16)

For each sample, we can take the derivatives w.r.t.
each class of the distribution and set them to zero to
find the optimal solution. In detail, we define:

hi(p̂,x) = p̂(i|x)(α`(gi(x)) + T log(p̂(i|x))).
(17)

The derivatives of this function can be written as

dhi

dp̂i
= α`(gi(x)) + T log(p̂(i|x)) + T. (18)

By setting the derivatives to zero, we get

p̂∗(i|x) = exp(−α`(gi(x)) + T

T
)/Z(x), (19)

where Z(x) =
∑K

i=1 p̂
∗(i|x) is the partition func-

tion. Note again that when the temperature is high,
the distribution is close to a uniform distribution,
while at very low temperatures it simulates a Dirac
delta function, which is the hard decision rule of
Eq (5) over the unlabeled data.

3.4. Airbag

In semi-supervised learning, there is no guaran-
tee that unlabeled data always helps [19, 6, 18], for
instance if the problem structure is badly matched,
if the unlabeled data is corrupted or from a different
distribution, etc.. A nice aspect of our algorithm is
that we directly monitor the strength of the ensemble
by measuring the OOBE for the entire forest at each
iteration. By considering Eq.(8) we can see that the
strength of the forest has an inverse relationship with
the generalization error (i.e., the stronger the forest,
the lower is its error). Furthermore, the OOBE has
shown to be a good estimate of the generalization er-
ror [3].

We propose to monitor the dynamics of the OOBE
of the ensemble. Let em

F be the OOBE of the forest



Algorithm 1 Semi-supervised Random Forests
Require: A set of labeled, Xl, and unlabeled data
Xu.

Require: The size of the forest: N .
Require: A starting heat parameter T0 and a cooling

function c(T,m)
1: Train the RF: F ← trainRF(Xl).
2: Compute the OOBE: e0F ← oobe(F ,Xl).
3: Set the epoch: m = 0.
4: repeat
5: Get the temperature: Tm+1 ← c(Tm,m).
6: Set m← m+ 1.
7: ∀xu ∈ Xu, k ∈ Y : Compute p∗(k|xu).
8: for n from 1 to N do
9: ∀xu ∈ Xu : Draw a random label, ŷu from

p∗(·|xu) distribution.
10: Set Xn = Xl ∪ {(xu, ŷu)|xu ∈ Xu}.
11: Re-train the tree: fn ← trainTree(Xn).
12: end for
13: Set em

F ← oobe(F ,Xl).
14: until Stopping condition
15: if em

F > e0F then
16: Reset the RF: F ← trainRF(Xl).
17: end if
18: Output the forest F .

at iteration m. Then we monitor the improvements
measured by em−1

F − em
F and if this is not positive

after a few trials, we stop the training and discard the
latest forest.

To sum up, in contrast to most other SSL meth-
ods, semi-supervised random forests provide a prin-
cipled way to detect if unlabeled data rather harm
the system than help. As a reaction, we can use
an airbag mechanism in order to stop the semi-
supervised learning process and use only the labeled
data. We call our method Deterministic Annealing
based Semi-Supervised Random Forests (DAS-RF)
and show the overall learning and airbag procedures
in Algorithm 1.

4. Experiments

We conduct experiments on both machine learn-
ing and on challenging object category datasets. The
main purpose is to proof the concept of our ap-
proach, analyze its empirical behavior and compare
it to other SSL methods. For all experiments, we set
the α = 0.1 and used 100 trees.

Dataset # Train # Test # Class # Feat.

g50c 50 500 2 50

Letter 15000 5000 26 16

SensIt (com) 78823 19705 3 100

Table 1. Data sets for the machine learning experiments.

Method SVM TSVM SER RMSB RF DAS-RF

g50c 91.7 93.1 91.9 94.2 89.1 93.3

Letter 70.3 65.9 76.5 79.9 76.4 79.7

SensIt 80.2 79.9 81.9 83.7 76.5 84.3

Table 2. Classification accuracy (in %) for machine learn-
ing datasets. DAS-RF stands for our method.

4.1. Machine Learning Datasets

For fair comparison, we implemented the orig-
inal random forest (RF) algorithm as proposed by
Breiman [4] and evaluated it within the same frame-
work as our DAS-RF. Also SERBoost [14] and RMS-
Boost [15] were evaluated in the same framework.
For SVM and TSVM we used standard packages.
We use the g50c, Letter, and SensIt datasets from
the Semi-Supervised Benchmarks [6] and LibSVM
repository [5]. A summary of these data sets is pre-
sented in Table 1. For g50c, we use the original
splits. For the last two datasets, we randomly par-
tition the original training set into two disjoint sets
of labeled and unlabeled samples. We randomly se-
lect 5% of the training set to be labeled and assign
the rest (95%) to the unlabeled set. We repeat this
procedure 10 times and report the average classifica-
tion accuracy in Table 2. As can be seen from this
table, our method is always among the best two over
these datasets with respect to other semi-supervised
methods. Table 3 also shows the average compu-
tation time for these methods. It can also be seen,
that DAS-RF is of course slower than the super-
vised methods, which comes from the fact that has to
process 20 times more unlabeled data on the larger
datasets. However, compared to the other semi-
supervised methods, our method is faster in the pres-
ence of large amounts of data. Since our method is
inherently parallel, we also implemented it on a GPU
resulting in an additional 3-times speed-up compared
to the CPU implementation.

4.2. Caltech-101

For performing the categorization experiments,
we chose the popular Caltech-101 dataset consisting



Method SVM TSVM SER RMSB RF DAS-RF GPU-DAS-RF

Letter 25 74 3124 125 35 72 29

SensIt 195 687 1158 514 125 410 137

Table 3. Computation (train+test) time (in seconds) for ma-
chine learning datasets. Compared to supervised RFs, our
method is slower due to the iterative optimization over the
unlabeled data but has the same speed during testing. Note
that for the g50c data the computation times where similar
for all algorithms.

Algorithm l = 15 l = 30

RF 0.72 0.64

DAS-RF 0.70 0.60

LinSVM 0.74 0.65

improvement 2% 4%

Table 4. Comparison of RF and DAS-RF in terms of clas-
sification error over different numbers of labeled samples.

of 101 object categories with between 31 and 800 la-
beled samples per category. Bosch et al. [2] demon-
strated state-of-the-art performance on that dataset
using Random Forests. This dataset still provides a
challenging benchmark for an inherently multi-class
classifier.

In particular, for representation we use the L1-
normalized PHOG 2 shape descriptors as introduced
by Bosch et al. with 180 and 360 degrees, respec-
tively. We trained RFs with 100 trees, using the in-
formation gain as node splitting criterion, ten random
tests and a maximum tree depth of twenty. Addition-
ally, in contrast to [2], we train multi-class RFs. For
training, we use a randomly chosen subset of labeled
data and all other samples as unlabeled data. Also,
note that in this work, we use much weaker represen-
tations and less engineering for the sake of speed and
clarity than, for instance, compared to [2].

For our SSL process, we allow a maximum of
m = 20 iterations. For the cooling starting parameter
we chose a simple exponential cooling function. We
conduct our experiments with the typical amount of
15 and 30 labeled data, respectively. The final results
are depicted in Table 4 while the improvement over
the iterations is given in Figure 1. In these exper-
iments, we also compare the results with the linear
SVM for sanity check.

In the next experiment, we trained 100 1-vs.-all
binary classifiers trained with 30 labeled samples and

2(10.3.2009) Available for download at
http://www.robots.ox.ac.uk/ vgg/research/caltech/phog.html

Figure 1. Improved average performance over the iterations
for the multi-class problem.

Class RFerr DAS-RFerr Relative Improvement

C4 0.0081 0.0033 58%

C5 0.0078 0.002 65%

C20 0.011 0.0013 87.5%

C33 0.007 0.003 52%

C81 0.0027 0.001 62.5%

Table 5. Comparison of RF with DAS-RF based on the bi-
nary classification error.

measured their improvements. For sake of space in
Table 5 we depicted the five best improving binary
classifiers. Note that on all classes we got an aver-
age improvement of 33% and never observed an in-
creasing error rate during training with DAS-RF. The
reason why the improvements here are much better
than compared to the multi-class experiment is that
the latter problem is much more difficult.

Airbag The purpose of this experiment is to show
two things: First, it shows that if unlabeled data does
not help, the dynamics of the OOBE can be used
as a safety mechanism and, second, that trivial self-
training RFs do not succeed on a diffucult multi-class
categorization task. Hence, we trained two semi-
supervised multi-class classifiers. However, while
one was trained using the same settings as above the
second one was trained on artificial corrupted unla-
beled data. Additionally, we trained a RF performing
self-learning on the (not corrupted) unlabeled data,
i.e., without using DA. The results are depicted in
Figure 2. As can be seen, after 6 iterations the OOBE
increases over a tolerance level from one iteration to
the other one and we can automatically stop the train-
ing. As a result, we get the same performance as if
only training on labeled data. The self-learning ex-
periment fails even on not corrupted unlabeled data.

Discussion The experiments demonstrate that our
method leverages a reasonable usage of unlabeled
data for random forests. The ML experiments show



Figure 2. Training a DAS-RF on corrupted unlabeled data
(green) and its OOBE (green dashed) and on not corrupted
data (blue). After 6 iterations the SSL stops and it is trained
only on labeled data. Self-learning is depicted in red.

that we perform comparable or even outperform
other state-of-the-art ML methods in both speed and
accuracy. Although our RF implementation cannot
achieve the same results as reported in [2], we believe
that a compareable improvement can be achieved us-
ing DAS-RF with better descriptors and data set-
tuning techniques.

5. Conclusion
In this paper, we introduced a novel algorithm for

semi-supervised learning with random forests. In
order to incorporate unlabeled data we proposed a
maximum margin approach using an iterative deter-
ministic annealing-style optimization technique. The
method is easy to implement, converges fast and is,
in contrast to most other SSL methods, inherently
multi-class. Additionally, the dynamic measurement
of the out-of-bag-error allows for easy detection if
the usage of unlabeled data might not help. The
method showed state-of-the-art performance on ma-
chine learning datasets and constant improvement
using unlabeled data over the Caltech-101 catego-
rization task.

Additional incorporation of diversity among the
trees should further improve the results. The usage
of the algorithm with similar classifiers such as ran-
domized ferns is straight-forward.
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