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Abstract. Multiple-instance learning (MIL) allows for training classi-
fiers from ambiguously labeled data. In computer vision, this learning
paradigm has been recently used in many applications such as object clas-
sification, detection and tracking. This paper presents a novel multiple-
instance learning algorithm for randomized trees called MIForests. Ran-
domized trees are fast, inherently parallel and multi-class and are thus
increasingly popular in computer vision. MIForest combine the advan-
tages of these classifiers with the flexibility of multiple instance learning.
In order to leverage the randomized trees for MIL, we define the hidden
class labels inside target bags as random variables. These random vari-
ables are optimized by training random forests and using a fast iterative
homotopy method for solving the non-convex optimization problem. Ad-
ditionally, most previously proposed MIL approaches operate in batch
or off-line mode and thus assume access to the entire training set. This
limits their applicability in scenarios where the data arrives sequentially
and in dynamic environments. We show that MIForests are not limited
to off-line problems and present an on-line extension of our approach. In
the experiments, we evaluate MIForests on standard visual MIL bench-
mark datasets where we achieve state-of-the-art results while being faster
than previous approaches and being able to inherently solve multi-class
problems. The on-line version of MIForests is evaluated on visual ob-
ject tracking where we outperform the state-of-the-art method based on
boosting.

1 Introduction

In recent years, visual object classification and detection has made significant
progress. Besides novel methods for image representations, one important factor
was the development and application of advanced machine learning methods.
Traditional supervised learning algorithms require labeled training data where
each instance (i.e., data sample or feature vector) has a given label. In prac-
tice, the labels are usually provided by a human labeler. However, especially for

? This work has been supported by the Austrian FFG project MobiTrick (825840) and
Outlier (820923) under the FIT-IT program.
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positive classes it is often hard to label the samples so that they can be best
exploited by the learning algorithm. For example, in case of object detection
bounding boxes are usually cropped around the target object and provided as
positive training samples. The decision where exactly to crop the object and at
which size is up to the human labeler and it is often not clear if those patches are
best suited for the learner. Additionally, it would also ease the labeling effort if
the exact object location had not to be marked. By contrast, it would be desired
to provide the learner only a rough position of the target object and leave it
on its own how to incorporate the information in order to deliver best classifi-
cation results. For standard supervised learning techniques it is hard to resolve
such ambiguously labeled data. In contrast, multiple-instance learning (MIL) [1,
2] naturally can perform this task. In particular, in multiple-instance learning,
training samples are provided in form of bags, where each bag consists of several
instances. Labels are only provided for the bags and not for the instances. The
labels of instances in positive bags are unknown whereas all instances in negative
bags can be considered as being negative. For positive bags, the only constraint
is that at least one of the instances is positive. Recently, multiple instance learn-
ing has enjoyed increasing popularity, especially in computer vision, because in
practice data is often provided in a similar manner. Applying MIL in the above
example, the rough object position would correspond to a bag and patches inside
the bag to instances. During training, MIL would find those patches that lead
to best classification results and leave out the others.

While multiple-instance learning has been used in many applications such as
text-categorization [3], drug activity recognition [2] or computer security prob-
lems [4], especially computer vision is one of the most important domains where
multiple instance-learning algorithms have been recently applied. For instance,
many authors applied MIL to image retrieval [5, 6] or image categorization
tasks [7]. Another computer vision application where multiple-instance learning
can be used is to tackle the alignment problem when training appearance-based
detectors based on boosting [8], speed-up classifier cascades [9] or even action
recognition [10] and semantic segmentation [11]. In case of object tracking, it is
mostly hard to decide which patches to use for updating the adaptive appearance
model. If the tracker location is not precise, errors may accumulate which finally
leads to drifting. Recently, Babenko et al. [12] demonstrated that using MIL for
tracking leads to much more stable results. For most of these vision tasks SVM
variants or boosting have been used.

In this paper, we present a novel multiple-instance learning algorithm based
on random forests (RF) [13] 1. The motivation for developing such an algorithm
has several reasons: RFs have demonstrated to be better or at least comparable
to other state-of-the-art methods in both classification [13] and clustering [14].
Caruana et al. [15] showed that RFs outperform most state-of-the-art learn-
ers on high dimensional data problems. Especially, the speed in both training
and evaluation is one of their main appealing properties. Additionally, RFs can

1 Note that we consider “random forests” and “randomized trees” to be the same and
use the term interchangeably throughout the paper.
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easily be parallelized, which makes them interesting for multi-core and GPU
implementations [16]. RFs are inherently multi-class, therefore it is not nec-
essary to build several binary classifiers for solving multi-class problems. Fi-
nally, compared to boosting and other ensemble methods, RFs are more robust
against label noise [13]. These advantages of random forests have also led to
increased interest in the computer vision domain. For instance, recently Gall
and Lempinsky [17] presented an efficient object detection framework based on
random forests. Shotton et al. [18] presented a real-time algorithm for seman-
tic segmentation based on randomized trees. Bosch and Zisserman used RFs
for object categorization [19]. Randomized trees have also successfully applied
to visual tracking, either in batch mode using keypoints [20] or on-line using
tracking-by-detection [21].

The main contribution of this work is an algorithm that extends random
forests to multiple-instance learning. We thus call the method MIForests. MI-
Forests bring the advantages of random forests to multiple-instance learning,
where usually different methods have been applied. In turn, extending random
forests in order to allow for multiple-instance learning allows vision tasks where
RFs are typically applied to benefit from the flexibility of MIL. MIForests are
very similar to conventional random forests. However, since the training data
is provided in form of bags, during learning the real class labels of instances
inside bags are unknown. In order to find the hidden class labels, we consider
them as random variables defined over a space of probability distributions. We
disambiguate the instance labels by iteratively searching for distributions that
minimize the overall learning objective. Since this is a non-convex optimization
problem, we adopt an approach based on deterministic annealing, which provides
a fast solution and thus preserves the speed of random forests during training.
The evaluation speed of MIForests is identical to standard random forests.

Although there have been proposed numerous approaches to the MIL prob-
lem, most of them operate in off-line or batch mode. Off-line methods assume
having access to the entire training data which eases optimization and typically
yields good classifiers. In practice, however, learners often have limited access to
the problem domain due to dynamic environments or streaming data sources. In
computer vision, this is e.g. the case in robot navigation or object tracking. For
such problems off-line learning does not work anymore and on-line methods have
to be applied. In this paper, we take this into account and show how MIForests
can be extended to on-line learning.

In the experimental section, we compare MIForests with other popular MIL
algorithms both on benchmark data sets and on multi-class image classification
problems, where we show that MIForests can achieve state-of-the-art results
without splitting multi-class problems into several binary classifiers. We evaluate
the on-line extension of MIForests on object tracking and compare it to the state-
of-the-art methods.

In Section 2, we present a brief overview on previous multiple-instance learn-
ing methods and RFs. In Section 3, we derive our new multiple-instance learning
algorithm for random forests and present an on-line extension. Experimental re-
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sults on standard visual MIL datasets, comparisons to other MIL approaches and
tracking results of our approach are presented in Section 4. Finally, in Section 5,
we give some conclusions and ideas for future work.

2 Related work

In traditional supervised learning training data is provided in form of {(x1, y1)
. . . (xn, yn)}, where xi is an instance and, in the binary case, yi ∈ {−1,+1}
the corresponding label. In multiple instance learning training samples are given
in bags Bi, i = 1, . . . , n, where each bag may consist of an arbitrary number of
instances Bi = {x1i , x2i , . . . , x

ni
i }. Negative bags B−i consist of only negative in-

stances. Ambiguity is introduced into learning by the constraint that for positive
bags B+

i , it is only guaranteed that there exist at least one positive instance (also
called witness of the bag). There is no information about other instances in the
bag. In fact, they might not even belong to the negative class. The task is to learn
either a bag classifier f : B → {−1, 1} or an instance classifier f : Rd → {−1, 1}.
However, bag classification can be obtained automatically from instance classifi-
cation, e.g., by using the max operator pi = max

j
{pij} over posterior probability

estimates pij for the j-th instance of the i-th bag.
There exists a vast amount of literature and many different approaches on

how to solve the MIL problem. Here, we briefly review some of the most popular
ones. The most näıve approach is to simply ignore the MIL setting and train
a supervised classifier on all instances with the bag label. Blum and Kalai [22],
for instance, showed that one can achieve reasonable results when training an
instance classifier that is robust to class label noise. As we will show later in
the experimental part, RFs are also promising candidates for such a näıve ap-
proach. Many MIL methods work by adapting supervised learners to the MIL
constraints, mostly using SVM-type learners. For example, Andrews et al. [3]
proposed two different types of SVM-MIL approaches mi-SVM and MI-SVM.
They differ basically on their assumptions, i.e., the first method tries to identify
the labels of all instances in a bag while the latter one finds only the witness
and ignores all others. Another SVM-based approach MICA [23] tries to find
the witness using linear programming. There also exist some boosting-based
methods, e.g., [8]. Wang and Zucker [24] trained a nearest neighbor algorithm
using Hausdorff distance. Other popular approaches are based on the diverse-
density assumption, for example [25, 26], which more directly tries to address
the MIL problem via finding a more appropriate feature representation for bags.
In MILES, Chen et al. [7, 27] trained a supervised SVM on data mapped into
a new feature space based on bag similarities. There exist also approaches for
training decision trees in a MIL fashion, e.g., [28].

2.1 Random Forests

Random Forests (RFs) were originally proposed by Amit et al. [29], extended by
Breiman [13] and consist of ensembles of M independent decision trees fm(x) :
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X → Y = {1, . . . ,K}. For a forest F = {f1, · · · , fM} the predictive confidence

can be defined as Fk(x) = 1
M

∑M
m=1 pm(k|x), where pm(k|x) is the estimated

density of class labels of the leaf of the m-th tree, where sample x resides. A
decision is made by simply taking the maximum over all individual probabilities
of the trees for a class k with C(x) = arg max

k∈Y
Fk(x). [13] showed that the

generalization error of random forests is upper bounded by GE ≤ ρ̄ 1−s2
s2 , where ρ̄

is the mean correlation between pairs of trees in the forest and s is the strength of
the ensemble (i.e., the expected value of the margin over the entire distribution).
In order to decrease the correlation of the trees, each tree is provided with a
slightly different subset of training data by subsampling with replacement from
the entire training set, a.k.a bagging. Trees are trained recursively, where each
split node randomly selects binary tests from the feature vector and selects
the best according to an impurity measurement such as the entropy H(I) =

−
∑K

i=1 p
j
i log(pji ), where pji is the label density of class i in node j. The recursive

training continues until a maximum depth is reached or no further information
gain is possible.

3 Multiple-Instance Random Forests

In the following, we introduce a novel multiple instance learning algorithm us-
ing randomized trees called MIForests. MIForests deliver multi-class instance
classifiers in form of F (x) : X → Y = {1, . . . ,K}. Hence, during learning for
each bag there is guaranteed that it has at least one instance from the target
class but it may also consist of instances of some or all other classes {1, . . . ,K}.
This makes MIForests different to most previous MIL algorithms that only yield
binary classifiers and require to handle a multi-class problem by a sequence of
binary ones. One obvious way to design RFs capable of solving MIL tasks is to
adopt MIL versions for single decision trees [28]. However, strategies developed
for common decision trees are hard to apply for RFs due to the random split na-
ture of their trees. For example, improper regularization of trees of a RF on the
node level can decrease the diversity ρ̄ among trees and thus increase the overall
generalization error [13]. Thus, in order to perform multiple instance learning
with random forests one has to find an optimization strategy that preserves the
diversity among the trees.

We formulate multiple instance learning as an optimization procedure where
the labels of the instances become the optimization variables. Therefore, the
algorithm tries to uncover the true labels of the instances in an iterative manner.
Given such labels, one can train a supervised classifier which then can be used
to classify both instances and bags. Let Bi, i = 1, . . . , n denote the i-th bag in
the training set with label yi. Each bag consists of ni instances: {x1

i , . . . ,x
ni
i }.



6 MIForests: Multiple-Instance Learning with Randomized Trees

We write the objective function to optimize as

({yji }
∗, F ∗) =arg min

{yj
i },F (·)

n∑
i=1

ni∑
j=1

`(Fyj
i
(xj

i )) (1)

s.t. ∀i :

ni∑
j=1

I(yi = arg max
k∈Y

Fk(xj
i )) ≥ 1.

The objective in this optimization procedure is to minimize a loss function `(·)
which is defined over the entire set of instances by considering the condition
that at least one instance in each bag has to be from the target class. Note that
I(·) is an indicator function and Fk(x) is the confidence of the classifier for the
k-th class, i.e., Fk(x) = p(k|x) − 1

K . Often the loss function depends on the
classification margin of an instance. In the case of Random Forests, the margin
can be written as [13]

m(x, y) = p(y|x)−max
k∈Y
k 6=y

p(k|x) = Fy(x)−max
k∈Y
k 6=y

Fk(x). (2)

Note that for a correct classification m(x, y) > 0 should hold. Overall, it can easy
be seen that Eq. (1) is a non-convex optimization problem because a random
forest has to be trained and simultaneously a suitable set of labels yji has to be

found. Due to the integer values of the labels yji , this problem is a type of integer
programming and is usually difficult to solve. In order to solve this non-convex
optimization problem without loosing too much of the training speed of random
forests, we use a fast iterative optimization procedure based on deterministic
annealing (DA).

3.1 Optimization

DA [30] is a homotopy method which is able to fast minimize non-convex combi-
natorial optimization problems. The main idea is to extend a difficult optimiza-
tion problem with an easier one by adding a convex entropy term and solve this
first. In particular, one tries to minimize the entropy H of the distribution p in
form of

p∗ = arg min
p∈P

Ep(F(y))− TH(p), (3)

where P is a space of probability distributions and F(y) is our objective function.
The optimization problem is than gradually deformed to its original form using
a cooling parameter T, i.e., T0 > T1 > . . . > T∞ = 0. Due to its speed and
simplicity, DA-based optimization has been applied to many problems, among
them also multiple-instance learning though in context with SVMs, i.e., see [31].
Furthermore, due to the induced randomness in deterministic annealing, it fits
to the nature of randomized trees and was recently also used for solving semi-
supervised learning problems [32]. For further details on DA we refer the reader
to [30].
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In order to optimize our MIL objective function (Eq. (1)), we propose the
following iterative strategy: In the first iteration, we train a näıve RF that ignores
the MIL constraint and uses the corresponding bag labels for instances inside
that bag. Then, after the first iteration, we treat the instance labels in target
bags as binary variables. These random variables are defined over a space of
probability distributions P. We now search a distribution p̂ ∈ P for each bag
which solves our optimization problem in Eq. (1). Based on p̂ each tree randomly
selects the instance labels for training. Hence, based on the optimization of p̂
we try to identify the real but hidden labels of instances.

We reformulate the objective function given in Eq. (1) so that it is suitable
for DA optimization

LDA(F, p̂) =

n∑
i=1

ni∑
j=1

K∑
k=1

p̂(k|xj
i )`(Fk(xj

i )) + T

n∑
i=1

H(p̂i), (4)

where T is the temperature parameter and

H(p̂i) = −
ni∑
j=1

K∑
k=1

p̂(k|xj
i ) log(p̂(k|xj

i )) (5)

is the entropy over the predicted distribution inside a bag. It can be seen that the
parameter T steers the importance between the original objective function and
the entropy. If T is high, the entropy dominates the loss function and the problem
can be easier solved due to the convexity. If T = 0 the original loss dominates
(Eq. (1)). Hence, DA first solves the easy task of entropy minimization and
then by continuously decreasing T from high values to zero gradually solves the
original optimization problem, i.e., finding the real but hidden instance labels y
and simultaneously training an instance classifier.

In more detail, for a given temperature level, the learning problem can be
written as

(F ∗, p̂∗) =arg min
p̂,F (·)

LDA(F, p̂) (6)

s.t. ∀i :

ni∑
j=1

I(yi = arg max
k∈Y

Fk(xj
i )) ≥ 1.

We split this optimization problem up into a two-step convex optimization
problem analog to an alternating coordinate descent approach. In the first step,
the objective function F is optimized by fixing the distribution p̂ and optimiz-
ing the learning model. In the second step, the distribution p∗ over the bags
according to the current entropy level is adjusted. Note that both individual
steps are convex optimization problems. For a given distribution over the bag
samples, we randomly choose a label according to p̂. We repeat this process
independently for every tree f in the forest. Hence, in the limit, we will exactly
maintain the same distribution over the unlabeled samples as given by p̂. Let
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Algorithm 1 MIForests

Require: Bags {Bi}
Require: The size of the forest: M
Require: A starting heat parameter T0

Require: An ending parameter Tmin

Require: A cooling function c(T,m)
1: Set: ∀i : ŷj

i = yi
2: Train the RF: F ← trainRF({ŷj

i }).
3: Init epochs: m = 0.
4: while Tm+1 ≥ Tmin do
5: Get the temperature: Tm+1 ← c(Tm,m).
6: Set m← m + 1.
7: ∀xj

i ∈ Bi, k ∈ Y : Compute p∗(k|xj
i )

8: for t from 1 to M do
9: ∀xj

i ∈ Bi : Select random label, ŷj
i according to p∗(·|xj

i )
10: Set the label for instance with highest p∗(·|xj

i ) equal to bag label
11: Re-train the tree:
12: fm ← trainTree({ŷj

i }).
13: end for
14: end while
15: Output the forest F .

{ŷij} be the randomly drawn labels according to the distribution p̂ for m-th
tree. The optimization problem for the m-th tree becomes

f∗m =arg min
f

n∑
i=1

ni∑
j=1

`(fŷj
i
(xj

i )) (7)

s.t. ∀i :

ni∑
j=1

I(yi = arg max
k∈Y

fk(xj
i )) ≥ 1.

Since the margin maximizing loss function is convex, this loss function is also
convex. In order to not violate the MIL constraint, after having randomly se-
lected instance labels for a bag, we always set the instance with the highest
probability according to p̂ equal to the bag label. At this stage we train all the
trees in the forest by the formulation given above.

After we trained the random forest, we enter the second stage where we find
the optimal distribution according to

p̂∗ =arg min
p̂

n∑
i=1

ni∑
j=1

K∑
k=1

p̂(k|xj
i )`(Fk(xj

i )) + T

n∑
i=1

H(p̂i). (8)

The optimal distribution is found by taking the derivative w.r.t p and setting it
to zero. We depict all detailed steps of the method in Algorithm 1.



MIForests 9

3.2 On-line MIForests

MIForests as introduced above are trained off-line using a two-step optimization
procedure as given in Eq. (4), where in one step the objective function F is
optimized and in the second step the distribution p̂ over the bags, respectively.
In order to modify the algorithm so that it is suitable for on-line learning, i.e.,
the bags Bi arrive sequentially, one has to change both optimization steps to
operate in on-line mode. In the following, we show how to train the randomized
trees on-line in order to optimize F and also how p̂ can be optimized on-line to
disambiguate the class labels inside positive bags.

Bagging, necessary to build the tree ensemble, can be easily done on-line by
modeling the sequentially arriving samples with a Poisson distribution initialized
with a constant value λ [33]. On-line learning of the decision trees is less trivial
due to their recursive split nature. However, as we recently showed [21] the
pure recursive training of the trees can be circumvented by using a tree-growing
procedure similar to evolving-trees [34]. In more detail, the algorithm starts
with trees consisting only of root nodes and randomly selected node tests fi and
thresholds θi. Each node estimates an impurity measure based on the Gini index
(Gi =

∑K
i=1 p

j
i (1 − p

j
i )) on-line, where pji is the label density of class i in node

K. Then, after each on-line update the possible information gain ∆G during a
potential node split is measured. If ∆G exceeds a given threshold β, the node
becomes a split node; i.e., it is not updated any more and generates two child
leaf nodes. The growing proceeds until a maximum depth is reached. Even when
the tree has grown to its full size, all leaf nodes are further on-line updated. The
method is simple to implement and has shown to converge fast to its off-line
counterpart. For further details we refer the reader to [21].

Besides on-line training of the randomized trees, we also have to perform the
deterministic annealing on-line. This means we have to estimate p̂ on-line by
examining the sequentially arriving samples. Therefore, if a new bag Bi arrives,
we initialize a new distribution p̂i over its instances using the current confidence
output of Ft. Then, we iteratively apply the optimization of Ft and p̂i only
for the current bag Bi following the same two-step procedure and annealing
schedule as in the off-line case (Eq. (7),Eq. (8)). Afterwards, Bi is discarded and
the training proceeds with the next bag Bi+1. We skip the algorithm box due
to lack of space.

4 Experiments

The purpose of this section is to evaluate the proposed algorithms on standard
MIL machine learning benchmark datasets and to demonstrate their perfor-
mance on typical computer vision problems such as object tracking. Note that,
in general, we abstain from any data set or feature engineering procedures, since
the main purpose is to compare the different learning methods.
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4.1 Benchmark Datasets

We first evaluate our proposed MIForests on popular benchmark datasets used in
most studies of multiple-instance learning algorithms, i.e., the Musk1 and Musk2
drug activity datasets proposed by Dietterich [2] and the Tiger, Elephant and
Fox image datasets proposed by Andrews et al. [3]2. For sanity check we also
tested common random forests [13], i.e., ignoring the MIL constraint. For all
learners we used 50 trees with a maximum depth of 20. As cooling schedule we
used a simple exponential function in form of Tt = e−t·C , where t is the current
iteration and the constant C = 1

2 . We determined these settings empirically and
kept them fixed over all experiments.

As can be observed, the performance of the individual approaches varies
highly depending on the data set. The experiments show that MIForests achieve
state-of-the-art performance and are even outperforming several SVM-based ap-
proaches and those based on boosting. Especially for the vision problems, we
are always among the best. Also the näıve RF approach yields surprisingly good
performance, especially on Fox and Musk1 ; however, it cannot take pace with
the performance of its MIForest counterpart. One explanation for this might
be that RFs are less susceptible to noise compared to other learning methods,
which is necessary for the näıve approach [22]. Compared to its most similar
SVM variant (AL-SVM), MIForest outperforms it on two datasets, draws on
one and performs worse on two. Finally, it has to be mentioned that especially
for [31] and [35] better results can be achieved by incorporating prior knowl-
edge into the learners, e.g., how many “real” positives exist inside bags; which
however also holds for MIForests.

Method Elephant Fox Tiger Musk1 Musk2

RandomForest [13] 74 60 77 85 78

MIForest 84 64 82 85 82

MI-Kernel [3] 84 60 84 88 89
MI-SVM [36] 81 59 84 78 84
mi-SVM [36] 82 58 79 87 84
MILES [7] 81 62 80 88 83
SIL-SVM 85 53 77 88 87
AW-SVM [31] 82 64 83 86 84
AL-SVM [31] 79 63 78 86 83
EM-DD [26] 78 56 72 85 85
MILBoost-NOR [8] 73 58 56 71 61

Table 1. Results and comparisons in terms of percent classification accuracy on pop-
ular MIL benchmark datasets. We report the average over 5 runs. Best methods with
the error margin are marked in bold face.

2
Sample C++ code is available at http://www.ymer.org/amir/software/milforests
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4.2 Corel Dataset

Here, we evaluate our proposed methods on the Corel-1000 and Corel-2000 image
dataset for region-based image classification. The data set consists of 2000 images
with 20 different categories. Each image is a bag consisting of instances obtained
via oversegmentation. It is thus a typical MIL problem. In order to allow for fair
comparison we used the same data settings and features as proposed by Chen et
al. [7]. For the results we used the same settings as in our previous experiments.
In contrast to most other approaches, we did not train 20 1-vs.-all classifiers, but
trained one multi-class forest, which is usually a more difficult task. We compare
MIForests with MILES, the original algorithm proposed on this data set [7]. Since
MILES is a binary algorithm we trained 20 1-vs.-all MILES classifiers and depict
the results in Table 2. As can be seen, MIForests achieve completive results for
multi-class scenarios, however, being much faster. We measured the average time
on a standard Core Duo machine with 2.4 Ghz.

Method Corel-1000 Corel-2000 1000 Images[sec.] 2000 Images[sec.]

MIForest 59 66 4.6 22.0

MILES 58 67 180 960

Table 2. Results and comparisons on the COREL image categorization benchmark.
Additionally, we depict the training times in seconds.

4.3 Object Tracking

A recent dominating trend in tracking called “tracking by detection” has shown
to deliver excellent results at real-time speeds. In these methods, usually an
appearance-based classifier is trained with a marked object at the first frame
versus its local background [37]. The object is then tracked by performing re-
detection in the succeeding frames. In order to handle rapid appearance and
illumination changes, recent works, e.g., [38], use on-line self-updating of the
classifiers. However, during this process it is not clear where to select the posi-
tive and negative updates necessary for self-updating. If the samples are selected
wrongly, slight errors can accumulate over time (a.k.a label jitter) and cause
drifting. Recently, Babenko et al. [12] demonstrated that label jitter can be han-
dled by formulating the update process using an on-line MIL boosting algorithm.
Using MIL, the allowed positive update area around the current tracker can be
increased and the classifier resolves the ambiguities by itself, yielding more robust
tracking results. See [12] for a more detailed discussion about the usefulness of
MIL for tracking. In the following, we demonstrate that on-line MIForests can
also give excellent tracking results, outperforming the state-of-the-art tracker
based on boosting.
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We focus on tracking arbitrary objects; so there is no prior knowledge about
the object class available except its initial position. We use eight publicly avail-
able sequences including variations in illumination, pose, scale, rotation and ap-
pearance, and partial occlusions. The sequences Sylvester and David are taken
from [39] and Face Occlusion 1 is taken from [40], respectively. Face occlusion
2, Girl, Tiger1,Tiger2 and Coke are taken from [12]. All video frames are gray
scale and of size 320 × 240. To show the real accuracy of the compared track-
ing methods, we use the overlap-criterion of the VOC Challenge [41], which is
defined as Aoverlap = RT ∩RGT /RT ∪RGT , where RT is the tracking rectangle
and RGT the groundtruth. Since we are interested in the alignment accuracy of
our tracker and the tracked object, rather than just computing the raw distance
we measure the accuracy of a tracker by computing the average detection score
for the entire video. Note that values between 0.5 and 0.7 are usually acceptable
results, values larger than 0.7 can be considered as almost perfect.

The main purpose of the tracking experiments is the comparison of the in-
fluence of the different on-line learning methods. Hence, we use simple Haar-like
features for representation, did not implement any rotation or scale search and
avoid any other engineering methods, although these things would definitely im-
prove the overall results. For MIForests, we used 50 trees with depth 10 and the
same annealing schedule as in the ML experiments. Overall, we generate 500
features randomly. As [12] for all boosting methods, we used 50 selectors with
each 250 weak classifiers which results in a featurepool of size 12500.

In Table 3 we depict detailed results for all tracking sequences compared to
MILBoost [12], SemiBoost (OSB) [42], on-line AdaBoost (OAB)[38] and on-line
random forests (ORF) [21]. As can be seen, MIForests perform best on seven
tracking sequences. Remarkably, we are able to outperform MILBoost, which
is currently known to be amongst the best tracking methods, on 6 out of 8
sequences, draw on 1 and are slightly worse on 1. The resulting tracking videos
can be found in the supplementary material.

Method sylv david faceocc2 tiger1 tiger2 coke faceocc1 girl

MIForest 0.59 0.72 0.77 0.55 0.53 0.35 0.77 0.71
MILBoost 0.60 0.57 0.65 0.49 0.53 0.33 0.60 0.53
OSB 0.46 0.31 0.63 0.17 0.08 0.08 0.71 0.69
OAB 0.50 0.32 0.64 0.27 0.25 0.25 0.47 0.38
ORF 0.53 0.69 0.72 0.38 0.43 0.35 0.71 0.70

Table 3. Tracking results on the benchmark sequences measured as average detection
window and ground truth overlap over 5 runs per sequence. Best performing method
is marked in bold face.



MIForests 13

5 Conclusion

In this paper, we presented a new multiple-instance learning method based on
randomized trees (MILForest). We define the labels of instances inside positive
bags as random variables and use a deterministic-annealing style procedure in
order to find the true but hidden labels of the samples. In order to account for
the increasing number of data and leverage the usage of our method in streaming
data scenarios, we also showed how to extend MILForests for on-line learning.
We demonstrated that MILForests are competitive to other methods on standard
visual MIL benchmark datasets while being faster and inherently multi-class. We
demonstrated the usability of the on-line extension on the task of visual object
tracking where we outperformed state-of-the-art methods. In future work, we
plan to test our algorithm on other vision applications such as object detection
and categorization.
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