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Abstract. A successful approach to tracking is to on-line learn dis-
criminative classifiers for the target objects. Although these tracking-
by-detection approaches are usually fast and accurate they easily drift in
case of putative and self-enforced wrong updates. Recent work has shown
that classifier-based trackers can be significantly stabilized by applying
semi-supervised learning methods instead of supervised ones. In this pa-
per, we propose a novel on-line multi-view learning algorithm based on
random forests. The main idea of our approach is to incorporate multi-
view learning inside random forests and update each tree with individual
label estimates for the unlabeled data. Our method is fast, easy to im-
plement, benefits from parallel computing architectures and inherently
exploits multiple views for learning from unlabeled data. In the track-
ing experiments, we outperform the state-of-the-art methods based on
boosting and random forests.

1 Introduction

Tracking of a priori unknown objects is still a big challenges in computer vision.
Despite the huge amount of research spent on this task it is still hard to de-
sign robust tracking systems that can achieve human-level performance. Visual
trackers have to cope with all variations that occur in natural scenes such as
shape and appearance changes, different illuminations as well as varying poses
or partial occlusions. Numerous methods to approach the tracking tasks have
been proposed, such as global template-based trackers, shape-based methods,
probabilistic models using mean-shift, particle filtering, local key-point based
trackers, or flow-based trackers. See also [1] for a detailed review.

A recently dominating trend is to apply classifiers – trained on object versus
background – to track objects because they are able to deliver highly accurate
results in real-time. Such tracking-by-detection systems [2] usually train a classi-
fier at the very first frame versus its local background and perform re-detection
in the succeeding frames. In order to handle rapid appearance and illumination
changes, they use on-line classifiers that learn the target object based on their
own predictions, e.g., [3]. However, as these classifiers perform self-learning it is
difficult to decide autonomously where exactly to take the positive and negative
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updates, respectively. Even if the object is tracked correctly, the alignment may
not be perfect, which can lead to slightly wrong updates of the tracker (a.k.a
label jitter). If these errors accumulate over time and self-reinforce the classifier
in its wrong decisions, the tracker can easily drift [4].

Recent approaches try to tackle the drifting problem by formulating the
tracking-by-detection task as one-shot semi-supervised learning. For instance,
Grabner et al. [5] proposed an on-line semi-supervised boosting algorithm (On-
line SemiBoost) where supervised updates are only performed at the beginning,
i.e., the first frame. All the subsequent frames are considered as unlabeled data
used in order to regularize the learner with an unsupervised loss function. Al-
though this method has shown to be less susceptible to drifting and is still more
adaptive than a static classifier, it looses the capability of self-learning classifiers
to adapt fast in case of rapid appearance changes. Also highlighting this problem
of Online SemiBoost, recently Babenko et al. [6] formulated the tracking task as
a multiple-instance learning (MIL) problem. Using MIL, the classifier in prin-
ciple is still performing self-learning; however, the allowed positive update area
around the current tracker can be increased and the classifier resolves the am-
biguities by itself, yielding a tracker that is more robust than a pure supervised
learner but less inertial than SemiBoost.

Another semi-supervised learning method that has been recently applied to
tracking [7] is co-training, where the main idea is that two classifiers train each
other on unlabeled data using distinct views [8]. Co-training can be very powerful
but has the main drawback that it requires classifiers which are conditional
independent given the class in order to converge, which is hard to fulfill in
practice. One way to weaken this condition is to use two different classifiers [9]
instead of different sufficient views. However, since this is still often not stable
enough [10] showed that for such an approach it is necessary to take at least three
classifiers. In practice, using different kinds of classifiers is complicated because
it is still an open research problem how to compare the outputs. That is, the
classifiers need to yield comparable performance in order to train each other.
Also, the computing overhead grows with the number of classifiers and not for
all of the learners on-line algorithms exist. Hence, what we need in practice is
a single classifier approach that is able to emulate the multi-view robustness of
using several classifiers.

In this work, we propose a novel on-line semi-supervised learning approach
based on random forests. The method is inherently able to learn from mul-
tiple views and is thus called MVForests. The motivation for taking random
forests [11] for our approach stems from the facts that they are fast and ac-
curate learners, inherently parallel and multiclass capable and less suscpetible
to class-label noise. We grow a common on-line random forest, similar to the
recently proposed method by Saffari et al [12], and hence during evaluation our
algorithm is identical to [12]. However, for learning, our method is able to ex-
ploit both labeled and unlabeled data, where the latter one is necessary in order
to increase the stability of the tracking results. In order to incorporate the un-
labeled data, we create a multi-view learning setting for each of the individual
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trees; that is, each tree is trained individually with a possibly different set of
label predictions for the unlabeled data. In particular, each tree is trained by
a random sub-set of the remaining trees. Thereby, we guarantee that no single
tree is performing self-learning and due to the random selection of trees we fur-
ther achieve that no single tree is provided with the same label estimates for
the unlabeled data set, which preserves the diversity among the trees. We in-
corporate multiple features into learning by restricting each tree to a subset of
feature types. For instance, if we use color features and simple Haar features,
trees of the type Haar features are trained by color-trees and vice versa. This
setting can be extended to an arbitrary number of features. However, as we will
show in the tracking experiments, our method is able to deliver highly accurate
results even when using a single feature type. Our algorithm has several advan-
tages: First, it provides an easy, fast an inherent way to learn from multiple
views. This is necessary in order to ensure repeatability and real-time perfor-
mance. Second, since we use more than two learners, we have weaker theoretical
conditions in order to show convergence of our method [10]. As we will show in
the experiments, our method outperforms the state-of-the-art tracking methods
based on boosting and, on average, performs better than using fully self-learned
random-forests [12] or off-line random forests [13].

The reminder of this paper is as follows. In the following section, we will
introduce the basic notations and shortly review related work. Then, in Section 3,
we will introduce our novel on-line learning method. We will evaluate our method
on the task of visual object tracking in Section 4. Section 5 concludes the paper
and discusses ideas for future work.

2 Notations and Related Work

In supervised learning one deals with a labeled dataset DL ⊆ X × Y =
{(x1, y1), . . . , (x|DL|, y|DL|)}, where xi ∈ X = IRP and yi ∈ Y = {+1,−1}.
In contrast, unsupervised methods aim to find an interesting (natural) structure
in X using only unlabeled input data DU ⊆ X = {x1, . . . ,x|DU |}. Although
supervised learners usually yield better results, most of the time unlabeled data
can be obtained significantly easier than labeled samples. Hence, there exist in-
creased interest in semi-supervised learning methods [14], such as co-training [8],
which are able to exploit both labeled DL and unlabeled DU data. In co-training,
the main idea is that two initial classifiers h1 and h2 are trained on labeled data
(x1

i , yi), (x
2
i , yi) ∈ DL, where x1 and x2 shows two views of the same data point.

Then, these classifiers update each other using the unlabeled data set DU , if one
classifier is confident on a sample whereas the other one is not. Co-training clas-
sifiers minimize the error on the labeled samples while increasing the agreement
on the unlabeled data. Thus, the unlabeled data helps to improve the margin
of the classifiers and to decrease the generalization error [15]. The approach has
proven to converge, if two assumptions hold: (i) the error rate of each classifier
is low, which means each classifier is in principle able to solve the given task,
and (ii) the views must be conditionally independent [8]. Especially the second
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condition is more of a theoretical requirement and is hard to fulfill in practice.
However, the independence condition can be relaxed (e.g., [16, 10, 15]), for in-
stance, by applying more than two classifiers. If more than two classifiers are
used, co-training becomes multi-view learning1. For practical usage, this means
that co-training can even be applied if the learners are slightly correlated.

Computer vision naturally offers many physical “real-world” views, which
can be exploited by co-training and multi-view learning. For instance, [17, 18]
combined different simple cues based on shape, appearance, or motion to train
visual classifiers. Co-training has also been applied to tracking. For instance,
Tang et al. [19] used an SVM-based co-training approach that was later extended
by Yu et al. [20]. Recently [7] presented an on-line boosting approach which
outperforms the previous methods based on SVMs.

2.1 On-line Random Forests

Random Forests (RFs) were originally proposed by Amit and D. Geman [21],
extended by Breiman [11] and consist of ensembles of T independent decision
trees ft(x) : X → Y = {1, . . . ,K}. For a forest F = {f1, · · · , fT } the predictive

confidence can be defined as Fk(x) = 1
T

∑T
t=1 pt(k|x), where pt(k|x) is the esti-

mated density of class labels of the leaf of the t-th tree, where sample x resides.
A decision is made by simply taking the maximum over all individual probabil-
ities of the trees for a class k with C(x) = arg max

k∈Y
Fk(x). Breiman [11] showed

that the generalization error of random forests is upper bounded by

GE ≤ ρ̄1− s2

s2
, (1)

where ρ̄ is the mean correlation between pairs of trees in the forest2 and s is
the strength of the ensemble (i.e., the expected value of the margin over the
entire distribution). In order to decrease the correlation of the trees, each tree
is provided with a slightly different subset of training data by subsampling with
replacement from the entire training set, a.k.a bagging [22]. Trees are trained
recursively, where each split node randomly selects binary tests from the fea-
ture vector and selects the best according to an impurity measurement. The
information gain after node splitting is usually measured with

∆H = − |Il|
|Il|+ |Ir|

H(Il)−
|Ir|

|Il|+ |Ir|
H(Ir), (2)

where Il and Ir are the left and right subsets of the training data, respectively.
H(I) = −

∑K
i=1 p

j
i log(pji ) is the entropy of the classes in the node and pji is

1 Note that in the literature the term “multi-view learning” is mainly used for learning
from two views or classifiers, respectively. In this work, we distinguish between the
two terms in a way that “co-training” only uses two views and is a special case of
multi-view learning, where in the latter case always more than two views are used.

2 The correlation is measured in terms of the similarities of the predictions.
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the label density of class i in node j. The recursive training continues until a
maximum depth is reached or no further information gain is possible.

RFs have demonstrated to be better or at least comparable to other state-
of-the-art methods in both classification [11, 23] and clustering [24]. Especially,
the speed in both training and evaluation is one of their main appealing proper-
ties. Additionally, since the trees are trained and evaluated independently, RFs
can easily be parallelized, which makes them interesting for multi-core and GPU
implementations [25]. Finally, compared to boosting and other ensemble meth-
ods, RFs are more robust against label noise [11]. This resistance to noise, is
especially important when learning from unlabeled data where wrong label esti-
mates are an inherent problem. These advantages of random forests have also led
to increased interest in the computer vision domain. For instance, recently [26]
presented an efficient object detection framework based on random forests, [27]
presented a real-time algorithm for semantic segmentation based on randomized
trees, and [28] presented state-of-the-art categorization results using RFs. Ran-
domized trees have also successfully been applied to visual tracking, either in
batch mode using keypoints [13] or on-line using tracking-by-detection [12].

Random forests, as reviewed above, is an off-line learning method. Recently,
Saffari et al. [12] proposed an on-line version of RFs, which allows to use them
as on-line classifiers in tracking-by-detection systems. Since recursive training of
decision trees is hard to do in on-line learning, they propose a tree-growing proce-
dure similar to evolving-trees [29]. The algorithm starts with trees consisting only
of root nodes and randomly selected node tests fi and thresholds θi. Each node
estimates an impurity measure based on the Gini index (Gi =

∑K
i=1 p

j
i (1− p

j
i ))

on-line, where pji is the label density of class i in node K. Then, after each on-line
update the possible information gain ∆G during a potential node split is mea-
sured. If ∆G exceeds a given threshold β, the node becomes a split node, i.e., is
not updated any more and generates two child leaf nodes. The growing proceeds
until a maximum depth is reached. Even when the tree has grown to its full size,
all leaf nodes are further on-line updated. The method is simple to implement
and has shown to converge fast to its offline counterpart. Additionally, [12] also
showed that the classifier is faster and more noise-robust compared to boosting,
which makes it an ideal candidate for our tracking system.

3 On-line Multi-view Training

As we have seen in the previous section, co-training is a popular approach in
order to incorporate unlabeled data and has been used in many computer vision
tasks. In this section, we will introduce a novel multi-view learning approach
called MVForests, which extends the idea of co-training to an arbitrary number
of views using random forests.

In particular, consider a random forest F = {f1, · · · , fT }, where T is the
number of trees. Further, assume an on-line setting, where the training samples
xi arrive sequentially. If xi is provided along with its class label yi we can simply
update the forest using [12]. If xi is an unlabeled sample, we have to estimate
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its label ỹi; however, without using self-learning to reduce drifting. Therefore,
we propose the following strategy: For each tree ft we randomly select with
replacement a sub-forest F∗t , with |F∗t | = T , i.e., the forest consists of the
same amount of trees as the original forest. This strategy can be interpreted as
performing bagging on trees and results in forests where some trees of F are used
multiple times, whereas on average one third (see [22]) of the total available trees
are left out. We call the sub-forest F∗t for the tth tree parent forest. Note that
for each tree its corresponding parent forest indices are created at the beginning
of the learning and are kept fix during the on-line learning. Then, each ft uses
its corresponding parent forest in order to predict the label for xi; i.e.,

ỹti = arg max
k∈Y

F∗t,k(xi). (3)

We further use the confidence-rated predictions of each parent in order to
encode uncertainties about a label in form of weight estimates. In particular,
we take the confidence of the parent ensemble as weights in form of w̃i =
1
T

∑T
t=1 pt(ỹi|x). For evaluation and testing, we take the original forest F . The

overall algorithm is depicted in detail in Algorithm 1.

Algorithm 1 On-line Multi-View Forests

Require: Sequential training example 〈xi, yi〉 or 〈xi〉
Require: The size of the forest: T
1: // For all trees
2: for t from 1 to T do
3: //sub-sample parent tree ensemble
4: F∗t ← SubSampleTreeIndices(T )
5: end for
6: // For each arriving sample xi

7: for t from 1 to T do
8: if ∃yi then
9: ft ← updateTree(ft,xi, yi)

10: else
11: // Estimate label and weight
12: ỹt

i = arg max
k∈Y

evalForest(F∗t ,xi)

13: w̃t
i = getForestConfidence(F∗t ,xi, ỹ

t
i)

14: ft ← updateTree(ft,xi, ỹ
t
i , w̃

t
i)

15: end if
16: end for
17: Output the forest F .

Discussion Although a random forest acts from the outside as a single classifier,
it consists already of a committee of classifiers, i.e., its trees. This suggests
to bring multi-view learning inside a forest. However, there are two important
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things that have to be considered: first, in order to get reliable label predictions
for training each tree, we have to create sub-trees or parents that are strong
enough to deliver accurate predictions. It is clear that for a tree ft the strongest
prediction that it can get out of the forest, though excluding itself, consists of the
averaged prediction of the rest of the trees, i.e.,

∑T
m I(t 6= m)ft, where I is the

indicator function. However, it is also clear that if T is a large number, leaving out
one tree will not change the overall predictions at all, which means that using this
strategy each tree will get the same label estimates for xi. Therefore, MVForests
create the parent forests in form of bagged classifiers from the entire forest, which
results in parents where some trees are taken eventually several times and some
trees are not taken at all. On average, 1 − 1

e non-identical trees form a parent
ensemble. We enforce the agreement of the trees on the unlabeled data, which
overall increases the classification margin and improves the generalization. This
strategy ensures that the predictions are reliable but not the same, thus yielding
a typical multi-view setting, which overall preserves the diversity among the trees
(see also Eq. (1)). To the best of our knowledge, this is the first approach that
applies the bagging idea of [22] on sampling from a large amount of classifiers
and not data, as in the typical setting.

Our work is related to the tri-training algorithm [10], where the main idea
is to take three classifiers hi and the ith classifier is trained by the remaining
two classifiers if they agree on the prediction of an unlabeled datum and simu-
latenously each hi has an error below a given threshold. MVForests differ from
tri-training in three important aspects: (i) MVForests are not limited to three
views but perform on an arbitrary number of views, only limited by the number
T of trees that form an ensemble. (ii) Each unlabeled sample is incorporated,
regardless of the agreement and the error of concomitant trees, which makes
our approach much simpler. (iii) MVForest is an on-line algorithm. A second
approach, which is related to MVForests is the recently proposed DAS-RF al-
gorithm [30]; however, in this work an off-line optimization procedure is used
which needs several parameters to be set, and it is not designed to learn on-line
from multiple views.

4 Experiments

Within this section, we demonstrate the performance of our learning method
for the task of object tracking, where we assume no prior knowledge about the
object class available except its initial position. We use eight publicly available
sequences including variations in illumination, pose, scale, rotation and appear-
ance, and partial occlusions. The sequences Sylvester and David are taken from
[31] and Face Occlusion 1 is taken from [32], respectively. Face occlusion 2,
Girl, Tiger1,Tiger2 and Coke are taken from [6]. All video frames are gray
scale and of size 320 × 240. To show the real accuracy of the compared track-
ing methods, we use the overlap-criterion of the VOC Challenge [33], which is
defined as Aoverlap = RT ∩ RGT /RT ∪ RGT , where RT is the tracking rect-
angle and RGT the groundtruth. We compare MVForests to supervised on-line
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Sequence MVForest CoBoost On-line RF Off-line RF MILBoost SemiBoost

sylv 0.54 0.53 0.53 0.50 0.60 0.46
david 0.71 0.52 0.69 0.32 0.57 0.31
faceocc2 0.78 0.79 0.72 0.79 0.65 0.63
tiger1 0.51 0.41 0.38 0.34 0.49 0.17
tiger2 0.45 0.13 0.43 0.32 0.53 0.08
coke 0.28 0.41 0.35 0.15 0.33 0.08
faceocc1 0.79 0.78 0.71 0.77 0.60 0.71
girl 0.77 0.69 0.70 0.74 0.53 0.69

Table 1. Accuracy comparison of different approaches using single views measured
using the Pascal VOC overlap criterion. Best performing method marked bold-face.
Second best method marked underlined.

(a) Frame# 10 (b) Frame# 88 (c) Frame# 540 (d) Frame# 880

(e) Frame# 10 (f) Frame# 88 (g) Frame# 540 (h) Frame# 880

Fig. 1. Comparison of supervised updates ((a) to (d)) and MVForest’s updates ((e) to
(h)) (red circles: positive updates; blue circles: negative updates; circle radius corre-
sponds to sample update weights). MVForests inherently update with smaller weight if
the sample is noisy whereas supervised updates are hand-crafted and always weighted
equally high (best viewed in color).

random forests (On-line RF) [12], off-line random forests (Off-line RF) [13],
MILBoost [6], SemiBoost [5] and CoBoost [7]. We skip the related SVM-based
co-training approaches as they were all outperformed by CoBoost. All methods
are implemented in C++ and run in real-time, i.e., > 25fps. Note that although
MVForest are able to incorporate an arbitrary number of features, to ensure fair
comparison in our experiments we evaluate the tracking performance of the dif-
ferent approaches using only Haar-features. We use forest sizes of 100 trees, with
a maximum depth of 15. For the boosting classifiers, we use 2× 50 selectors for
CoBoost and the original settings for MILBoost [6]. We initialize the classifiers
using virtual samples generated out of the first frame [13], 10 samples for on-line
approaches and 500 for off-line approaches, respectively.
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As depicted in Table 1, our approach is able to automatically cover the gap
between supervised on-line training [12] and off-line training [13]. MVForests
perform best in four out of eight sequences, and second best in three. Notably,
we frequently outperform MILBoost, which is currently known to be the best
performing method on these sequences. We also outperform CoBoost, the current
state-of-the-art method for on-line co-training. Please refer to supplamentary
material for the result videos.

Discussion Semi-supervised tracking methods virtually increase the tracking
robustness by updating with lower weights in case of reduced confidence. The
dilemma, however, arises in case of rapid appearance changes because this also
results in lower confidence measurements. In such cases, semi-supervised trackers
usually perform inferior to supervised ones [6]. The tracking results suggest that
our method is a good compromise in this ambivalent setting, in terms that
MVForest reduce their update weights in case of occlusions but due to the multi-
view set-up are also adaptive when it comes to appearance changes. See also
Figure 1 for a further illustration of MVForest’s update behavior.

5 Conclusion and Future Work

In this paper, we have proposed a novel on-line multi-view learning algorithm
using random forests called MVForests. MVForests learn from unlabeled data
by emulating a multi-view setting inside the random forests, where each tree
receives label estimates by a randomly selected sub-set of the trees forming the
forest. We outperform the state-of-the-art learning methods on the task of visual
object tracking. It should be noted that our multi-view learning approach is not
limited to RFs, and in principle, can be applied to any ensemble of classifiers.
MVForests are by no means limited to tracking. Hence, in future work, we plan
to apply our method to additional vision problems such object detection and
classification.
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