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Abstract

Current state-of-the-art object classification sys-
tems are trained using large amounts of hand-labeled
images. In this paper, we present an approach that
shows how to use unlabeled video sequences, com-
prising weakly-related object categories towards the
target class, to learn better classifiers for tracking
and detection. The underlying idea is to exploit the
space-time consistency of moving objects to learn
classifiers that are robust to local transformations. In
particular, we use dense optical flow to find moving
objects in videos in order to train part-based ran-
dom forests that are insensitive to natural transfor-
mations. Our method, which is called Video Forests,
can be used in two settings: first, labeled training
data can be regularized to force the trained classifier
to generalize better towards small local transforma-
tions. Second, as part of a tracking-by-detection ap-
proach, it can be used to train a general codebook
solely on pair-wise data that can then be applied to
tracking of instances of a priori unknown object cat-
egories. In the experimental part, we show on bench-
mark datasets for both tracking and detection that
incorporating unlabeled videos into the learning of
visual classifiers leads to improved results.

1. Introduction

In recent years, classical computer vision tasks
such as object recognition and tracking have made
significant progress. This has been achieved mainly
by developing and applying both improved image
representations and advanced machine learning al-
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gorithms. Nevertheless, the performance of these
systems is significantly lacking in comparison to hu-
mans, which is a very frustrating fact, considering
the large efforts that are put into computer vision re-
search for a task that humans seem to perform both
effortlessly and accurately.

Typical approaches to object classification and de-
tection collect lots of labeled training images, calcu-
late one or several hand-designed features and pass
them to a prominent learning algorithm of choice,
e.g., SVMs [9] or Boosting [36]. The algorithms
try to minimize the training error by generalizing
as well as possible to unseen images. It turns out
that the generalization capability of such approaches
improves vastly with the number of labeled train-
ing samples. As collecting large amounts of hand-
labeled data can be tedious and time-intensive, there
has been increased interest in semi-supervised learn-
ing methods (SSL) [43], which try to learn from only
a small amount of labeled data and a large amount
of unlabeled data. In practice, however, SSL is hard
to apply because labeled and unlabeled data are of-
ten collected from heterogenous sources, which vio-
lates the underlying i.i.d assumption of most meth-
ods. Additionally, with previous methods, incorpo-
rating unlabeled samples that hardly comprise the
target class can deteriorate the accuracy.

In this paper, we argue in favor of a very rich
source of unlabeled data, which has often been ig-
nored, and this is video. Video can improve a clas-
sifier with unlabeled data even when the unlabeled
samples are weakly-related towards the target class,
i.e., the unlabeled samples come from different dis-
tributions than the labeled data and the target classes
are not necessarily present in the videos. Such a set-
ting occurs, for instance, when training a car detector



from both a handful of labeled car images and sev-
eral unlabeled video sequences comprising arbitrary
moving objects, such as aeroplanes and lions, but not
a single car instance. Observing transformations of
real-world objects in videos, representing different
categories, can improve the car detector because they
are very likely to share the same physical contraints
with the labeled data when undergoing natural trans-
formations [31]. Hence, observing these transfor-
mations allows for learning representations that are
transformation invariant and yields better generaliz-
ing classifiers for the target class.

The main contribution of this paper is a part-based
learning approach that uses labeled data and, simul-
taneously, exploits a continuous stream of unlabeled
visual data from videos. As we want to exploit fully
unlabeled natural sequences, our approach does not
assume the class labels and locations of the objects in
the videos to be known, and it is further unknown if
a video comprises any objects at all. However, video
delivers a very strong unsupervised cues in form of
motion, which allows to determine regions that are
very likely to contain objects of interest and allows
to get rid of uninformative background clutter. In this
work, we use dense optical flow for motion detection.
Furthermore, we crop small patches in moving re-
gions in order to train part-based classifiers, because
parts are more likely to be shared among various cat-
egories. The cropped patches are tracked using flow.
Due to the space-time coherence of objects appear-
ing in videos, i.e., succeeding frames are very likely
to contain the same objects and content, we let the
cropped patches form pairs being “same” if they cor-
respond to succeeding frames and “different” if not.
With this approach it is possible to create a large pool
of pair-wise training data and — regardless of the in-
dividual categories — use a learning method that tries
to keep “same” pairs together and pushes “different”
pairs apart, respectively.

In this work, we show how this learning can be
accomplished with Random Forests (RFs) and thus
call our approach Video Forests. RFs are ideal can-
didates for exploiting unlabeled videos because they
are fast, robust to noise and allow for using paral-
lel computing architectures. We incorporate our ap-
proach as a part of a state-of-the-art detection frame-
work, i.e., [15, 25], and use the Video Forests in two
different settings: first, if some labeled data is al-
ready available, our approach additionally incorpo-
rates unlabeled video sequences in order to improve
the classifiers. In the second setting, Video Forests
are trained solely on unlabeled samples in order to
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form a general codebook that can be updated online
and can be used to track arbitrary target objects.

2. Related Work

In computer vision, video is often used to improve
object detectors if both training and testing can be
done on video data. In such settings, having labeled
objects in training videos, it is possible to design mo-
tion features that operate over pairs or sequences of
frames, yielding higher accurate classifiers on test
videos, e.g., [37, 10]. The same principle can also be
applied to action recognition [35]. Video Forests dif-
fer from these approaches in a way that, during train-
ing, we exploit video data without knowing any class
labels and object locations and, during testing, the
resulting classifiers can be applied to non-sequential
data, such as single images. This is also related to
previous approaches that try to train neural networks
via exploiting the spatial continuity of moving ob-
jects [14, 38, 8].

Continuous Transformation Learning [34, 26] and
Slow Feature Analysis [40] are also approaches that
try to learn invariant representations by enforcing
spatio-temporal continuities. Recently, Stavens and
Thrun [33] showed that it is possible to tune the pa-
rameters of keypoint descriptors via observing unla-
beled tracked keypoints for specific applications.

For text classification, Yang et al. [41] presented
an approach based on SVMs that is able to improve
a text classifier by additionally using weakly-related
unlabeled data. However, the method is compu-
tationally demanding and the assumptions imposed
for text hardly hold for images. For categorization,
[28] showed that it is possible to train better rep-
resentations from weakly-related, unlabeled images
by basically learning natural image statistics using
sparse coding. [23] improved convolutional neural
networks by learning from labeled samples and unla-
beled artificial objects in videos and is thus the most
related to our work. In contrast to [23], we present a
learning approach for random forests, which is very
attractive due to its speed and simplicity and is part-
based, which makes it more flexible and versatile for
practical usage. Additionally, we present a process-
ing pipeline that is able to exploit real-word videos
and improve object detectors and trackers.

Video Forests are also related to approaches
that try to transfer attributes among different cate-
gories in order to improve object recognition sys-
tems, e.g., [18, 32]. What makes our work differ-
ent is that we do not have to label attributes, e.g.,



“hand”,’head”,’wheel”, etc., and we do not need to
know the labels of the weakly-related objects.

Besides the above mentioned works, strong moti-
vation for exploiting video in order to get better vi-
sion systems comes from the cognitive sciences. It
has been shown that the power of human perception
comes from the fact that the brain performs a rapid
stage-wise feed-forward transformation of an image
into a successively higher dimensional — and proba-
bly sparse — space, where classification and recogni-
tion can be done reliably with simple linear decision
functions [11]. Additionally, these transformations
are highly identity preserving and they allow for high
intra-class variances of objects while simultaneously
being discriminative between different classes. Re-
cent findings suggest that these transformations are
not entirely “hard coded”, i.e., they are not given na-
tively, but are learned in the first few months of a
human’s life via observing motions of objects with
mostly unknown categories. In other words, humans
learn invariant object representations that are use-
ful for a large amount of categories via observing
a continuous stream of — mostly unlabeled — visual
data [31, 38, 22, 4]. In computer vision, this corre-
sponds to learning from unlabeled videos.

3. Learning Transformation Invariant
Classifiers with Random Forests

In this section, we introduce a random forest-
based approach called Video Forests that is able to
learn from pair-wise motion cues, yielding more
transformation invariant and better generalizing clas-
sifiers.

Random Forests [7] are ensembles of decision
trees. We write a forestas ' = {f1,--- , fn }, where
the n" tree is fn(x) = f(x,®,) : X — Y, ®,, is
arandom vector capturing the various stochastic ele-
ments of the tree, and IV is the number of trees in the
forest. The estimated probability for predicting class
k for a sample is

N

Pl = 3 3450 n
wherex € X C Réandk € Y = {1,--- , K},
whith K being the number of classes, and p,, (k|x) is
the estimated density of class labels of the leaf of the
n'" tree. As randomized trees are inherently multi-
class, the final multi-class decision function of the
forest is defined as

max p(k|x). 2)

C(x) = arg
key
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Each tree in the forest is built and tested indepen-
dently from other trees, which inherently allows for
using parallel computing architectures. While grow-
ing a randomized tree each node selects the best split
according to some quality measurement which scores
the potential information gain

|4
|| + | 1|

v

AH = S e
| + |1

where I; and [, are the left and right subsets of
the training data, respectively, and H () is the node
score, usually measured using the entropy. The term
“random” comes from the fact that the node splits
are selected randomly, which increases the training
speed and reduces the correlation among the trees.

3.1. Learning from Pair-Wise Data

A standard random forest as reviewed above is
trained given training data in the form of {(x1,y1),
.+» (Xn,Yn)}, where x; is an instance and y; €
{—1,41}, in the binary case, the corresponding
label. As our goal is to train from unlabeled
video, where the individual frames comprise unla-
beled samples in the form of {(Xy,11), - .., (Xnt+v) }s
one can in principle take a semi-supervised exten-
sion of RFs, e.g., as proposed in [21]. However, we
assume that the unlabeled data come from different
distributions than the labeled samples, wheras stan-
dard semi-supervised methods assume both labeled
and unlabeled samples to be drawn i.i.d and, hence,
do not bring any benefit in our setting [43]. However,
as stated above, unlabeled data coming from video
has an underlying structure that makes it informative
due to the space-time consistency of objects appear-
ing in consecutive frames. In the following, we show
how to modify a RF so that it is able to exploit the
underlying structure from unlabeled videos.

In order to create training samples out of succeed-
ing video frames (see also Section 4), we extract
training pairs in form of {(x*,x!™! y)}, where y is
a “pseudo” label denoted as “same” if (x',x!*1) are
taken from two succeeding frames and y is denoted
as “different” if they do not correspond. The goal
now is to train trees that try to keep “same” samples
together and push “different” samples apart, respec-
tively. However, during the evaluation phase, the
trees should be able to deliver class predictions for
single instances in form p(y|x). Note that this setting
is different to standard approaches in distance func-
tion learning, e.g., [17, 24], where both training and
evaluation is performed over pairs.



As we want to learn a part-based classifier, we
assume pairs being small patches {(p{,p!™')} X,
which are K pairs of patches extracted from cor-
responding spatial locations at each pair of frames
{(x!,x!*1 4)}. The appearance of a patch can be
written as Z; = (I}, 12,...,IC), where C is the
number of channels. Thus, each frame is able to pro-
vide a large number of patches extracted from mov-
ing objects.

In our tree, each node uses randomly selected bi-
nary tests that are evaluated on single patches in the
form 7(p;) — {0, 1}, where p; is the i'" patch that
falls into the node. In particular, a binary test is de-
fined as

1
0

if 0

else

(pi,y) = { p(x) <p(y) +

where 0 is a threshold and p(z) and p(y) are feature
responses of patch p at location x and y, respectively.
During training, a node is split according to a random
test that best minimizes the within pair splitting error

Epair = | | ZH pmx y) # T( t+1 y))
same I\uyng
ZJI m(phz,y) = 7(p T2, y)),

"I i} T

“4)

where I(-) is an indicator function. Considering a
subset of the training pairs /|sy| and I that fall
into the current node, a node is penalized for a split
test 7 and a threshold 6 that splits patches within
a “same” pair into different child nodes and keeps
patches within a “different” pair together, respec-
tively. As a side effect, due to the hard splitting
rule of the nodes, the trees discard patches from both
“same” and “different” pairs in case they are split
apart by the chosen random test. To sum up, although
the trees are trained from pair-wise data, the node
splits are designed to be applied on single instances,
which allows the final random forest to be evaluated
on non-pairwise data.

3.2. Regularizing Hough Forests with Unla-
beled Data

There exist several works that have shown that
it is possible to train highly accurate object detec-
tors based on the Generalized Hough Transform [5,
20]. Recently, Gall and Lempitsky [15] as well as
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Okada [25] proposed an approach based on ran-
dom forests that yields state-of-the-art detection re-
sults via learning a part-based classifier and simul-
taneously a discriminative Hough codebook. The
key idea is to use not only classification nodes, e.g.,
see Eq. (3), but also use regression nodes. These
nodes minimize the offset error of patches with re-
spect to the center of the target object as U(I) =
Zm (d; — dy)?, where d; is the offset of the patch
and d; is the mean offset vector over all patches in
the node. Training a tree with interleaving classifica-
tion and regression nodes leads to leafs with low vari-
ations in both class labels and offsets. During evalu-
ation, such trees cast probabilistic votes for each test
patch into a 2D Hough image V' (x) for each pixel
location. See [15, 25] for more details.

In order to benefit from unlabeled video se-
quences, we extend Hough forests by regularizing
classification nodes in a way which aims at minimiz-
ing the error on pair-wise samples. Thus, such a reg-
ularized entropy measure can be written as

AH* = AH — \- Epairs

where \ € [0, 1] steers the influence of the pair-wise
data. It is easy to see that such a test forces a node
to find splits that both maximize the information gain
on labeled data and minimize the error on pair-wise
samples.

3.3. Learning Codebooks for Tracking

Up to now, we have shown how a random forest
can be trained on motion-constrained pair-wise data
and how this can be used to regularize a Hough for-
est, with the goal to better generalize to natural ap-
pearance changes of local patches. The same prin-
ciple can also be applied to the task of visual object
tracking. In particular, we follow the “tracking-by-
detection” principle [2], where typically at the first
frame a classifier is trained by using a marked target
object as the positive sample and the negative sam-
ples are extracted from the surrounding background,
respectively. During tracking, the classifiers update
themselves online at new object locations in order
to adapt to illumation and appearance changes. Al-
though these methods yield highly effective trackers,
it would be beneficial to learn valid transformations
from previously observed unlabeled objects, which
share the same physical contraints, and transfer this
knowldege to a specific tracking target.

To this end, we can use Video Forests to learn
an invariant codebook from pair-wise unlabeled data



extracted from videos. Once having created such a
codebook from unlabeled data only, we can use it
for tracking as follows: as soon as a specific target
object is marked, we extract labeled foreground and
background patches and pass them through our code-
book. While the split nodes remain unchanged, the
leaf nodes gather statistics for the labeled patches,
which can be used to track the object. During track-
ing, the codebook ensures that patches do not end up
in different leaf nodes from frames ¢ to ¢ + 1 due to
small transformations, while the statistics are further
updated online in order to yield an adaptive tracker.

Again, we encode this principle inside a Hough
framework and follow [16], where it has been shown
that traditional Hough forests can also be applied to
tracking, but with the limitation that the targeted ob-
ject category has to be known before. In particular,
[16] show that a pre-trained class-specific Hough for-
est can be adapted online in order to track instances
of that class by adding instance-specific leaf proba-
bilies p(P; € Ilc = 1,L(y)) to the pre-calculated
class-specific leaf probabilities p(c = 1|L(y)), with
patch y ending up at leaf L(y) and I being the spe-
cific instance of class c.

Although the method yields high tracking accu-
racy for categories such as persons and faces, it
has the main disadvantage that it cannot be ap-
plied to arbitrary objects. However, when the class-
specific codebook is replaced by our general code-
book, which is trained on pair-wise unlabeled sam-
ples, it is possible to track arbitrary objects by mod-
eling target-specific leaf statistics purely online as
p(P; € I|L(y)) and the offset vectors d; during run-
time when we already know our target object.

4. System Approach

In the previous section, we introduced a generic
learning approach based on random forests that is
able to learn on pair-wise data extracted from videos.
Moreover, we use this data to regularize a Hough for-
est in order to select binary tests that are less sensitive
to small local appearance changes. In this part of the
paper, we explain the further steps of our method that
are necessary to build a real-world system that is able
to exploit unlabeled videos.

We assume having a set of video sequences {V; }
consisting of J sequences, where each V; has T}
frames and comprises various natural objects. First,
since we do not assume any a priori information,
such as class-labels and locations of specific objects,
we calculate a dense optical flow for each pair of suc-
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ceeding frames (Fig. 1). Optical flow is computed
according to [39] as the implementation is publicly
available. The approach is robust and fast enough to
process a large amount of data in reasonable time.
As cameras are often moving, we subtract the back-
ground motion of the flow. In sequences where mov-
ing objects are pictured, the camera movement of-
ten already provides a good framing of the dominant
object (c.f. [42]). In contrast to [42], we do not re-
strict the camera motion only to translational move-
ment but allow for any transformation to happen. For
this purpose we take a small part of the optical flow’s
border region to compute possible hypotheses and a
RANSAC approach then gives a robust estimate of
the camera movement even when parts of the border
regions are cluttered. Next, similar to [13], the re-
sultant camera-movement compensated optical flow
is segmented into binary regions using a Potts model
approach [27]. At frame ¢ we then extract patches
at random locations inside the largest connected re-
gion and use flow to track the movement of each
patch to frame ¢ + 1. Finally, for each patch in ¢
we crop its corresponding patch at the new location
inside frame ¢ 4 1, which allows for forming a large
number of positive patch pairs. Negative pairs are
simply created by cropping patches from moving ob-
jects and corresponding patches from random nega-
tive images.

5. Experiments

We tested Video Forests on object detection and
tracking. To collect sequences of naturally moving
objects, we downloaded short public available ani-
mal videos from Youtube ', which do not contain
any instance of the target classes. Using the approach
presented in Section 4, we extracted 10000 unlabeled
random pairs of size 16x16 pixels. For both tracking
and detection, we used the public available Hough
forest implementation of [15], which has shown to
yield state-of-the-art results, and modified it so that
it is able to both learn from pair-wise data using
our proposed node-splits and can be updated online,
where the latter one is necessary for tracking.

5.1. Object Detection

As [15], we evaluate the Video Hough forests
(VHF) on the TUD pedestrian dataset [1] and Weiz-
mann horses [6], where we modified the latter one in
a way that we randomly mirrored some of the horse

ICode and data can be downloaded from

www.vision.ee.ethz.ch/~cleistne/code.html



Input

Flow & Potts

Corresp. Patches

Figure 1. Pipeline to generate patch pairs: (Input) Two in-
put frames taken from a video V; used as input to compute
optical flow with color encoded directions (Flow & Potts).
After an additional camera motion compensation and a la-
beling stage we cluster dominant movements together and,
alhough not illustrated, resize the segments to a unit height.
Then, we extract the “same” patches at random locations in
frame ¢ and the corresponding new locations in frame ¢+ 1
(Corresp. Patches). The small green rectangles indicate
corresponding patches.

images, so that they are not always looking to the
left side, making the task more challenging. For the
car detection task, we used the Leuven multi-view
car dataset [19]. We set the influence of the video-
regularization to A = 0.5, a value determined em-
pirically. We used 10 trees with a maximum depth
of 15. For performance measure, we used the PAS-
CAL overlap criteria [12]. The first row of Figure 2
compares our detector with the baseline Hough For-
est [15] algorithm on these datasets. As can be seen
on all these datasets, training with pairs of unlabeled
patches improves the baseline significantly. We also
incorporated the state-of-the-art SSL approach for
random forests [21] into the training of the Hough
Forest. In contrast to the Video Forests, using [21] in
order to learn from the unlabeled videos always led to
a decrease in performance 2. One explanation for this
is that, in contrast to [21], Video Forests are “aware”
that the unlabeled samples are drawn from different
distributions than the labeled ones and, hence, do not
try to estimate the real labels. Additionally, pairs that
are not similar in their appearance to the labeled pos-
itive samples fall into negative sub-branches of a tree.
Also, “noisy” same pairs, i.e., pairs that are hard to

Note that we skip the detailed numbers since we were never
able to achieve increased accuracy with SSL.
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keep together, are inherently discarded and do not
have influence on the regularization further down the
tree. We believe that this is very important for the
robustness of the approach.

In the last row of Figure 2, we provide a detailed
analysis of the algorithm by varying the value of A,
the number of labeled samples, and the number of
pairs used for training with Weizmann horses. We
conclude from the experiments that our approach is
pretty robust over the choice of A and also helps
improving the performance when we increase the
number of labeled samples. In Figure 2f, we see
that the accuracy improves with various numbers
of unlabeled patches but the improvement becomes
smaller when the number of unlabeled samples be-
comes comparably large.

5.2. Tracking with a Generic Codebook

As described in Section 3.3, we perform pair-wise
training on the animal sequences to generate a gen-
eral codebook with empty leaf statistics suitable for
tracking of a priori unknown objects. When the ob-
ject is marked at the first frame we start gathering
leaf statistics, which are further self-updated during
ongoing tracking. For the codebook, we use a forest
with 8 trees and a maximum depth of 8, trained with
10000 pair-wise samples. At the first frame, we use
5 perspective transformations of our initial input im-
age cropping 100 positive and 500 negative samples
to increase the robustness of the leaf statistics. Dur-
ing updating, we perform 10 positive and 50 nega-
tive updates per frame and limit the number of center
votings per leaf to 30. For measurement, we report
the number of frames tracked correctly (Pascal VOC
overlap criterion > 0.5) over 5 independent runs.

Pedestrian Tracking. As a first tracking experi-
ment, we compare to the recent approach of Gall et
al. (0aHF) [16]°. Since we do not handle scaling,
we rescaled the center of the ground truth bound-
ing boxes to the size of the tracking box. Due to
this, the tracking result has to be more centered on
the object in order to get high scores, i.e., to get a
good overlap, which makes it harder for our approach
compared to [16]. In Table 1, sequences two and
three, it can be seen that oaHF delivers better results
than Video Forests when the tracking sequence is
very hard. This comes from the fact that the person-
specific Hough forest is trained on the tracking cate-
gory and can easily recover from temporal failure. In
contrast, for sequences one and four, Video Forests

3Thanks to the authors of [16] for providing their dataset.
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Figure 2. The first row shows the improvement when using pair-wise regularization from animal videos (green) compared to
the baseline method (red). For cars, we also showed the improvement, when the videos are more related, i.e., trucks (blue).
In the second row, for Weizmann horses, we depict the influence on the performance depending on A, the number of labeled

samples and the number of pairs. (Best viewed in color)

equence oa
i-Lids easy 74 (94) 69
i-Lids medium | 44(50) 65
i-Lids hard 27(28) 66
PETS09 70 (87) 60

Table 1. Comparison on Pedestrian Tracking (Average Pas-
cal VOC score (percentage of correctly tracked frames)).
Best performing method marked bold-face.

outperform oaHF, which might be explained by the
fact that oaHF are too inertial for instances that are
not well covered in the offline training set.

Tracking of arbitrary objects. Finally, we
demonstrate the performance of our approach on
standard tracking sequences and compared to state-
of-the-art methods within this field. We compare to
online Random Forests (ORF) [29], PROST [30] and
online multiple instance Boosting (MILB) [3], which
is a prominent approach under several boosting-
based methods. Our testset consists of six sequences*
taken from [3, 30]. These sequences capture very
different objects and include variations in illumina-
tion, pose, scale, rotation and appearance, and par-
tial occlusions. All compared approaches do not use

4We did not use sequences with objects smaller than 70 x 70
pixels because they are not suitable for Hough voting in our part-
based setup.
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Sequence | VHF (29] ;3] (30]

david 95 72 60 80

faceocc2 93 65 96 82

lemming 79 17 83 71

girl 96 96 57 89

liqguor 80 54 21 84
[Average | 89 [ 61 [ 63 [ 81 |

Table 2. Accuracy comparison using the Pascal VOC over-
lap criterion (percentage of correctly tracked frames). Best
performing method marked bold-face. Second best method
marked underlined.

any prior information about the target object. Table
2 shows that Video Forests are able to track arbi-
trary objects and yield state-of-the-art results on the
test sequences. On average, we exceed the state-of-
the-art by far. Remarkably, we are even better than
PROST, which uses optical flow in addition.

Summarizing, the experiments show that train-
ing a generic codebook on unlabeled videos yields
a highly efficient tracker, suitable for the tracking of
arbitrary objects. However, the results also confirm
that it is beneficial to train a class-specific codebook
for tracking, in case the object category is a priori
known and the used labeled data well represent the
instances that are going to be tracked.



6. Conclusions

We have presented a learning approach denoted
as Video Forests that is able to exploit unlabeled real-
world video sequences in order to improve the ro-
bustness of classifiers. The main idea is to exploit
the space-time coherence of moving objects in order
to train a random forest, which results in better de-
tection performance on several benchmark datasets
and can also be used to learn a general codebook for
a tracking-by-detection framework to track object in-
stances of a priori unknown classes. While it is clear
that the content and quality of the videos influence
the performance of a specific task, we showed for
both tracking and detection that visual classifiers can
benefit from unlabeled videos, even if the content is
highly un-related to the specific task, where the latter
one cannot be achieved with standard SSL methods.
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