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Abstract

Sport advertising has become an important business increasingly raising the
interest of an efficient analysis. To reduce the manual workload, in this work
we present an automatic specific trademark and logo recognition system over-
coming typical problems of existing (mostly SIFT-based) approaches. In par-
ticular, we need to cope with relatively small or correlated trademarks, severe
background clutter, and huge perspective variations. This is realized by intro-
ducing a concept to increase the perspective invariance, a sophisticated veri-
fication, a guided matching phase that is able to deal with a vast number of
outliers, and the use of an additional complementary interest region detector
with multi-resolution shape description. To show the benefits of the approach,
we demonstrate it for a representative real-world test set consisting of images
of the EURO 2008 final game. The results clearly show that using the pro-
posed method existing approaches can be outperformed in terms of accuracy
and recall.
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1 Introduction

Sport advertising evolved to a multi-billion industry with the clear and pre-
cise focus to influence consumers positively on products or services. Thus,
a major goal of the industry is to rate the effectiveness of advertisements.
In the case of sport broadcasts, as application domain for trademark and
logo retrieval, a suitable measure would be the visible time. Nevertheless,
automatic visibility analysis of on-site means of promotion as billboards is
not straight forward. Hence, even if laborious, the required data is still
acquired mostly by manual annotation. To overcome these circumstances,
computer vision has the potential to serve as key technology to automate and
speed up this process. In general, computer vision based trademark and logo
recognition approaches can be coarsely categorized into three main groups:
(a) sport specific billboard detection and recognition, (b) virtual advertise-
ments, and (c) unconstrained billboard, trademark, logo detection and/or
recognition. Approaches motivated by intellectual property protection con-
cerns can be delimited. They concern mainly the perceptual similarity of
logos [3, 6, 8, 11,22].

(a) Baseline method: Retrieval approach based on
SIFT [15].

(b) Proposed approach.

Figure 1: Trademark retrieval: (a) Approaches based on plain SIFT [15] can
not deal sufficiently with problems such as small trademark occurrences under
severe perspective changes; (b) In contrast the proposed method handles
these problems considerable better.
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Billboard detection and recognition approaches, e.g., [13,23] are restricted
on a very specific application domain, in form of the sports ground. In [13] the
basic idea is to detect the delimiting lines of billboards next to the green with
a Hough transform based on Canny edges. Hereby, also knowledge about the
color distribution of the sports ground and the contrast of the surrounding
billboards is assumed. Moreover, adjacent billboards are delimited based
on the background color as splitting criterion, which is not applicable in all
cases. In addition, there are several limitations if there are billboards on
both sides of the sports ground and if they are partially occluded.

Similar to [13], in [23] the goal is to detect and to identify billboards in
soccer videos. Also relying critically on analyzing detected edges. Based on
a mixture of global and local features the individual billboard is subdivided
into several regions in which features such as mean, variance, hue, and inten-
sity are extracted and stacked into a descriptor to classify. The location of
identified billboards is used to search for further billboards in near proximity.

In the case of virtual advertisements the goal is to overlay a seamless re-
placement for existing advertisements or potential advertisement regions. For
that purpose, the pose of the to be replaced billboard, trademark, or region
has to be estimated in the image. A viable solution is given in [18], which
examines the target position of the virtual advertisement by interest points
and color filtering of these and geometric hashing. This method implicitly
identifies the overlayed billboards or regions unconstrained of the position,
unless enough interest points are detected to distinguish it. However, the
authors only provide a few example images of large perpendicular billboards;
no information about the performance and accuracy is given.

In contrast the work of [5] is concerned with trademark recognition by
matching the text only. This is realized by first searching for homogeneously
colored regions that are surrounded by large color differences. Then along
the longest foreground transition a descriptor is extracted that provides only
binary foreground or background flags for each line segment. This is based
on the observation that the line position is affine invariant and thus the
calculated descriptor can then be used to classify the logo. However, the
presented results show bad recall and precision.

A more sophisticated method was proposed in [10], where potential trade-
marks or billboards are identified with a probability model based on chromi-
nance histograms. However, to reduce illumination effects the color model
for each target has to be acquired under the actual illumination conditions.
With increasing database size the performance drops severely, which limits
application in practice.
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Indisputably, the recent success of specific object recognition based on
local features emphasis the idea to accomplish the task of trademark and
logo retrieval. Local features are per definition robust to occlusions and
clutter. In addition, no prior segmentation is needed. Furthermore, even for
small objects an adequate number of distinctive features can be generated.
Hence, Scale Invariant Feature Transform (SIFT) [15] based approaches (see
Fig. 1(a)) such as [1] are very promising; although this particular approach
lacks in terms of pose estimation, since the location of the trademark is
only approximated. Thus, a top down back-projection step, e.g., for guided
matching of small trademarks, delivering only few matches, is not possible.
Furthermore, the normalized match threshold used does not take into account
the feature density in the region of interest in the query image nor in the
projected training image.

In this paper, we address the problem of planar trademark and logo recog-
nition unrestricted of a specific setting or sport. Although trademark recog-
nition was previously faced none of the proposed strategies is proper for our
purpose. In particular, our approach (see Fig. 1(b)) uses the advantages of
a local feature-based approach and tackles the key problems arising in the
problem domain.

As first contribution the problem of little trademarks with only few po-
tential matches and a high outlier rate is covered by an accurate pose estima-
tion and guided matching. Also an additional complementary interest region
detector is incorporated to induce more robustness. Indisputably, dealing
with huge view point changes is absolutely essential for the approach. To
introduce more invariance we propose to pre-train the system on synthesized
views of the trademarks. To show the benefits of the proposed method, we
demonstrate it on real world data in particular on a representative test set
of the EURO 2009 final game, obtaining excellent results.

The remaining of this paper is organized as follows. In Section 2 we
discuss the currently arising problems and motivate the proposed approach.
The building blocks of the layered retrieval approach are described and dis-
cussed in Sections 3-5. An overview of the whole approach is given in Section
6. Detailed evaluations of the proposed approach comparing to the baseline
are given in Section 7. Finally, we summarize and conclude the paper in
Section 8.
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2 Motivation

Motivated by the suitability of local object recognition methods for the task
of planar trademark or logo retrieval, we follow the basic structure, outlined
in Figure 2. Since a retrieval approach based on Lowe’s SIFT [15] is a reason-
able basis, we use it as starting point for further investigations. Nevertheless,
a plain SIFT-based approach has several drawbacks. Among others, mutual
blocking trademarks and problems with the perspective invariance.
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(e) IR Matching.

Figure 2: Basic flow of object recognition with local features: Interest regions
(IRs) are extracted (a)-(b) and described (c)-(d). Interest region correspon-
dences are formed (e). The green lines indicate correct match correspon-
dences, estimated pose shown in dashed green.
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Little or low textured trademarks are problematic, since they only de-
liver few potential matches. Therefore, using and incorporating an additional
complementary interest region detector might be beneficial. In particular, if
the characteristics of trademarks can be described by clear outlines with rela-
tively homogeneous texture Maximally Stable Extremal Regions (MSER) [16]
would provide excellent results. MSER works particularly well in this con-
figuration and yields also good performance in terms of repeatability under
geometric transformations. Even though the number of detected regions is
relatively small compared to the Difference-of-Gaussian (DoG) detector. The
topic of interest region detection and description is covered in more detail in
Section 3.

In typical application scenarios the trademarks are subject to severe per-
spective changes. Hence, for a trademark recognition system it is desirable
to cope with these variations. Typically, up to some extent the detector /
descriptor combination is insensitive, but often it is impossible to get reliable
match correspondences. For instance, Lepetit et al. [12] use a small number
of training images to synthesize many new affine views of each detected in-
terest region. The result is an artificial view set for each patch which should
reflect the set of all of its possible appearances under different viewing con-
ditions. In this context, due to the exhaustive description, efficient nearest
neighbor search is of interest. Further details on our solution for this problem
are given in Section 4.

An ideal matching strategy provides high recall and precision. Never-
theless, there is typically a trade-off between precision and recall. Thus,
our matching strategy concentrates on keeping the recall as high as possible,
however still preserving the precision. Experiments showed that in the case
of trademark and logo retrieval the recall of the standard SIFT matching ap-
proach noticeable decreases on increasing the number of trained trademarks.
Basically it is assumed that this can be traced back on the similarity of the
trained trademarks, which are mostly homogeneous and therefore not that
distinctive. Moreover, they also contain same letters with similar or even
equal fonts. The dropping recall leads us to an adaptation of the matching
scheme, that is also suited to deal with a large proportion of false matches.
Furthermore, we suggest to merge the trademarks of the same brand into
a common representation, which should abolish the problem of too corre-
lated logos that block each other in the standard matching scheme. Since
the problem of small trademarks also considers the matching, we propose to
use a guided matching in conjunction with an accurate pose estimation to
deliver more match candidates. The basic structure of our matching strat-
egy is to form region to region correspondences that are clustered into pose
hypotheses for particular training images which are finally verified.
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3 Interest Region Detection and Description

In a local feature-based approach basically each additional feature type con-
tributes robustness. For instance, MSER as complementary detector to DoG
is assumed to be well suited for that purpose. In our approach, we apply a
simple extension to MSER, referred to ’Multi-Resolution MSER’ [9], which
is based on the idea that the extremal regions are only detected in a single
image resolution. However, if an image is viewed from increasing distance
many details in the image disappear and different region boundaries can
emerge, especially with additional view point changes. Therefore, a scale
pyramid is constructed by Gaussian blurring and sub-sampling from which
the MSERs are extracted separately at each image resolution. Subsequently
duplicate MSERs are removed by eliminating the fine scale MSERs with
matching them in terms of location and size with the next coarser scale.
This is illustrated in Figure 3.

(a) Original patch. (b) Sub-sampled. (c) Combined.

Figure 3: Multi-Resolution MSER: (a) Original image patch with inpainted
MSER covariance ellipses; (b) Due to sub-sampling and Gaussian blurring a
new outer region boundary arises; (c) Merged representation.

As we want to incorporate the MSER detector in the existing DoG /
SIFT concept further problems arise. The MSER detector delivers shape of
the region, but neither orientation information nor a scale measure. A viable
solution to overcome these problems is to use a normalized coordinate system,
which suggests the use of local affine frames (LAFs). This basically enables
an affine invariant normalization of the region. Matas et al. [17] propose two
possible construction methods for LAFs. On the one hand stable bi-tangents
and on the other hand region normalization by the covariance matrix. Both
methods have been used for wide-baseline stereo [17] and object recognition
tasks [4, 20], respectively.

In our approach, we use the LAF covariance construction, as illustrated in
Figure 4. The remaining rotation ambiguity is resolved over the normalized
contour distances between the center of gravity and the contour pixels. We
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encountered that an assignment by gradient orientation histogram can be
error prone if minor detector errors occur. Strong gradients, e.g., a part of
an adjacent letter, are likely to alter the result.

Figure 4: Local affine frame covariance construction. The detected region is
transformed into the affine normalized form by the inverse square root of the
covariance matrix. To solve the rotation ambiguity the normalized contour
distance is considered (adapted from [20]).

The remaining step after region normalization and orientation assignment
is the actual description. One solution is to compute the SIFT descriptor on
the texture of the image patch. Another possibility is to calculate the de-
scriptor on the actual shape of the detected region [9]. Hereby, the descriptor
is calculated on the binarized region of the affine normalized patch. To match
the shape descriptors it is suggested to use the χ2 distance measure in favor
of the Euclidean distance [9]. One major advantage of the shape descriptor
is that it only depends on the correct detection of the region. Thus, back-
ground clutter has only little influence. Moreover, the shape descriptor is
more robust in terms of illumination changes and is therefore proposed as
reasonable extension to strengthen the performance under difficult illumina-
tion conditions.

4 View Set based Stable Model Generation

It is desirable for a trademark recognition system to cope with severe perspec-
tive changes. Therefore, we want to generate an arbitrary number of artificial
views of each trademark to pre-train our system, similar to [12,21]. Our ap-
proach, however, differs in several ways. To construct the synthetic view set,
we use labeled homographies. This is not as exhaustive as regular sampling
of the parameter space and can either be generic or task specific. Further-
more, we transform the whole image; not each individual patch. Thus, for
each view the interest regions are detected and described. In this way, the
localization errors of the detector are bypassed. We propose two methods
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to combine the different representations of the view set into a common one,
which we refer as “stable model”. First, we encourage the idea to select
descriptors equally privileging each view under a given criterion. Later on, a
data structure is proposed that is capable to deal with all descriptors of all
views, also providing efficient retrieval.

4.1 Selection of Stable Descriptors

To build a compact representation of the view set we conduct a feature
stability assessment. The aim is to rank and select only the most stable
descriptors, e.g., correctly matched and geometric consistent over as many
views. Obviously, most of the regions in a particular view have at least one
corresponding region in each similar view. Therefore, the selection criterion
ensures that the selected descriptors are not too similar and that the resulting
representation is compact although discriminative. A voting model preserves
that each view is equally privileged. Figure 5 illustrates this selection process.

(a) View set. (b) Descriptor selection.

Figure 5: Stable descriptor selection -well suited descriptors are displayed in
green.

As first selection criterion, we propose to select the regions based on de-
tector errors that result in differing descriptors. The second criterion enforces
a minimum distance in feature space. Thus, it rejects interest regions which
are below a certain distance threshold to previously selected ones, without
explicitly insisting on a different location, scale or orientation.

4.2 k-Means View Tree

The view set of each trademark provides a rich, although exhaustive, descrip-
tion of possible appearances, containing much redundancy. On the one hand
this description promises reasonable matches even under severe perspective
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changes. On the other hand an efficient retrieval strategy is required. Due
to the vast alternatives of corresponding, geometrically consistent, descrip-
tors the nearest neighbor retrieval can be coarse. Even a simple nearest
neighbor (NN) search would provide reasonable matches. Moreover, the NN
retrieval can be approximate and even coarser, as, e.g., in the ’best bin first’
K-D Tree [2] and therefore much faster. For instance Nister uses in his large
scale object recognition system [19] a hierarchically quantized k-means tree
to provide fast access to the leaf nodes, which store scoring information.
In our k-means tree (Fig. 6) the actual descriptors are indexed in the leaf
nodes, not the scoring information. A query in the k-means view tree is
rather efficient, since in our case the tree has a depth of 3 - 4.

... ... ...

{||||}{||||}{||||} {||||}{||||}{||||}

Figure 6: K-means view tree. Nearest neighbor assignment is carried out by
traversing down along the path of the nearest tree nodes. At the resulting
leaf node the nearest descriptor is determined.

To compact the tree, it is proposed to prune on the basis of the geometric
consistency of the interest regions. Thus, if the interest regions in a particular
node are geometric consistent, the node itself lays out the interest region
descriptor on basis of the centroid. The meta data such as spatial coordinates,
scale and orientation is obtained clustered of the corresponding regions. The
pruning does not affect the descriptor matching, since before pruning each
query descriptor had to pass the node too. Starting at the leaf nodes this
procedure can be applied as recursive ascend on the tree eliminating much
redundancy. Obviously the k-means view tree can be extended to contain
many models. Nevertheless, this will lead in the best case to similar results
and therefore it is not carried out in this work.

5 Matching Strategy

The last remaining step in our retrieval system is the matching. In the
following the basic structure of our matching strategy is developed.
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5.1 Low Level Interest Region Matching

The intrinsic goal of interest region matching on descriptor level is to establish
reliable region to region correspondences. The nearest neighbor distance ratio
(NNDR) provides sophisticated ones although under certain circumstances
might be harmful as illustrated in Figure 7. Hereby, due to the local similarity
an actually correct matching candidate is discarded. In the case of different
trademark instances of the same brand this is especially problematic. These
contain partly exactly the same writing and are therefore very likely to block
descriptor matches of each other.

Figure 7: Problems of NNDR. The query descriptor on the left is correctly
assigned to its match candidate on the right. As the second nearest neighbor
is very close the NNDR discards the correspondence.

Indisputable, the arising problems of NNDR emphasize that also the idea
of matching descriptors with direct NN assignment is pursued. In conse-
quence, further investigations should enable us to compare the loss of correct
correspondences compared to the increased computational effort due to a
more sophisticated verification, caused by a higher outlier rate.

5.2 Creation of Model Families

If using NNDR, different trademark instances of the same brand tend to
block descriptor matches of each other. Therefore, we propose to merge the
different instances of a trademark which share same graphical or figurative
elements into a common representation, termed “model family”, to abandon
this problem.

To obtain the model families, we register the different trademarks relative
to each other by descriptor matching and RANSAC as robust estimator. As
model we utilize a similarity transform. Hence, arising incoming matches
for a particular training image induce virtual matches, whereby the needed
coordinates are obtained by the similarity transform for the other family
members. After each family member has pursued the verification (Sec. 5.3)
the most likely family member is accepted as matched particular model.
Figure 8 illustrates the model family generation steps.
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(a) Relative pose estimation (b) Resulting registration

(c) Match redirection

Figure 8: Model family generation steps: (a) Tentative descriptor match
correspondences are subject of a robust fit (b). Therefore, the spatial offset,
scale, and orientation is known, needed to redirect a match between the
different trademarks as shown in (c).

5.3 Intermediate Match Clustering, Pose Estimation
and Verification

In the next step, the independent correspondences obtained by the actual
descriptor matching are clustered by a Hough transform in pose space which
follows [15]. The basic idea is that descriptor matches of a particular class
that are consistent with a certain pose hypothesis are identified and subject of
a detailed pose estimation. The pose clustering accounts spatial coordinates,
scale, and orientation, therefore modeling a similarity transform and serves
so as first rough pose estimation.

In our case, the peaks of the Hough transform are not directly subject to
an iterative solution for the affine transform parameters. Instead, we utilize
Random Sample Consensus (RANSAC) [7] as robust estimator to be able
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to deal with more potential false matches. The false matches arise due to
NN descriptor matching and coarse Hough bins. The coarse bins should
account the detector errors caused by the huge perspective variations and
scale changes. For the solution of the affine transform parameters we use a
slight modification of the standard RANSAC approach. In addition to the
point correspondences we provide further cues such as scale and orientation
to determine a robust fit. Basically, similar to the spatial coordinates the
scale and orientation of the region can be transferred in both images, where
the agreement between query regions and training regions is measured. For
the orientation the absolute angle difference is measured; for the scale the
ratio is considered. Similar to the distance a specific threshold for each of
them accepts or rejects a particular correspondence.

Due to the nature of trademarks and the high outlier rate many incorrect
pose hypotheses arise even after Hough transform in the pose space and the
first RANSAC estimate. Therefore, a pose hypothesis is subject of further
verification steps. With guided-matching additional match correspondences
are obtained that support the pose hypothesis and succeeding used to re-
fine the transformation model. According to the refined pose hypothesis the
training image is projected and interest regions are extracted and described.
Finally, a probability model based on [14] assesses the likeliness for this par-
ticular configuration. The model considers, among others, the inlier/outlier
probabilities for feature matches and also the feature density in the ROI in
the query image and in the projected training image. In contrast to [14],
in our approach the interest region inlier/outlier probability is estimated di-
rectly based on the guided-matching and the RANSAC estimate. The final
probability for the pose hypothesis is thresholded and used to accept or reject
a detection. Overlapping probable detections are non-maxima suppressed.

6 Trademark and Logo Retrieval System

Now, having introduced and discussed all modules required to build our
system, we now give an overview of the basic structure, which is illustrated
in Figure 9. The pipeline is separated into off-line training of the trademarks
and retrieval in the test images.

As first step in the training, artificial view sets for the trademarks are
synthesized. The needed homographies are determined of manually labeled
real world trademark appearances. Succeeding, DoG and Multi-Resolution
MSER interest regions are extracted, separately for each view. The SIFT
descriptors of the DoG regions are calculated on the texture of the image
patch at the identified scale and orientation. In contrast to the MSERs,
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View Set Generation

DoG / SIFT MSER / SIFT

Stable Model Generation

Prepare Family Models
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DoG / SIFT MSER / SIFT

Fusion

{||||}Matching / Verification{||||}

Training Set Test Set

Figure 9: Proposed recognition chain.

hereby the descriptors are calculated on the binarized regions. Therefore, the
regions are normalized by LAF covariance construction. Thus, the remaining
rotation ambiguity is resolved over the normalized contour distances. To
compare the relative size of MSER regions, we use a measure derived of
the axis lengths of the respective covariance ellipse. Following, for each
trademark a stable model is established. Hereby, we have two choices: First,
the most stable descriptors of the view set are iteratively selected, enforcing
a minimum distance in feature space. Second, the k-means view tree is
constructed. Furthermore, if NNDR matching is employed the trademarks
are organized in model families.

Finally, the test images are matched against the trained models. No view
set is generated in before and the MSERs are extracted only in a single image
resolution. Interest region matching is carried out by matching the test image
descriptors on the trademark descriptors. Based on a Hough transform in
pose space and RANSAC matches are filtered. Individually for each tentative
detection, guided-matching is utilized to further search for interest regions
that support the pose hypothesis. The likeliness of the detection is assessed
by a probability model. The model considers, among others, the inlier/outlier
probabilities for feature matches and also the feature density. Overlapping
probable detections are non-maxima suppressed.
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7 Experimental Results

In the following, we will show the benefits of the proposed trademark and
logo recognition system on a representative test set of 106 still images of high
difficulty and variety of the EURO 2008 final game. The task is to detect
and to recognize each of the 302 manually annotated trademark occurrences.
In total 18 different trademark instances are labeled and organized in 13
families. The dataset contains large perspective changes, partial occlusion,
background clutter, motion blur, and in some cases also non rigid transforma-
tions. As minimum detection size a minor side length of 15 pixels is enforced.
The convenience of a particular feature combination is assessed and discussed
compared to the performance of the standard DoG/SIFT approach. As input
images for the training trademark database the cropped scene appearances
consciously have not been used, since this would trim the approach on this
particular data set limiting an objective performance analysis.

7.1 Parameters

Several parameters of the outlined recognition chain influence the respective
recall and precision. To allow to compare the applicability of the different
feature types and matching configurations, the parameters of the recognition
chain are set to their default values. An overview of the used parameters is
given in Table 1.

Parameter Value
NNDR threshold 0.8

NN threshold π/6

Dist. crit. (Bhattacharyya) π/6
Max. # of selected descriptors 200

# of clusters (k-means) 10

Hough location bin size 0.5 of avg. proj. size
Hough orient. bin size pi/6

Hough scale bin subdiv. factor 2

RANSAC orient. thresh. pi/6
RANSAC scale ratio thresh. 0.5 / 2
RANSAC distance thresh. 20 to 5% of proj. size

Probability model thresh. 0.95

Table 1: Recognition chain parameters.
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7.2 Model Families Revised

The evaluation of the model family approach on our EURO 2008 test data set
provides strong evidence that it is beneficial when matching using NNDR.
In total 56 Adidas appearances are labeled in the test set of 106 images.
The standard approach delivers only 17 correct detections. In contrast the
family model approach delivers clearly a superior performance, with 29 cor-
rect detections. Indisputable, this is a strong argument for the use of the
model family approach. The effects on selected scene images are illustrated
in Figure 10. In the case of the non-family approach it can be seen that
the number of correct match correspondences decreases, since the NNDR
discards the match candidates which are not distinctive enough for a par-
ticular model. With the model family approach the match correspondences
are preserved. In consequence, we stick to the model family approach for
every trademark database that is matched with NNDR in the succeeding
evaluations.

7.3 Comparison of Different Feature Types

The convenience of a particular feature combination is assessed and discussed
compared to the performance of the standard DoG / SIFT approach. To
further discuss the influence of the matching type the descriptor matching
is carried out using both, NN and NNDR matching. To confine the compu-
tational costs, due to the vast number of regions present in a typical query
image the maximum number of allowed matches for a particular training im-
age is thresholded by 500 for both matching strategies. Table 2 summarizes
the results of the experiment. The recall and precision values of the best
performing method itemized in the particular trademark families are shown
in Figure 11. Illustrative results of the best performing method are shown in
Figure ??.

The MSER regions described by a SIFT descriptor on the region shape
turns out to be a reasonable extension to DoG / SIFT. Superior performance
is reached by the proposed k-means view tree, which boosts the recall up to
about 85% compared to 51% of the baseline method. A further extension by
MSERs does not increase the performance. But, if attention is directed on
precision our compact stable model approach by descriptor selection, with
both DoG and MSER features, is a reasonable choice for a clear performance
boost of nearly 22%.

One evident, important finding of our evaluation is that it is feasible for
our approach to directly match NN instead of NNDR. In fact, we show that
the precision can be maintained largely. It is proven that the method is able
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Model family approach (right column) compared to standard
approach (left column). The red arrows indicate pose consistent succeeding
matches.
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Figure 11: Recall and precision per trademark family. As feature combina-
tion a k-means view tree with DoG / SIFT features has been used. The
recall is shown in green, precision in red.
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to deal with a high amount of false interest region correspondences, due to
the exact pose estimation and verification. Therefore, NN matching is pos-
sible since recall and precision scale well on increasing trademark database
size. Nearly all of the false positives exist in frames with text inserts with
similar fonts. Thus, it is assumed that the NN threshold can be further-
more optimized to even enhance the performance, although the exhaustive
computational costs remain as bottleneck.

No. DoG/SIFT MSER/SIFT SM MT Rec. Prec.

1 Texture - - NNDR 51,6% 95,6%

2 Texture - - NN 60,5% 93,8%

3 - Shape - NNDR 8,9% 100%

4 - Shape - NN 7,6% 100%

5 Texture Shape - NNDR 61,6% 97,8%

6 Texture Shape - NN 68,4% 93,1%

7 Texture - DC NNDR 61,4% 97,9%

8 Texture - DC NN 65,7% 92,7%

9 Texture Shape DC NNDR 73,3% 97,3%

10 Texture Shape DC NN 78,8% 85,1%

11 Texture - tree NN 84,7% 87,7%

12 Texture Shape tree NN 83,5% 86,4%

Table 2: Performance comparison of trademark databases with different fea-
ture types. Compared to the DoG / SIFT approach the proposed extensions
yield a better performance. SM stands for stable model, DC for distance
criterion, MT for matching type, R for recall, and P for precision.

8 Conclusion

In this work we presented a specific trademark and logo retrieval system,
which allows for automatic efficiency analysis of advertisements. In par-
ticular, the goal of this work was to overcome typical problems of exist-
ing approaches such as little or low textured trademarks, severe perspective
changes, or highly correlated data. These problems are addressed by ad-
ditionally introducing a complementary feature type (i.e., Multi-Resolution
MSER), view-based stable models (by introducing a stable region detector
and an efficient data structure), and an efficient matching strategy (i.e.,
NNDR combined with a clustering of model families). Altogether an effi-
cient (in terms of accuracy, recall, and speed) logo retrieval system is derived,
which can be applied in practice. This was illustrated on a competitive real-
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world dataset, i.e., showing frames from the EURO2008 final game, where
the results clearly show that compared to a simple SIFT-based detection
approach the performance can drastically be improved. A straight forward
extension would be to additionally include color information and further com-
plementary region detectors to cope with the high variability in the data.

(a) Occlusions.

(b) Perspective variations.

(c) Perspective variations.

(d) Failure cases, likely in conjunction with text inserts.
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