
Synergy-based Learning of Facial Identity
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Abstract. In this paper we address the problem that most face recogni-
tion approaches neglect that faces share strong visual similarities, which
can be exploited when learning discriminative models. Hence, we propose
to model face recognition as multi-task learning problem. This enables us
to exploit both, shared common information and also individual charac-
teristics of faces. In particular, we build on Mahalanobis metric learning,
which has recently shown good performance for many computer vision
problems. Our main contribution is twofold. First, we extend a recent
efficient metric learning algorithm to multi-task learning. The resulting
algorithm supports label-incompatible learning which allows us to tap
the rather large pool of anonymously labeled face pairs also for face
identification. Second, we show how to learn and combine person spe-
cific metrics for face identification improving the classification power. We
demonstrate the method for different face recognition tasks where we are
able to match or slightly outperform state-of-the-art multi-task learning
approaches.

1 Introduction

For humans the recognition of familiar faces is straight forward. Computational
face recognition matches the performance of humans in controlled environments,
however, often fails under unconstrained real-world conditions (e.g., diversity in
viewpoint, lighting, clutter, or occlusions). This can be explained by essential
differences in human and machine learning. Typically when machine learning
techniques learn a specific visual model they focus on individual characteris-
tics and neglect general concepts or visual commonalities of similar objects. In
contrast, the human visual system learns in a more synergistic way that ben-
efits from commonalities and takes into account prior knowledge. Hence, for
computational recognition systems it would be beneficial also to exploit such
information.

One popular concept that addresses this demand is transfer learning, which
aims at improving the performance of a target learning task by also exploiting
collected knowledge of different sources [1]. Two related aspects are domain
adaptation and multi-task learning. Domain adaptation tries to bridge the gap
between a source domain with sufficient labeled data to a specific target domain
with little or no labels [1]. In contrast, multi-task learning (MTL) [2] approaches
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a cluster of similar tasks in parallel. Each task describes a target learning problem
and contributes labeled data. The knowledge transfer between the tasks is then
established through a shared intermediate representation. The basic assumption
is that it is easier to learn several hard tasks simultaneously than to learn those
isolated. In this way underrepresented tasks that have only a limited number of
labeled samples can be handled. Prominent approaches rely on neural nets [3, 4]
(sharing layers) or support vector machines [5] (sharing weight vectors).

In this paper, we adapt multi-task learning for real-world, large-scale face
recognition. In order to cope with the real-world challenges we want to incor-
porate as much relevant information as possible. In particular, given by sim-
ilar/dissimilar labeled face pairs, where we have no access to the actual class
labels. These labeled pairs are mainly used for face verification (deciding if two
faces match) and are rather easy to obtain also on a large scale. For face iden-
tification it is not immediately obvious how to make use of this anonymous
information. But these additional face pairs allow us to learn a more robust
measure of face similarity. Multi-task learning then spreads this knowledge be-
tween the tasks. Hereby, to enable meaningful transfer of knowledge, multi-task
learning faces the problem of different label sets. On the one hand side for face
identification the label set consists of class labels while on the other hand side
we have only equivalence labels. Thus, one important aspect of multi-task learn-
ing is label-incompatible learning, the support of different label sets for different
learning tasks. Particularly, the successful multi-task adaptation of support vec-
tor machines [5] lacks this feature.

Recently, Mahalanobis metric learning [6, 7] showed favorable performance
for various computer vision tasks including face verification [8]. The goal is to find
a global linear transformation of the feature space such that relevant dimensions
for classification or ranking are emphasized while irrelevant ones are discarded.
One particular advantage is that Mahalanobis metric learning methods usually
operate on the space of pairwise differences, thus enabling label-incompatible
learning. The method of Parameswaran and Weinberger [9] extends Mahalanobis
metric learning to the multi-task paradigm. Nevertheless, due to the particular
optimization it relies on labeled triplets and can thus not benefit from data
just labeled with equivalence constraints. Further, it requires computationally
expensive iterations making it impractical for large-scale applications. Hence, to
capitalize on multi-task learning for face recognition, one faces the additional
challenges of scalability and the ability to deal just with equivalence labels.

To meet these requirements, we extend a recent efficient metric learning
algorithm [10] to the multi-task paradigm. The resulting algorithm enables label-
incompatible learning as it only relies on pairwise equivalence labels. These are
considered as natural inputs to distance metric learning algorithms as similarity
functions basically establish a relation between pairs of points. In particular,
we want to learn specific Mahalanobis distance metrics for each person. This
is inspired by the recent finding of Weinberger and Saul [11] that especially
for large-scale applications better results can be obtained by learning multiple
distance metrics. Also many other learning algorithms cast a complex multi-class
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problem in series of simpler, often two class, problems, followed by a voting rule
to form the final decision [12]. Thus, inspired by the successful strategy applied
for multi-class support vector machines we intend to learn individual distance
metrics. Our method is scalable to large datasets and not prone to over-fitting.
To demonstrate the merits of our method we compare it to recent multi-task
and metric learning approaches on the challenging PubFig [13] face recognition
benchmark.

2 Multi-Task Metric Learning for Face Recognition

In the following, we introduce our new multi-task metric learning approach for
face recognition. First, in Section 2.1 we briefly describe the metric learning ap-
proach introduced in [10], which is very efficient in training as it avoids complex
iterative computations and is thus scalable to large datasets. Next, in Section 2.2,
we extend this approach for the multi-task domain. Finally, in Section 2.3 we
introduce a voting scheme that allows for classification using multiple metrics.
The overall goal is to combine several person specific metrics to a multi-class
decision which should lead to lower error rates.

2.1 Mahalanobis Metric Learning

One prominent approach for metric learning is to learn a Mahalanobis distance
d2M, which measures the squared distance between two data points xi,xj ∈ Rd:

d2M(xi,xj) = (xi − xj)
>M(xi − xj) . (1)

The only requirement to induce a valid (pseudo) metric is that M is a symmet-
ric positive semi-definite matrix. Several different approaches (e.g., [11], [7], or
[8]) have been proposed that address different loss functions or regularizations
to optimize such a metric for specific problems. However, such approaches typi-
cally require complex iterative, computationally expensive optimization schemes
and fully labeled data. Instead, KISS metric learning (KISSME) [10] overcomes
these limitations by introducing an efficient statistical motivated formulation
that allows to learn just from equivalence constraints. Analog to the KISS prin-
ciple (keep it simple and straightforward! ) the method is conceptually simple
and efficient per design.

For the following discussion let xi,xj ∈ Rd be a pair of samples and yi, yj ∈
{1, 2, . . . , c} the according labels. Further we define a set of similar pairs S =
{(i, j) |yi = yj} and a set of dissimilar pairs D = {(i, j) |yi 6= yj}. The goal of
KISSME is to decide whether a pair (i, j) is similar or not. From a statistical
inference point of view the optimal statistical decision can be obtained by a
likelihood ratio test. Hereby, the hypothesis H0 that the pair is dissimilar is
tested against H1 that the pair is similar:

δ(xij) = log

(
p(xij |H0)

p(xij |H1)

)
= log

(
f(xij |θ0)

f(xij |θ1)

)
, (2)
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where δ is the log-likelihood ratio, f(xij |θ) is a pdf with parameters θ and
xij = xi − xj . Thus, KISSME casts the metric learning problem into the space
of pairwise differences, as also the similarity Eq. (1) is defined via pairwise dif-
ferences. This space has zero-mean and is invariant to the actual locality of the
samples in the feature space. Assuming zero-mean Gaussian distributions within
the difference space Eq. (2) can be re-written to

δ(xij) = log

 1√
2π|ΣD|

exp(−1/2 xTij Σ
−1
D xij)

1√
2π|ΣS |

exp(−1/2 xTij Σ
−1
S xij)

 , (3)

where ΣS and ΣD are the covariance matrices of S and D, respectively. Let
Cij = (xi − xj)(xi − xj)

> be the outer product of the pairwise differences of xi
and xj , the covariance matrices can be written as

ΣS =
1

|S|
∑

(i,j)∈S

Cij , ΣD =
1

|D|
∑

(i,j)∈D

Cij . (4)

The maximum likelihood estimate of the Gaussian is equivalent to minimize the
distances from the mean in a least squares manner. This allows KISSME to find
respective relevant directions for S and D. By taking the log and discarding the
constant terms we can simplify Eq. (3) to

δ(xij) = xTij Σ
−1
S xij − xTij Σ

−1
D xij = xTij(Σ

−1
S −Σ

−1
D )xij . (5)

Finally, the Mahalanobis distance matrix M is obtained by

M =
(
Σ−1S −Σ

−1
D
)
. (6)

2.2 Multi-Task Metric Learning

Now having introduced KISSME, we can extend formulation Eq. (6) to the
multi-task learning paradigm. The general idea of multi-task learning is to con-
sider T different, but related learning tasks in parallel. In our case a task is to
learn a face verification model for a specific person, and the relation is intuitively
given via the shared visual properties of faces. There are different concepts to re-
alize such a setting. In particular, we adopt the formulation of Parameswaran and
Weinberger [9]. We model the individual metric for each task t ∈ {1, 2, . . . , T}
as combination of a shared metric M0 and a task-specific metric Mt:

d2t (xi,xj) = (xi − xj)
T (M0 + Mt)(xi − xj) . (7)

Each task defines a subset of task specific samples given by the index set It.
Hence, to adopt the formulation Eq. (7) for the KISS metric, we have to define a
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task-specific subset of similar and dissimilar sample pairs: St = {(i, j) ∈ It|yi = yj}
and Dt = {(i, j) ∈ It|yi 6= yj}. In cases where St and Dt is not given, these sets
can be sampled randomly of the actual class labels. Hence, according to Eq. (6)
we can estimate task specific metrics by

Mt =

 1

|St|
∑

(i,j)∈St

Cij

−1 −
 1

|Dt|
∑

(i,j)∈Dt

Cij

−1 . (8)

Similarly, by estimating the weighted sum over the individual task specific char-
acteristic we get the shared or common metric

M0 =

 1

T

T∑
t=1

1

|St|
∑

(i,j)∈St

Cij

−1 −
 1

T

T∑
t=1

1

|Dt|
∑

(i,j)∈Dt

Cij

−1 . (9)

Then, the final individual Mahalanobis distance metric is given by

M̂t = M0 + µ Mt . (10)

Intuitively, M0 picks up general trends across all tasks and thus models com-
monalities. In contrast, Mt models task-specific characteristics. As only free
parameter we retain a balancing factor µ between the task specific metric Mt

and the shared metric M0. Intuitively, the more samples a task contributes the
more focus lies on its specific metric.

2.3 Multi-Task Voting

To fully exploit the power of our multi-task metric learning method for face
recognition, we combine multiple, person specific, metrics into a multi-class de-
cision. However, the outputs of the different metrics are not necessarily compati-
ble and cannot be compared directly. A prominent strategy to reconcile classifier
outputs is to calibrate them by fitting a sigmoid curve to a held-out set [14]. Nev-
ertheless, since such an approach requires a large amount of labeled data, it is
inapplicable for our purpose. Another successful strategy is to assign the class
that wins most pairwise comparisons [15], also referred as max-wins rule.

To adapt this strategy for multi-task metric learning, we assume that the
positive samples for task t coincidence with the class label xi : yi = t. Then the
combination rule

arg max
t

(xi) =

arg max
t

∑
u 6=t

[
I

(
min

j∈It∧yj=t
d2t (xi,xj) ≤ min

k∈Iu∧yk=u
d2t (xi,xk)

)
+ I

(
min

j∈It∧yj=t
d2u(xi,xj) ≤ min

k∈Iu∧yk=u
d2u(xi,xk)

)] (11)
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checks if the minimum distance of a given test sample xi to class t is smaller
than to class u. The indicator function

I(x) =

{
1 if x is true
0 otherwise

(12)

scores for class t if this is true. This comparison is done with the individual
distance metric of task t. Further, we also compare the distances under the
complementary distance metric of task u. The basic idea is that if class t scores
even under that metric it is an indicator for class t. Intuitively, the final decision
is for the class that wins most pairwise comparisons.

3 Experiments and Evaluations

In the following, we demonstrate the performance of our method on the Public
Figures Face Database (PubFig) [13]. The dataset can be considered as very chal-
lenging as it exhibits huge variations in pose, lighting, facial expression and gen-
eral imaging and environmental conditions. As features we use the ”high-level”
description of visual face traits [13], which describes the presence or absence of
73 visual attributes, such as gender, race, hair color etc. For the intended face
identification benchmark we organize the data similar to the existing verification
protocol in 10 folds for cross-validation. Therefore, we split the images of each
individual into 10 disjoint sets. The goals of our experiments are twofold. First,
in Section 3.1 we show that multi-task learning allows us to successfully exploit
additional data with anonymous pairwise labels for face identification. Next, in
Section 3.2 we show that multi-task learning of person specific metrics boosts
the performance for face identification. In particular, we show that the power
lies in the combination of multi-task learning and the person specific metrics, as
it is not sufficient to learn them off-the-shelf. Further, we compare our results to
standard metric learning and related multi-task learning approaches.

Fig. 1: PubFig database [13]: The evaluation set contains 42,461 images of 140
individuals. The number of images per individuals ranges from 63 (Dave Chap-
pelle) to 1536 (Lindsay Lohan). We split the images in 10 non-overlapping folds
for cross-validation.
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3.1 Inducing Knowledge from Anonymous Face Pairs to Face
Identification

First, we show that multi-task learning allows us to transfer general knowledge
about face similarity from anonymous face pairs to face identification. In order
to enable a meaningful transfer of knowledge hereby multi-task learning faces the
problem of different label sets. We test a multi-task learning scenario with two
learning tasks, one with pairwise equivalence labels for the face pairs and one
with class labels for face identification. The goal is to show that the additional
anonymous face pairs help to improve the face identification performance. We
sample the pairs randomly of the predefined development split of the dataset,
containing 60 people. For the identification task we use the evaluation set, con-
taining 140 people (Fig. 1). Thus, we ensure that the subjects for the tasks are
mutually exclusive. For a given test sample we perform k-NN classification using
a single metric to the 140 classes. Using different values for k revealed that there
is no significant performance change, although simple nearest neighbor assign-
ment leads to the best performance. Thus, we stick to a simple nearest neighbor
assignment.

(a) (b)

Fig. 2: Benefiting from additional pairwise labels for face identification on the
PubFig dataset: (a) k-NN classification accuracy of KISSME multi-task vs. stan-
dard single-task learning in relation to the amount of training data; (b) relative
performance change per person from single-task to multi-task learning after us-
ing one fold for training. Green indicates positive induction while red indicates
a negative induction.

In Figure 2 (a) we plot the face identification performance in relation to
amount of data used to train the metric. Testing is done on a held-out set via
10 fold cross-validation. In each step we increase the number of folds used to
train the identification task by one. As expected, the distance metric trained
via multi-task learning (1-MT-KISSME) yields reasonable results right from the
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(a) (b) (c)

(d) (e) (f)

Fig. 3: PubFig face identification benchmark. Comparison of the proposed
method (MT-KISSME) to (a) single-task learning , (b) to other MTL methods,
and (c) to SVMs. Numbers in parentheses denote the precision of the respective
method at full recall. Bottom row, (d)-(f), compares the accuracy per person of
the best performing competing method of the plot above to MT-KISSME.

beginning. Obviously, it is able to reuse knowledge of the anonymous face pairs.
In contrast, the distance metric trained without the additional pairwise labels
(1-KISSME) needs by far more data to reach the same performance. In Figure
2 (b), we compare the relative performance change per person from standard
single-task learning to multi-task learning, after one training fold. In most cases
an improvement can be obtained.

3.2 Person specific Metric Learning

Second, we demonstrate the performance of our MTL method to learn person
specific distance metrics. To show the merit of our method we compare it to
recent MTL methods [5, 9] and also benchmark to multi-class support vector
machines [16, 17]. We report the face identification performance in a refusal to
predict style. Therefore, we rank and threshold the classifier scores. In that
sense, recall means the percentage of samples which have a higher score than
the current threshold and thus are labeled. Precision means the ratio of correctly
labeled samples.

In Figure 3 (a) we compare, as a sanity check, the performance of estimating
person specific metrics via multi-task vs. single-task learning. The MTL method
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outperforms the single-task learning over most levels of recall. At full recall the
performance difference is about 4.5%. The main advantage of our MTL method
is revealed if we compare the recognition accuracy per person. With multi-task
learning we reach a person accuracy of 63.10% while single-task reaches only
54.08%. Thus, it is favorable to learn person specific metrics multi-task. In Fig-
ure 3 (d) we compare the relative performance change per person. Only for a
small number of classes the performance drops slightly while for the vast number
the performance increases.

Next, in Figure 3 (b) we benchmark to recent MTL methods, MT-LMNN
[9] and MT-SVM [5]. Both methods are not really able to capitalize on the
synergies of the face identification task. Both methods are outperformed by
MT-KISSME over all levels of recall. At full recall the respective performance
gain compared to MT-LMNN is 12.4%, compared to MT-SVM 8%. In Fig-
ure 3 (e) we plot the relative performance change on person level compared to
MT-SVM. Hence, our method is able also to compete with two recent MTL ap-
proaches. Compared to the MT-SVM one advantage may be that MT-KISSME op-
erates in the space of pairwise differences, which eases meaningful transfer of
knowledge between the learning tasks. Further, compared to both competing
MTL methods MT-KISSME is able to gain information from pairwise labels.

Finally, in Figure 3 (c) we benchmark our method to multi-class support vec-
tor machines. Particularly, the method of Crammer and Singer [16] has shown
recent success also compared to metric learning methods [6]. The standard
multi-class one-vs-all SVM reaches with 58.4% at full recall about the same
performance as the MT-SVM. The method of Crammer and Singer [16] beats
this by 3.7%. This may be accounted to the fact that it attempts to solve a single
multi-class optimization problem that is better suited for unbalanced datasets.
Nevertheless, MT-KISSME outperforms the one-vs-all method by 8.5% and the
method of Crammer and Singer by 4.5%.

4 Conclusion

In this work we presented a synergistic approach to exploit shared common as
well as person specific information for face recognition. By extending KISSME [10]
metric learning we developed a multi-task learning method that is able to learn
from just equivalence constraints, thus, enabling label-incompatible learning.
Overall, we get a conceptually simple but very effective model, which is scalable
to large datasets. Further, we showed that learning person specific metrics boosts
the performance for face identification. In particular, we revealed that the power
lies in the combination of multi-task learning and person specific metrics, as it is
not sufficient to learn the metrics decoupled. To show the merits of our method
we conducted two experiments on the challenging large-scale PubFig face bench-
mark. We are able to match or slightly outperform recent multi-task learning
methods and also multi-class support vector machines.
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