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Abstract. In this paper, we address the problem of efficient k-NN clas-
sification. In particular, in the context of Mahalanobis metric learning.
Mahalanobis metric learning recently demonstrated competitive results
for a variety of tasks. However, such approaches have two main draw-
backs. First, learning metrics requires often to solve complex and thus
computationally very expensive optimization problems. Second, as the
evaluation time linearly scales with the size of the data k-NN becomes
cumbersome for large-scale problems or real-time applications with lim-
ited time budget. To overcome these problems, we propose a metric-based
hashing strategy, allowing for both, efficient learning and evaluation. In
particular, we adopt an efficient metric learning method for local sen-
sitive hashing that recently demonstrated reasonable results for several
large-scale benchmarks. In fact, if the intrinsic structure of the data
is exploited by the metric in a meaningful way, using hashing we can
compact the feature representation still obtaining competitive results.
This leads to a drastically reduced evaluation effort. Results on a variety
of challenging benchmarks with rather diverse nature demonstrate the
power of our method. These include standard machine learning datasets
as well as the challenging Public Figures Face Database. On the compet-
itive machine learning benchmarks we obtain results comparable to the
state-of-the-art Mahalanobis metric learning and hashing approaches. On
the face benchmark we clearly outperform the state-of-the-art in Maha-
lanobis metric learning. In both cases, however, with drastically reduced
evaluation effort.

1 Introduction

Among the various different classification schemes k-nearest neighbor (k-NN)
based approaches using Mahalanobis metric learning have recently attracted a
lot of interest in computer vision. Several powerful metric learning frameworks
(e.g. [19, 20], [4], or [7]) have been proposed that study different loss functions
or regularizations. Conceptually, these methods take advantage of prior infor-
mation in form of labels over simpler though more general similarity measures.
Significant improvements have been observed for tracking [17], image retrieval
[10], face identification [12], clustering [23], or person re-identification [9].
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The large-scale nature of computer vision applications poses several chal-
lenges and opportunities to the class of Mahalanobis metric learning algorithms.
For instance we can learn a sophisticated distance metric that captures the struc-
ture of the dataset or learn multiple local metrics that better adapt to the in-
trinsic characteristics of the feature space. On larger datasets this usually leads
to lower error rates [20]. In contrast, this is challenged by the computational
burden in training and the needed label effort.

To reduce the required level of supervision, algorithms such as [4, 11] have
been introduced that are able to learn from pairwise labels. Others tackle the
problem of time complexity in learning by special optimization techniques [4, 20].
Nevertheless, one important aspect that is often neglected is the computational
burden at test time as k-NN-search in high-dimensional spaces is cumbersome.
For real-time applications with limited time budget this is even more critical;
especially on larger datasets with tens of thousands of samples that have to be
explored.

One strategy to alleviate this issue is to reduce the number of training sam-
ples and to introduce sparsity in the samples [3, 24]. Ideally, one maintains only
a relatively small set of representative prototypes which capture the discrimina-
tive essence of the dataset. This was also theoretically confirmed by Crammer et
al. [3], who showed that prototype-based methods can be more accurate than
nearest neighbor classification. Nevertheless, these methods require rather elab-
orate learning.

Another successful approach is to focus on sparsity in the variables and per-
form an efficient low dimensional embedding. For instance, one can accelerate
nearest neighbor search by performing a binary Hamming embedding. This can
be done by applying hashing functions directly [10] or on kernelized data [13].
In particular, hyperplanes or hyperspheres are used to partition the data. Data
independent variants such as [6, 2] ignore the structure of the data at all. Data
dependent methods [22, 8] consider the structure of the data, however these
mostly build on an isotropic cluster assumption and thus do not exploit the
general structure of the data.

In contrast, similar to [10] we want to exploit a general metric structure for
hashing. Thus, the goal of this paper is to bridge efficient training and efficient
evaluation in context of Mahalanobis metric learning. In particular, we build on
an efficient metric learning approach, namely KISSME [11], which has shown
competitive results on a range of benchmarks, and adopt it for two different
hashing strategies. In addition, we introduce a metric-based re-ranking strategy,
which further improves the classification results. The proposed approach finally
enables us to drastically reduce the computational effort during training and
evaluation while maintaining accuracy.

The rest of this paper is structured as follows. In Sec. 2 we first summarize
the main ideas of the used metric learning approach and hashing in general and
then show how both approaches can be integrated for efficient (image) retrieval.
Succeeding, in Sec. 3 we show detailed experimental results on standard machine
learning datasets and on the challenging PubFig [15] face recognition benchmark
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and also give a comparison to state-of-the-art hashing methods. Finally, in Sec. 4
we summarize and conclude the paper.

2 KISS HASH

In the following, we introduce our new metric-based k-NN classification scheme
taking advantage of both, efficient learning and evaluation. The main idea is
to efficiently learn a Mahalanobis metric, which better captures the intrinsic
structure of the feature space, and to approximate it using hashing techniques.

The main goal of hashing is to reduce the classification effort by using a
more compact representation. In particular, by mapping the features from a d-
dimensional original space to a lower m-dimensional space, where m � d. A
widely used approach is to apply a Hamming embedding, where the data is rep-
resented in form of binary strings. This allows for comparing the data via XOR
operations, which can be computed efficiently by special purpose instructions on
modern computer hardware. Given a sample x, its binary hash-code h (m× 1)
can be obtained via

h(x) = sign (Px + t) , (1)

where P is a hashing matrix (m× d) and t (m× 1) is a threshold vector.
As minimization of the distances in Hamming space is related to the mini-

mization of the distances in original space, in the following we derive two embed-
ding strategies, exploiting the information captured by a Mahalanobis distance.
The only requirement for this relation is that the hashing function sustains the
locality sensitive hashing (LSH) requirement [6, 2] that the probability of a col-
lision in the hash table is related to the similarity in the original space. In the
following, we first describe how to efficiently obtain a Mahalanobis metric in
Sec. 2.1 and then derive two different metric-based hashing strategies: (a) via
random hyperplane hashing (Sec. 2.2) and (b) via eigen-hashing (Sec. 2.3). In
addition, in Sec. 2.4 we introduce a re-ranking scheme for hashing.

2.1 Efficient Mahalanobis Metric Learning

In general, the goal of Mahalanobis distance learning is to learn a distance
function d2M, which measures the squared distance between two data points
xi,xj ∈ Rd:

d2M(xi,xj) = (xi − xj)
>M(xi − xj) , (2)

where M induces a valid pseudo metric if it is a symmetric positive semi-definite
matrix. Several different approaches (e.g., [20], [4], or [7]) have been proposed and
are widely applied for various tasks. However, such approaches require complex
iterative, computationally expensive optimization schemes, making them often
infeasible for large-scale problems. To overcome these limitations, KISS metric
learning (KISSME) [11] builds on a statistical motivated formulation that allows
for learning just from equivalence constraints.
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For the following discussion let xi,xj ∈ Rd be a pair of samples and yi, yj ∈
{1, 2, . . . , c} the labels. Further we define a set of similar pairs S = {(i, j) |yi = yj}
and a set of dissimilar pairs D = {(i, j) |yi 6= yj}. The goal of KISSME is to de-
cide whether a pair (i, j) is similar or not. From a statistical inference point of
view the optimal statistical decision can be obtained by a likelihood ratio test.
Hereby, the hypothesis H0 that the pair is dissimilar is tested against hypothesis
H1 that the pair is similar:

δ(xij) = log

(
p(xij |H0)

p(xij |H1)

)
= log

(
f(xij |θ0)

f(xij |θ1)

)
, (3)

where δ is the log-likelihood ratio, f(xij |θ) is a pdf with parameters θ and
xij = xi − xj .

Thus, KISSME casts the metric learning problem into the space of pairwise
differences, as also the similarity Eq. (2) is defined via pairwise differences. This
space has zero-mean and is invariant to the actual locality of the samples in the
feature space. Assuming zero-mean Gaussian distributions within the difference
space Eq. (3) can be re-written to

δ(xij) = log

 1√
2π|ΣD|

exp(−1/2 xTij Σ
−1
D xij)

1√
2π|ΣS |

exp(−1/2 xTij Σ
−1
S xij)

 , (4)

where ΣS and ΣD are the covariance matrices of S and D, respectively.
The maximum likelihood estimate of the Gaussian is equivalent to minimize

the distances from the mean in a least squares manner. This allows KISSME to
find respective relevant directions for S and D. By taking the log and discarding
the constant terms we can simplify Eq. (4) to

δ(xij) = xTij Σ
−1
S xij − xTij Σ

−1
D xij = xTij(Σ

−1
S −Σ

−1
D )xij . (5)

Finally, the Mahalanobis distance matrix M is obtained by

M =
(
Σ−1S −Σ

−1
D
)
. (6)

2.2 Hashing by random hyperplanes

As the metric matrix M is positive semi-definite (p.s.d.) we can decompose it
as M = L>L by Cholesky factorization. The matrix L can be seen as linear
transformation that scales and rotates the feature space according to M. After
applying the linear transformation one can perform standard locality sensitive
hashing techniques as random hyperplane hashing.

Thus, to obtain the hash value for a single bit hi the feature vector x is first
transformed by L and then projected onto a random vector ri that is drawn
from a Gaussian distribution with zero mean and unit variance:
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hi (x) =

{
1 if r>i Lx ≥ ti
−1 otherwise .

(7)

Let

Rm = [r1 . . . rm] (8)

be a matrix composed of m random vectors, where m is the desired dimension-
ality. Then, according to Eq. (1) we can re-formulate Eq. (7) such that a hash
code h(x) over all feature dimensions can be estimated:

h(x) = sign
(
R>mLx + t

)
. (9)

2.3 Hashing by eigen-decomposition

Since M is p.s.d. we can also perform an eigen-decomposition M = VDV>.
This allows us to hash with eigenvectors vi as follows:

hi (x) =

{
1 if v>i xi ≥ ti
−1 otherwise .

(10)

Again, let

Vm = [v1 . . .vm] (11)

be the matrix containing the eigenvectors associated with the largest eigenvalues,
we can estimate an m-dimensional hash code for the the feature vector x by

h(x) = sign
(
V>mx + t

)
. (12)

2.4 Retrieval of hashed Examples

The Hamming embedding enables a very efficient search based on the compact
binary representation. Further, on modern CPUs special purpose instructions
exist that are even able to calculate the Hamming distance in a few clock-cycles.
Also approximate search strategies exist that are tailored to the search in Ham-
ming space (e.g., [2] or [16]).

For the proposed method the focus is on short binary codes that can be
efficiently matched followed by a re-ranking step. In particular, a short list of
samples is generated by searching in Hamming space, which is then used for
exact k-NN with the learned metric. To ensure efficiency compact codes are
used in the first step and only a rather small subset of samples is re-ranked. In

particular, we aim at re-ranking O(N
1

1+ε ) samples, where N is the number of
training samples in the respective dataset. For instance, if ε = 1 only O(

√
N)

samples have to be checked. Thus, for higher values of ε less samples have to be
re-ranked.
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3 Experiments

To show the applicability of our method we conduct experiments on three stan-
dard benchmarks and on the Public Figures [15] face recognition benchmark.
The goals of our experiments are twofold. First, we want to show that with
a drastically reduced evaluation effort we are able to obtain similar results to
KISSME and other metric learning baselines. Second, we want to prove that we
are competitive to state-of-the-art hashing schemes, requiring less effort.

3.1 Machine Learning Databases

In the following, we benchmark our proposed method on MNIST [5], LETTER
[5] and CHARS74k [1]. First, we give a brief overview of the databases. Second,
we compare the performance related to the evaluation complexity between our
method and other hashing approaches.

The MNIST database [5] of hand written digits contains in total 70,000 im-
ages in one train-test split. 60,000 samples are used for training and 10,000 for
testing. The images have a resolution of 28 × 28 pixels and are in grayscale.
In contrast, the LETTER [5] database contains a large number of synthesized
images showing one of the 26 capital letters of the English alphabet. The images
are represented as 16 dimensional feature vector which describes statistical mo-
ments and edge counts. Chars74K [1] contains a large mixed set of natural and
synthesized characters. The images comprise one of the 26 capital or lowercase
letters and digits, respectively. 7,705 characters are cropped of natural images,
3,410 are hand drawn and 62,992 are synthesized. Further, the database is split
into one train/test set where 7400 samples are organized for testing and the rest
for training.

In Figure 1 we compare our random hyperplane hashing method to its base-
line on MNIST, LETTER, and CHARS74k. Therefore, we plot the 1-NN classi-
fication error in relation to the code length, where the maximum code length is
restricted to 64 bits. In particular, we report the following results: (a) Standard
KISSME without hashing, (b) nearest neighbor search in Hamming space, and
(c) nearest neighbor search in Hamming space with short list re-ranking. For the
re-ranking step we fix ε to 1, retrieving O(

√
N) samples, which is roughly 1% of

samples in these cases.

For the following discussion we focus on the results on MNIST of our ran-
dom hyperplane based hashing method. The results for MNIST are visualized
in Figure 1 (a), although the relative results are comparable on the different
datasets. The direct nearest neighbor search in Hamming space performs ini-
tially significantly worse than the short list re-ranking method. By increasing
the number of codes the performance gap gets smaller. However, ultimately for
MNIST a performance gap of about 7.58% remains with a code length of 64
bits. This confirms the importance of the re-ranking step. If the short list is kept
reasonable sized the computational effort is manageable. Comparing KISS-Hash
with re-ranking to KISSME reveals that even with short codes comparable per-
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(a) MNIST [5]
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(c) CHARS74k [1]

Fig. 1: Comparison of 1-NN classification accuracy (%) on (a) MNIST
(b) LETTER, and (c) CHARS74k for random hyperplane hashing.
Numbers in parentheses denote the classification accuracy with 64 bits.

formance can be obtained. Starting from 16 bits nearly the same performance is
reached at a much lower computational cost.

Next, in Table 1 we benchmark our method to various competing methods.
In particular, we provide a closer look on different well-established Mahalanobis
metric learning methods and hashing schemes. Comparing KISSME to other
metric learning methods, i.e., ITML, LDML, and LMNN, reveals that it is com-
petitive in most cases, though requiring drastically less training time. Further,
our random hyperplane hashing method as well as the eigenanalysis hashing have
very similar performance to KISSME, though drastically reducing the evaluation
time. Next, we compare the classification error between our methods and others
and relate to their evaluation complexity. For the kernelized hashing approach of
[13] the evaluation scales linearly with the number of kernel samples S times the
kernel complexity Kc: O(SKc). In most cases the kernel complexity is similar
to a distance evaluation. KLSH requires many kernel samples to obtain similar
results, we tested RBF and learned kernels (ITML). The locality-sensitive hash-
ing approach of [10] scales with O(MD), where M is the length of the short list
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Methods MNIST LETTER Chars74K

Nearest Neighbors

Nearest Neighbor (1-NN, 3-NN) 2.92 - 3.09 4.30 - 4.35 17.97 - 19.99

LMNN 3-NN [19, 20] 1.70 3.54 22.89

ITML 1-NN [4] 2.17 4.75 17.00

ITML 3-NN [4] 2.02 4.68 18.54

LDML 1-NN [7] 4.04 11.25 18.62

LDML 3-NN [7] 3.59 10.35 20.32

KISSME 1-NN [11] 2.66 2.83 15.77

KISSME 3-NN [11] 2.36 2.73 18.64

Locality-sensitive hashing

KISS-HASH-RH 1-NN (64 bit, ε = 1) 2.78 2.85 16.05

KISS-HASH-EV 1-NN (64 bit, ε = 1) 2.77 3.25 15.68

KLSH [13, 14] (10,000 kernel samples) 6.15 7.38 88.76

Image Search f. Learn. Metrics [10] (ε = 0.6) 5.51 8.55 -

Spectral Hashing [22] 4.25 7.42 26.03

Multidimensional Spectral Hashing [21] 5.27 33.67 -

Spherical Hashing [8] (256 bit) 3.19 31.4 18.59

Table 1: Comparison of classification error rates (%) on MNIST, LET-
TER and Chars74k. In particular we provide a closer look on different well-
established Mahalanobis metric learning methods and further provide additional
results for different locality-sensitive hashing methods.

of samples generated by approximate search in Hamming space [2]. Even at a
lower value of ε a performance gap remains. A lower value of ε means to retrieve
more samples. Spherical hashing [8] scales with O(AD) where A is the number
of anchor points (code length) where the hyper spheres are anchored. However,
it does not match our performance using a comparable number of anchor points.

Recapitulating the different results and relating them to the evaluation com-
plexity of related works reveals that we get competitive results and are more
efficient. Moreover, we see that it is beneficial to integrate a metric and to be
able to model different scalings and correlations of the feature space.

3.2 Public Figures Face Database

In the following, we demonstrate our method for face identification on the Public
Figures Face Database (PubFig) [15]. PubFig is a large, real-world face dataset
consisting of 58,797 images of 200 people. The evaluation set contains 42,461
images of 140 individuals. PubFig is considered as very challenging as it exhibits
huge variations in pose, lighting, facial expression and general imaging and envi-
ronmental conditions. To represent the faces we use the description of visual face
traits [15]. They describe the presence or absence of 73 visual attributes, such as
gender, race, hair color. Further, we apply a homogeneous χ2 feature mapping
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Fig. 2: Comparison of 1-NN classification accuracy (%) on Public Fig-
ures Face Database (PubFig). (a) recall / precision by ranking and thresh-
olding classifier scores. Code length of 64 bits, ε = 1. (b) Precision at full recall
vs code length.

[18]. For the face identification benchmark we organize the data similar to the
existing verification protocol in 10 folds for cross-validation. Therefore, we split
the images of each individual into 10 disjoint sets.

In Figure 2 (a) we benchmark our random hyperplane hashing to recent Ma-
halanobis metric learning methods. The results for the eigenvalue hashing are
similar. We report the face identification performance in a refusal to predict
style. In that sense, recall means the percentage of samples which have a higher
classifier score than the current threshold. Precision means the ratio of correctly
labeled samples. We use a code length of 64 bits and ε = 1. In Figure 2 (b)
we report the precision at full recall compared to the code length. In particu-
lar, we show that our method generalizes better than LMNN [19], ITML [4] or
LDML [7], which require more computational effort in evaluation. At full recall
the performance difference to LMNN is 2.50%.

4 Conclusion

Mahalanobis metric learning methods have been recently successfully applied
for a range of classification problems. However, such approaches have two main
drawbacks: High computational effort during (a) training and (b) evaluation.
In this paper, we proposed a metric-based hashing method that overcomes both
problems. On the one hand side building on an efficient metric learning approach,
we obtain competitive classification results on various challenging large-scale
benchmarks. On the other hand side, exploiting the learned metric structure by
hashing, finally leads to a drastically reduced effort at test time while maintaining
the discriminative essence of the data.

Acknowledgments. The work was supported by the FFG projects Human Fac-
tors Technologies and Services (2371236) and Mobile Traffic Checker (8258408).
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12. Köstinger, M., Roth, P.M., Bischof, H.: Synergy-based learning of facial identity.
In: Proc. DAGM (2012)

13. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing. Trans. PAMI (2012)
14. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image

search. In: Proc. ICCV (2009)
15. Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and Simile Clas-

sifiers for Face Verification. In: Proc. ICCV (2009)
16. Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in hamming space with multi-

index hashing. In: Proc. CVPR (2012)
17. Shen, C.: Non-sparse linear representations for visual tracking with online reservoir

metric learning. In: Proc. CVPR (2012)
18. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps.

Trans. PAMI 34(3) (2011)
19. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin

nearest neighbor classification. In: Advances NIPS (2006)
20. Weinberger, K.Q., Saul, L.K.: Fast solvers and efficient implementations for dis-

tance metric learning. In: Proc. ICML (2008)
21. Weiss, Y., Fergus, R., Torralba, A.: Multidimensional spectral hashing. In: Proc.

ECCV (2012)
22. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances NIPS (2008)
23. Ye, J., Zhao, Z., Liu, H.: Adaptive distance metric learning for clustering. In: Proc.

CVPR (2007)
24. Zhang, Z., Sturgess, P., Sengupta, S., Crook, N., Torr, P.H.S.: Efficient discrimi-

native learning of parametric nearest neighbor classifiers. In: Proc. CVPR (2012)


