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Abstract

In this paper, we raise important issues on scalability
and the required degree of supervision of existing Maha-
lanobis metric learning methods. Often rather tedious opti-
mization procedures are applied that become computation-
ally intractable on a large scale. Further, if one considers
the constantly growing amount of data it is often infeasible
to specify fully supervised labels for all data points. In-
stead, it is easier to specify labels in form of equivalence
constraints. We introduce a simple though effective strat-
egy to learn a distance metric from equivalence constraints,
based on a statistical inference perspective. In contrast to
existing methods we do not rely on complex optimization
problems requiring computationally expensive iterations.
Hence, our method is orders of magnitudes faster than com-
parable methods. Results on a variety of challenging bench-
marks with rather diverse nature demonstrate the power of
our method. These include faces in unconstrained environ-
ments, matching before unseen object instances and person
re-identification across spatially disjoint cameras. In the
latter two benchmarks we clearly outperform the state-of-
the-art.

1. Introduction
Learning distance or similarity metrics is an emerging

field in machine learning, with various applications in com-
puter vision. It can significantly improve results for tracking
[22], image retrieval [11], face identification [9], cluster-
ing [21], or person re-identification [4]. The goal of metric
learning algorithms is to take advantage of prior information
in form of labels over simpler though more general similar-
ity measures, illustrated in Figure 1.

A particular class of distance functions that exhibits
good generalization performance for many machine learn-
ing problems is Mahalanobis metric learning. The goal is
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Figure 1: Face verification on LFW [12]: The challeng-
ing task shows the benefit of metric learning. Our method
significantly increases the TPR at EER from 67.4% (a) to
80.5% (b). Training takes only 0.05 seconds and is thus
orders of magnitudes faster than related methods.

to find a global, linear transformation of the feature space
such that relevant dimensions are emphasized while irrele-
vant ones are discarded. As there exists a bijection between
the set of Mahalanobis metrics and the set of multivariate
Gaussians one can think of it in terms of the corresponding
covariance matrix. The metric adapts to the desired geom-
etry by arbitrary linear rotations and scalings. After projec-
tion the plain Euclidean distance is measured.

Machine learning algorithms that learn a Mahalanobis
metric have recently attracted a lot of interest in com-
puter vision. These include Large Margin Nearest Neigh-
bor Learning (LMNN) [19, 20], Information Theoretic Met-
ric Learning (ITML) [3] and Logistic Discriminant Metric
Learning (LDML) [8], which can be considered as state-
of-the-art. LMNN [19, 20] aims at improving k-nn clas-



sification. It establishes for each instance a local perime-
ter. The perimeter surrounds the k-nns with similar label
(target neighbors), plus a margin. To reduce the amount
of instances with dissimilar label that invade the perimeter
(impostors) the metric is iteratively adapted. This is done
by strengthening the correlation to target neighbors while
weakening it to impostors. Conceptually sound, LMNN is
sometimes prone to over-fitting due to the lack of regu-
larization. Davis et al. [3] avoid over-fitting by explicitly
integrating a regularization step. Their formulation trades
off between satisfying the given constraints on the dis-
tance function while minimizing the differential entropy to
the initial prior distance metric distribution. Guillaumin et
al. [8] introduce a probabilistic view on learning a Maha-
lanobis metric where the a posteriori class probabilities are
treated as (dis)similarity measures. Thus, they propose to
iteratively adapt the Mahalanobis metric to maximize the
log-likelihood. The a posteriori probability is modeled by
a sigmoid function that reflects the fact that instances share
labels if their distance is below a certain threshold. In prin-
ciple, all of these methods are able to generalize well to
unseen data. They focus on robust loss functions and regu-
larize solutions to avoid over-fitting.

Considering the ever growing amount of data, learning
a Mahalanobis metric on a large scale dataset raises further
issues on scalability and the required degree of supervision.
Often it is infeasible to specify fully supervised labels for
all data points. Instead, it is easier to specify labels in form
of equivalence constraints. In some cases it is even possible
to obtain this form of weak supervision automatically, e.g.,
by tracking an object. Hence, to capitalize on large scale
datasets one faces the additional challenges of scalability
and the ability to deal with equivalence constraints.

To meet these requirements, we learn an effective metric
just based on equivalence constraints. These are considered
as natural inputs to distance metric learning algorithms as
similarity functions basically establish a relation between
pairs of points. Our method is motivated by a statistical
inference perspective based on a likelihood-ratio test. We
show that the resulting metric is not prone to over-fitting
and very efficient to obtain. Compared to other approaches
we do not rely on a tedious iterative optimization procedure.
Therefore, our method is scalable to large datasets, as it just
involves computation of two small sized covariance matri-
ces. As analog to the KISS principle (keep it simple and
straightforward!) we keep our method easy and efficient
per design and will thus refer to it as KISS metric.

We demonstrate our method on various different bench-
marks where we match or even outperform state-of-the-art
metric learning approaches, while being orders of magni-
tudes faster in training. In particular, we provide results
on two recent face recognition benchmarks (LFW [12],
PubFig[13]). Due to the non-rigid nature and changes in

pose, lighting and expression faces are a challenge for learn-
ing algorithms. Further, we study the task of person re-
identification across spatially disjoint cameras (VIPeR [6])
and the comparison of before never seen object instances
on ToyCars [15]. On VIPeR and the ToyCars dataset we
improve even over the domain specific state-of-the-art. Fur-
ther, for LFW we obtain the best reported results for stan-
dard SIFT features.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss related metric learning approaches that
motivate our approach. Succeeding, in Section 3 we intro-
duce our KISS metric learning approach. Extensive exper-
iments and evaluations on performance and scalability are
conducted in Section 4. Finally, we conclude and summa-
rize the paper in Section 5.

2. Learning a Mahalanobis Metric
Learning a distance or similarity metric based on the

class of Mahalanobis distance functions has gained con-
siderable interest in computer vision. In general, a Maha-
lanobis distance metric measures the squared distance be-
tween two data points xi and xj :

d2
M(xi,xj) = (xi − xj)

TM(xi − xj), (1)

where M � 0 is a positive semidefinite matrix and xi,xj ∈
Rd is a pair of samples (i, j). Further, for the following
discussion we introduce a similarity label yij : yij = 1 for
similar pairs, i.e., if the samples share the same class label
(yi = yj) and yij = 0 otherwise. To motivate our approach,
we give in the following an overview of the state-of-the-art
in learning a Mahalanobis metric. In particular, we examine
LMNN [19, 20], ITML [3] and LDML [8].

2.1. Large Margin Nearest Neighbor Metric

The approach of Weinberger et al. [19, 20] aims at im-
proving k-nn classification by exploiting the local structure
of the data. For each instance a local perimeter surround-
ing the k nearest neighbors sharing the same label (target
neighbors) is established. Samples having a different label
that invade this perimeter (impostors) are penalized. This is
realized via the following objective function:

ε(M) =
∑
j i

[
d2

M(xi,xj) + µ
∑
l

(1− yil)ξijl(M)

]
. (2)

The first term minimizes the distance between target neigh-
bors xi,xj , indicated by j  i. The second term denotes
the amount by which impostors invade the perimeter of i
and j. An impostor l is a differently labeled input (yil = 0)
that has a positive slack variable ξijl(M) ≥ 0:

ξijl(M) = 1 + d2
M(xi,xj)− d2

M(xi,xl). (3)



To estimate M, gradient descent is performed along the gra-
dient defined by the triplets (i, j, l) having positive slack:

∂ε(Mt)

∂Mt =
∑
j i

Cij + µ
∑

(i,j,l)

(Cij − Cil) , (4)

where Cij = (xi−xj)(xi−xj)T denotes the outer product
of pairwise differences. Conceptually, for active triplets this
formulation strengthens the correlation to target neighbors
while weakening it to impostors.

2.2. Information Theoretic Metric Learning

Davis et al. [3] exploit the relationship between multi-
variate Gaussian distributions and the set of Mahalanobis
distances. The idea is to search for a solution that trades
off the satisfaction of constraints while being close to a
distance metric prior M0, e.g., the identity matrix for the
Euclidean distance. The closeness of the solution to the
prior is measured by the Kullback-Leibler divergence of
the corresponding distributions. The prior can be consid-
ered as a regularization term to avoid over-fitting. The con-
straints enforce that similar pairs are below a certain dis-
tance d2

M(xi,xj) ≤ u while dissimilar pairs exceed a cer-
tain distance d2

M(xi,xj) ≥ l. The optimization builds on
Bregman projections [1], which project the current solution
onto a single constraint via the update rule:

Mt+1 = Mt + βMtCijMt . (5)

The parameter β involves the pair label and the step size.
It is positive for similar pairs and negative for dissimilar
pairs. Thus, for similar pairs the optimization is performed
in direction of Cij while for dissimilar pairs in the negative
direction.

2.3. Linear Discriminant Metric Learning

Guillaumin et al. [8] offer a probabilistic view on learn-
ing a Mahalanobis distance metric. The a posteriori
class probabilities are treated as (dis)similarity measures,
whether a pair of images depicts the same object. For a
given pair (i, j) the a posteriori probability is modeled as

pij = p(yij = 1|xi,xj ; M, b) = σ(b− d2
M(xi,xj)) , (6)

where σ(z) = (1+exp(−z))−1 is a sigmoid function and b
is a bias term. Thus, to estimate M the Mahalanobis metric
is iteratively adapted to maximize the log-likelihood:

L(M) =
∑
ij

yij ln(pij) + (1− yij) ln(1− pij). (7)

The maximization by gradient ascent is obtained in direc-
tion of Cij for similar pairs and in the negative direction for
dissimilar pairs:

∂L(M)

∂M
=
∑
ij

(yij − pij)Cij . (8)

The influence of each pair on the gradient direction is con-
trolled over the probability.

If we recapitulate the properties and characteristics of
the described metric learning approaches we observe two
commonalities. First, all methods rely on an iterative opti-
mization scheme which can be computationally expensive
for large scale datasets. Second, if we compare the up-
date rules of the different methods, given in Eqs. (4), (5)
and (8), we can see that the optimization is performed in
direction of Cij for similar pairs and in the negative direc-
tion of Cij for dissimilar pairs. In the following, we in-
troduce a non-iterative formulation, which builds on a sta-
tistical inference perspective of the space of pairwise dif-
ferences. This allows us to face the additional challenges
of scalability and the ability to learn from equivalence con-
straints. Our parameter-free approach is very efficient in
training, enabling to exploit the constantly growing amount
of data also for learning.

3. KISS Metric Learning
Our method considers two independent generation pro-

cesses for observed commonalities of similar and dissimilar
pairs. The dissimilarity is defined by the plausibility of be-
longing either to one or the other. From a statistical infer-
ence point of view the optimal statistical decision whether
a pair (i, j) is dissimilar or not can be obtained by a likeli-
hood ratio test. Thus, we test the hypothesis H0 that a pair
is dissimilar versus the alternative H1:

δ(xi,xj) = log

(
p(xi,xj |H0)

p(xi,xj |H1)

)
. (9)

A high value of δ(xi,xj) means that H0 is validated. In
contrast, a low value means that H0 is rejected and the pair
is considered as similar. To be independent of the actual lo-
cality in the feature space, we cast the problem in the space
of pairwise differences (xij = xi−xj) with zero mean and
can re-write Eq. (9) to

δ(xij) = log

(
p(xij |H0)

p(xij |H1)

)
= log

(
f(xij |θ0)

f(xij |θ1)

)
. (10)

Whereby f(xij |θ1) is a pdf with parameters θ1 for hypoth-
esis H1 that a pair (i, j) is similar (yij = 1) and vice-versa
H0 for a pair being dissimilar. Assuming a Gaussian struc-
ture of the difference space we can relax the problem and
re-write Eq. (10) to

δ(xij) = log

 1√
2π|Σyij=0|

exp(−1/2 xTij Σ−1
yij=0 xij)

1√
2π|Σyij=1|

exp(−1/2 xTij Σ−1
yij=1 xij)

 ,

(11)



where

Σyij=1 =
∑
yij=1

(xi − xj)(xi − xj)
T , (12)

Σyij=0 =
∑
yij=0

(xi − xj)(xi − xj)
T . (13)

The pairwise differences xij are symmetric. Thus, we have
zero mean and θ1 = (0,Σyij=1) and θ0 = (0,Σyij=0). The
maximum likelihood estimate of the Gaussian is equivalent
to minimizing the Mahalanobis distances from the mean in
a least squares manner. This allows us to find respective
relevant directions for the two independent sets. By taking
the log, we can re-formulate the likelihood-test as

δ(xij) = xTij Σ−1
yij=1 xij + log(|Σyij=1|) (14)

−xTij Σ−1
yij=0 xij − log(|Σyij=0|).

Further, we strip constant terms as they just provide an
offset and simplify to

δ(xij) = xTij(Σ
−1
yij=1 − Σ−1

yij=0)xij . (15)

Finally, we obtain our Mahalanobis distance metric that
reflects the properties of the log-likelihood ratio test

d2
M(xi,xj) = (xi − xj)

TM(xi − xj) (16)

by re-projection of M̂ =
(

Σ−1
yij=1 − Σ−1

yij=0

)
onto the cone

of positive semidefinite matrices. Hence, to obtain M we
clip the spectrum of M̂ by eigenanalysis.

4. Experiments
To show the broad applicability of our method we

conduct experiments on various standard benchmarks with
rather diverse characteristics. The goals of our experiments
are twofold. First, we want to show that our method is able
to generalize to unseen data as well or even better than
state-of-the-art metric learning approaches. Second, we
want to prove that we are orders of magnitudes faster. This
is clearly beneficial for large scale or online applications.
In Section 4.1 we first conduct experiments on faces in
unconstrained environments. Succeeding, in Section 4.2
we study the problem of person re-identification across
spatially disjoint cameras. Finally, in Section 4.3 we
evaluate on the ToyCars dataset intended to compare before
unseen object instances.

For the comparison to other metric learning approaches
the numbers were generated with original code and same
input data. The code was kindly provided by the respec-
tive authors. Further, we compare our method to related

domain specific approaches. For all plots the numbers in
parentheses denote the Equal Error Rate (EER) of the re-
spective method.

4.1. Face Recognition

In the following, we demonstrate the performance of
our method on two challenging face recognition datasets,
namely on Labeled Faces in the Wild (LFW) [12] and Pub-
lic Figures Face Database (PubFig) [13]. Hereby, the study
of face recognition is divided into two different objectives:
face identification (naming a face) and face verification (de-
ciding if two face images are of the same individual). The
nature of the face identification task requires a number of
annotated faces per individual, with which these real-world
databases not always comply with. In contrast, face veri-
fication needs less annotations and can be evaluated more
seriously also on a large scale. Thus, compliant with previ-
ous work we focus on the face verification task.

4.1.1 Labeled Faces in the Wild

The Labeled Faces in the Wild dataset [12] contains 13,233
unconstrained face images of 5,749 individuals and can be
considered as the current state-of-the-art face recognition
benchmark. The database is considered as very challeng-
ing as it exhibits huge variations in pose, lighting, facial
expression, age, gender, ethnicity and general imaging and
environmental conditions. Some illustrative examples are
given in Figure 2 (a). An important aspect of LFW is that
per design the subjects are mutually exclusive in any split
of the database. Thus, for the face verification task testing
is done on individuals that have not been seen in training.

The data is organized in 10 folds that are used for cross-
validation. Each fold consists of 300 similar and 300 dis-
similar pairs. The result scores are averaged over the 10
folds. In the restricted protocol it is only allowed to con-
sider the equivalence constraints given by the similar / dis-
similar pairs. No inference on the identity of the subject,
e.g., to sample more training data, is allowed.

For our experiments we use the face representation pro-
posed by Guillaumin et al. [8]. Basically, it extracts SIFT
descriptors [14] at 9 automatically detected facial land-
marks (corners of the mouth, eyes and nose), over three
scales. The resulting descriptor is a 3,456 dimensional vec-
tor. To make it tractable for the distance metric learning
algorithms we perform dimensionality reduction by PCA to
a 100 dimensional subspace. To evaluate the different met-
ric learning methods and enable a fair comparison we train
the classifiers with exactly the same features and PCA di-
mensions. The influence of the PCA dimensionality is not
too critical. Using different dimensionalities for all tested
methods reveals that there is no significant change in per-
formance. Except for the linear SVM we train directly on



(a) Example pairs. (b) ROC/SIFT. (c) ROC/Attributes.

Figure 2: Face verification results on the LFW dataset: (a) Examples of similar and dissimilar pairs. ROC curves for
different feature types and learners: In (b) we report the performance for the SIFT features of [8] and in (c) for the ”high-
level” description of visual face traits [13]. For the SIFT features our method outperforms several metric learning approaches
slightly. For the attributes it matches with the SVM based approach proposed by [13].

the face descriptors as this delivers better results.
In Figure 2 (b) we report a Receiver Operator Character-

istic (ROC) curve for LDML [8], ITML [3], LMNN [19],
SVM [2], our method (KISSME), the Mahalanobis distance
of the similar pairs and the Euclidean distance as baseline.
Please note that for LMNN we have to provide more super-
vision in form of the actual class labels (not just equivalence
constraints) as it needs labeled triplets.

The Mahalanobis distance of the similar pairs (My=1)
performs already quite well in comparison to the Euclidean
distance. It increases the performance by about 7%. Inter-
estingly, LMNN is not really able to capitalize on the addi-
tional information over the other metrics. KISSME outper-
forms the other metrics slightly. It reaches with an Equal
Error Rate of 80.5% the best reported results up to now for
this kind of feature type. Of course recent state-of-the-art on
LFW provides better results but also requires considerably
more domain knowledge (i.e., pose specific classifiers), as
these approaches focus purely on faces.

When analyzing the training times given in Table 1 the
main advantage of our method is obvious. In fact, compared
to LMNN, ITML, and LDML our method is computation-
ally much more efficient, however, still yielding competitive
results.

4.1.2 Public Figures Face Database

The PubFig dataset [13] has many commonalities with
LFW. It is also an extremely challenging large-scale, real-
world database, consisting of 58,797 images of 200 indi-
viduals. The images were gathered from Google images
and FlickR. The face verification benchmark consists of

Method LFW PubFig VIPeR ToyCars
KISSME 0.05s 0.07s 0.01s 0.04s
SVM 12.78s 0.84s – 0.60s
ITML 24.81s 20.82s 8.60s 14.05s
LDML 307.23s 2868.91s 0.72s 1.21s
LMNN 1198.69s 783.66s 27.56s 0.79s

Table 1: Average training times. LDML, LMNN make use
of multi-threading. Evaluated on a 3.06 GHz Xeon with 24
cores.

10 cross-validation folds with 1,000 intra and 1,000 extra-
personal pairs each. Per fold the pairs are sampled of 14
individuals. Similar to the LFW benchmark individuals that
appear in testing have not been seen before in training.

An interesting aspect of the database is that ”high-level”
features are provided that describe the presence or absence
of visual face traits. The appearance is automatically en-
coded in either nameable attributes such as gender, race,
age, hair etc. or ”similes” that relate the similarity of face
regions to specific reference people. This indirect descrip-
tion yields nice properties such as a certain robustness to
image variations compared to low-level features. Further, it
offers us a complementary feature type to evaluate the per-
formance of the distance metric learning algorithms.

In Figure 4 we report ROC curves for LDML [8],
ITML [3], LMNN [19], SVM [2], our method (KISSME)
and two baselines. It can be seen that we outperform
ITML, LMNN and match the state-of-the-art performance
of the SVM based method proposed by Kumar et al. [13].
LDML delivers similar results to our algorithm while being



(a) Example Pairs (b) CMC

Figure 3: Person re-identification results on the VIPeR dataset. Example image pairs are shown in (a). In (b) average
Cumulative Matching Characteristic (CMC) curves over 100 runs are plotted. Our method (KISSME) slightly outperforms
the other metrics. In light-gray all runs of our method are indicated.

Figure 4: Face verification results on the PubFig dataset.
For all methods we use the ”high-level” description of vi-
sual face traits [13].

orders of magnitudes slower in training (see Table 1). This
makes the algorithm impracticable for online or large-scale
use. Interestingly, the performance of ITML drops even be-
low the plain Euclidean distance. In Figure 2 (b) we also
report the performance of the attribute features for LFW.

4.2. Person Re-Identification

The VIPeR dataset [6] consists of 632 intra-personal im-
age pairs of two different camera views, captured outdoors.

The low-resolution images (48x128px) exhibit significant
variations in pose, viewpoint and also considerable changes
in illumination, like highlights or shadows. Most of the ex-
ample pairs contain a viewpoint change of about 90 degrees,
making person re-identification very challenging. Some ex-
amples are given in Figure 3 (a). To compare our method to
other approaches, we followed the evaluation protocol de-
fined in [5, 7]. The authors split the set of 632 image pairs
randomly into two sets of 316 image pairs each, one for
training and one for testing, and compute the average over
several runs. There is no predefined set or procedure how to
obtain dissimilar pairs. Hence, we generate dissimilar pairs
by randomly combining images of different persons.

To represent the images we compile a rather simple de-
scriptor. First, we divide the images into overlapping blocks
of size 8x16 and stride of 8x8. Second, to describe color
cues we extract HSV and Lab histograms, each with 24 bins
per channel. Third, we capture texture information by LBPs
[16]. Finally, for the distance metric learning approaches
we project the concatenated descriptors into a 34 dimen-
sional subspace by PCA.

To indicate the performance of the various algorithms we
report Cumulative Matching Characteristic (CMC) curves
[18]. These represent the expectation of the true match be-
ing found within the first n ranks. To obtain a reasonable
statistical significance, we average over 100 runs. In Fig-
ure 3 (b) we report the CMC curves for the various metric
learning algorithms. Moreover, in Table 2 (b) we compare
the performance of our approach in the range of the first 50
ranks to state-of-the-art methods [4, 5, 10, 23]. As can be
seen, we obtain competitive results across all ranks. We out-
perform the other methods [5, 7, 17] even though in contrast



RANK 1 10 25 50
KISSME 19.6% 62.2% 80.7% 91.8%
LMNN 19.0% 58.1% 76.9% 89.6%
ITML 15.2% 53.3% 74.7% 88.8%
LDML 10.4% 31.3% 44.6% 60.4%

My=1 16.8% 50.9% 68.7% 82.0%
L2 10.6% 31.8% 44.9% 60,8%

(a)

RANK 1 10 25 50
KISSME 20% 62% 81% 92%
SDALF [5] 20% 50% 70% 85%
DDC [10] 19% 52% 69% 80%
PRDC [23] 16% 54% 76% 87%
KISSME* 22% 68% 85% 93%
LMNN-R* [4] 20% 68% 84% 93%

(b)

Table 2: Person re-identification matching rates on the VIPeR dataset. Table (a) shows the metric learning approaches
(average of 100 runs) whereas (b) gives an overview of the state-of-the-art. To be comparable to LMNN-R we also report the
best run (*).

to them we do not use a foreground-background segmenta-
tion. Further, we are computationally more efficient.

4.3. ToyCars

The LEAR ToyCars [15] dataset consists of 256 image
crops of 14 different toy cars and trucks. The dataset ex-
hibits changes in pose, lighting and cluttered background.
The intention is to compare before unseen object instances
of the known class cars (see Figure 5 for illustration). Thus,
in testing the task is to classify if a pair of images shows
the same object or not. The training set contains 7 object
instances with associated 1185 similar and 7330 dissimilar
image pairs. The remaining 7 object instances are in the
test set. As the images differ in horizontal resolution we
zero-pad them to obtain a canonical image size.

=

TRAIN

=

TEST

?

Figure 5: LEAR ToyCars [15] dataset. The task is to
decide if two before unseen object instances of the known
class cars are similar or not.

We extract a similar image representation as used in the
person re-identification experiment. Therefore, the images
are divided into 30x30 non-overlapping blocks. We cap-
ture color cues by HSV and Lab histograms while texture
is described by LBPs [16]. The global image descriptor is a
concatenation of the local ones. Using PCA the descriptor
is projected onto a 50 dimensional subspace.
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Figure 6: ROC curves on LEAR ToyCars dataset. Our
method is able to drop error rates significantly compared to
the previous work of Nowak et al. [15].

We conduct our experiments on this dataset in compari-
son to the recent approach of Nowak and Jurie [15], which
builds on an ensemble of extremely randomized trees. The
ensemble quantizes corresponding patch pair differences
by enforcing that corresponding patches of matching pairs
yield similar responses. Corresponding patches are located
in a local neighborhood by NCC. In testing the similarity
between an image pair is the weighted sum of correspond-
ing patches that end up in the same leaf node.

In Figure 6 we plot ROC curves which compare our
method to the work of Nowak and Jurie [15] and the related
metric learning approaches. Further, we provide a base-
line with a standard linear SVM [2]. Using SVM yields an



EER of 81%, already a reasonable performance. Interest-
ingly, some of the metric learning approaches are not able
to improve over the Euclidean distance. Only LMNN per-
forms similar to the SVM. By taking the Mahlanobis dis-
tance learned form the positive pairs only we can already
outperform Nowak and Jurie’s approach and reach an EER
of 89.8%. KISSME boosts the performance further up to
93.5%. If one considers the computation time of [15] with
17 hours (P4-3.4GHz) our approach once more shows its
benefits in terms of efficiency and effectiveness.

5. Conclusion
In this work we presented our KISS method to learn a

distance metric from equivalence constraints. Based on a
statistical inference perspective we provide a solution that
is very efficient to obtain and effective in terms of gener-
alization performance. To show the merit of our method
we conducted several experiments on various challenging
large-scale benchmarks, including LFW and PubFig. On
all benchmarks we are able to match or slightly outper-
form state-of-the-art metric learning approaches, while be-
ing orders of magnitudes faster in training. On two datasets
(VIPeR, ToyCars) we even outperform approaches espe-
cially tailored to these tasks.
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