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Abstract

This paper proposes an efficient approach for semantic image classification by inte-
grating additional contextual constraints such as class co-occurrences into a randomized
forest classification framework. The randomized forest classifier performs an initial yet
local classification on the pixel level by using powerful covariance matrix based de-
scriptors as feature representation. Furthermore, we exploit multiple unsupervised im-
age partitions to provide a reliable spatial region support and to capture the real object
boundaries. An information theoretic driven approach detects consistently classified re-
gions and generates a representative segmentation incorporating the classification result
on the pixel level. Moreover, we use a conditional random field formulation to obtain a
final labeling including context information individually generated for each test image.
To illustrate state-of-the-art performance, we run experiments on the two versions of the
MSRC [21] dataset with 9 and 21 object classes and on the PASCAL VOC2007 [5] image
collection.

1 Introduction
The problem of semantic description is still a largely unsolved task since there are huge vi-
sual variabilities of natural objects in available images. Typically, illumination, viewpoint
and scale changes, and occlusions complicate the problem of finding a meaningful object
representation within a classification process. Thus, recently the topic of semantic classifi-
cation and segmentation is of major scientific interest in the computer vision community.

Local strategies, using supervision, aim to describe every pixel within a small neigh-
borhood of the image space [12, 20, 21, 22, 24, 25]. Once a meaningful explanation of a
pixel/region level is found, contextual constraints are integrated to find a final classification.
These contextual constraints capture the probability of class occurrences within an image
and also provide a smooth labeling in a spatial neighborhood. Conditional Markov random
field (CRF) formulations [11] are widely adopted to include these contextual constraints [16,
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Figure 1: Examples of image partitions obtained by varying the parameter settings of a
mean-shift segmentation [3]. The resulting image partitions do not guarantee perfect object
boundaries. In some cases the objects such as the birds are not segmented or the bridge is
mixed up with water regions.

18, 20, 21, 24]. Due to missing perfect single image partitions [23], there is a trend to per-
form object classification by integrating multiple image segmentations [8, 10, 14, 16, 19]. In
Figure 1, samples of different image segmentations are shown. Obviously, the varying con-
figurations for the segmentation procedure capture the real object boundaries only to some
extent,e.g., the bridge is fused with water or tiny birds are missing in some partitions.

In [14], Malisiewics and Efros investigated the application of multiple segmentations to
provide spatial support. They showed that a correct spatial support improves the recognition
performance significantly. Pontafaru et al. [16] integrated multiple segmentations to obtain
a final image partition that captures the real object boundaries. A classifier is trained on
features that are extracted from segmented regions. Kohli et al. [10] introduced multiple
segmentations as additional potentials within a CRF framework to enforce consistently la-
beled regions. Galleguillos et al. [8] used multiple instance learning, where the classifier is
trained on a bag-of-word model, integrating computed stable segmentations.
Randomized forests (RF) [2] are well suited for multi-class object recognition due to accu-
racy and robustness to label noise [15, 20, 22]. Shotton et al. [22] proposed an RF framework
incorporating simple semantic textons for initial classification. Schroff et al. [20] extended
this approach by exploiting several feature cues and by applying more sophisticated split
criteria within the forest. Furthermore, the structure of the trees simply enables to extract
additional information such as hierarchical histograms [15, 22] or spatial features for object
detection [7].

This paper has three main contributions: First, we use powerful yet compact covariance
regions descriptors [17] as feature representation within an RF classifier by applying a sim-
ple matrix vectorization. This representation then directly integrates arbitrary feature cues
such as color and filter responses. Second, we investigate how multiple segmentations, pro-
vided by [3, 6], can be integrated using the raw classification on the pixel level. The main
idea is based on identifying regions that provide a consistent classification (we use an en-
tropy measure). Minimizing the entropy over all different segmentations yields a final image
partition that is represented by a region adjacency graph. Third, we exploit the structure of
the RF to generate individual context information for each image. Following the idea of Gall
et al. [7] we store additional information such as a probable class occurrence configuration,
in the leaf nodes. For each test image the generated context information, represented by a
co-occurrence matrix [18], is integrated by using an efficient CRF formulation [11] to obtain
the final labeling of the regions adjacency graph.
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The remaining part of the paper is structured as follows: First, in Section 2 we highlight
the general classification pipeline that provides the class distribution on the pixel level. Addi-
tionally, the section illustrates the idea of extracting additional context information. Section 3
describes the generation of multiple image segmentations and how a final partition using the
entropy minimization can be obtained. In Section 4 the integration of the context information
is discussed. Section 5 presents the experimental evaluation on standard datasets. Finally,
Section 6 concludes the paper and gives an outlook on future work.

2 Initial Classification on Pixel-Level
The first step of our approach involves a semantic classification procedure that provides an
accurate explanation for each pixel in the image. Contrary to [20], where multiple feature
channels are combined in a computationally costly manner, we directly integrate various
cues in a single, compact feature representation based on covariance descriptors. In the
following, we first highlight the idea of this feature representation and then we illustrate the
application to the RF framework. In addition, we show how to exploit the structure of the
RF for generating individual contextual constraints per image.

2.1 Covariance Features
To obtain a reliable local classification on the pixel level, we apply a strong feature represen-
tation based on covariance matrix descriptors. Covariance descriptors [17] are now widely
used in object detection and tracking, since they can be efficiently computed and allow to
capture the variance feature channels and correlation between them. Given a color image
with three layers I ∈ Rw×h×3, we can generate a d-dimensional feature image F ∈ Rw×h×d

from I using a mapping function F(q) = γ (I,q), where q = (x,y) defines an arbitrary pixel
coordinate. Then, any rectangular n× n dimensional region R ⊆ F can be represented by a
d×d covariance matrix

CR =
1

|R|−1 ∑
q∈R

(F (q)−µ)(F (q)−µ)T , (1)

where µ ∈ R1×d is the sample mean vector. In this work, the mapping function γ (I,q)
provides the CIELab color values, the absolute values of the first and second order deriva-
tives, the angle, and the magnitude of the gradients. The resulting feature vector f ∈ R1×9

for each pixel is defined as f =
[

L a b |Ix|
∣∣Iy
∣∣ |Ixx|

∣∣Iyy
∣∣ arctan

(
Iy
Ix

) √
I2
x + I2

y

]
. The

derivatives are computed on the L-color channel. Since the space of covariance matrices is
non-Euclidean, these descriptors can not be directly used in RFs.

To overcome this problem, in [17] iterative numerical procedures using an affine-invariant
Riemannian metric are applied. In contrast, in this paper we aim to use a more efficient com-
putation scheme based on a log-Euclidean Riemannian metric [1] exploiting the underlying
structure of symmetric positive definite (SPD) matrices. Covariance matrices CR are positive
semi-definite by definition. Hence, by simple regularizing CR = CR +εId , where Id is the d-
dimensional identity matrix and ε = 1e-9, CR becomes symmetric positive definite. In fact,
the space of positive definite matrices Sym+(d) lies on a connected Riemannian manifold
describing a Lie group. However, under the log-Euclidean Riemannian metric the Lie group
structure of SPD matrices can be extended to a Lie Algebra, which also defines a vector
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space, that can be described by a Euclidean metric. More details can be found in [1]. Thus,
given a region covariance matrix CR ∈ Sym+(d), we apply the log-Euclidean mapping:

log(CR) =
∞

∑
k=1

(−1)k+1

k
(CR− Id)

k = U log(D)UT , (2)

where CR = UDUT is the eigenvalue decomposition and log(D) is the diagonal matrix of the
eigenvalue logarithms. Since log(CR) has a vector space structure under the log-Euclidean
metric, we can unfold log(CR) into a feature vector without loosing any information about
CR. Therefore, we can represent the information given by a d × d dimensional covari-
ance matrix CR by a vector v ∈ R1×d2

. Following [13], where this vectorized form of log-
Euclidean covariance matrices has been used for learning incremental subspaces in tracking,
we apply the feature representation v to our RF classifier.

2.2 Randomized Forest Classification
RFs [2] provide an efficient technique to obtain an averaged class distribution and can also
be used to extract hierarchical data for further improvement of the classification [15, 22].
A forest consists of an ensemble of T binary decision trees, where the nodes of each tree
include split criteria that give the direction of branching left and right down the tree until a
leaf node is reached at a given maximum depth D. A leaf node li then contains the likelihood
P(c|li) given by the labels of the visible training examples. An averaging over all decisions
in the forest yields the resulting accumulated class distribution obtained at each evaluated
pixel location according to P(c|L) = 1

T ∑
T
i=1 P(c|li). Given a training set V =

{
v1, . . . ,vN

}
,

each tree is learned on a randomly extracted subset V′ ⊂ V. Additionally, the target labels
are extracted by considering the ground truth data and are directly assigned to the feature
representation. A concrete training sample

(
vi,ci

)
consists of the feature vi and the assigned

target label ci. The learning proceeds from the root node top-down by splitting the available
subset at each node into tiled left and right feature sets. The split criteria in the non-leaf
nodes minimize the sample weighted information gain ratio [22] of the class distribution in
currently available subsets of the training data. We follow a similar strategy as proposed
in [7, 22] to perform the splitting decisions by comparing two randomly chosen attributes vi

j
and vi

k of the available feature sample vi ∈ V′:

vi
j− vi

k =
{

> 0, le f t branch
≤ 0, right branch .

(3)

Here, j and k denote the indexes of the selected attributes that maximize the information gain
considering the training labels. We take the same numbers of split node tests as suggested
in [22].

2.3 Exploiting the Tree Nodes
Recently, Gall and Lempitsky [7] showed that the structure of RFs can be exploited to store
additional information like coordinate offsets for the task of object detection. We propose
a similar mechanism to generate a voting for probable object class occurrences individually
for each test image. To obtain the integration of an image specific probable class configu-
ration, each feature instance is first extended to include the classes occurring in the current
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training images considering the ground truth labeling. Therefore, we construct a binary vec-
tor that masks a possible occurrence of related classes and assign it to the resulting feature
vector. While recursively learning the trees, taking into account the feature representation
(see Section 2.1) and the split criteria defined in Equation 3, the feature instances end up in
a leaf node where the assigned binary information is accumulated for each permutation of
possible class occurrences. Once the forest is trained, the classifier is evaluated at the pixel
level by parsing down the extracted feature representation vi in the forest and summarizing
the class distribution to obtain an averaged likelihood at each pixel location. Additionally,
the learned symmetric co-occurrence matrix in the leaf node votes for an overall possible
class configuration θ ∈ R|c|×|c|, which is directly applied to the CRF as semantic contextual
knowledge. Here, |c| is the number of object classes. Section 4 highlights the details for the
integration of the co-occurrence information into the classification pipeline.

3 From Pixel-Level to Region Classification

Since our local RF classification strategy yields a class distribution for each pixel in the
image independently, we aim to group the obtained information according to its spatial rela-
tionship. Following the concepts presented in [14, 16], multiple segmentations are generated
to provide a huge pool of probable connected pixels. For each segmented region, we group
the individual pixel classifications yielding a final region class distribution. In order to select
consistently classified regions, we compute the Shannon entropy over the summarized dis-
tribution. Taking into account the minimum entropy over all segmentations for each pixel, a
final partition is obtained by assigning the index of the corresponding region.

3.1 Generate Multiple Segmentations

As shown in [8, 14, 16] an application of different approaches for unsupervised image seg-
mentation captures the huge variety in color, scales, texture, etc. In this work we employ
two segmentation approaches (i.e. the graph-based method proposed by Felzenszwalb and
Huttenlocher [6] and the mean-shift approach [3]), which are selected due to public availabil-
ity, efficiency, popularity and the use of different techniques for image partitioning. Please
note that any other segmentation technique could be employed, since we are only inter-
ested in generating probable image partitions. For each test image, multiple segmentations
are produced using these methods with varying parameter settings. In our implementation
we consider an overall number of 15 segmentations. The first six segmentations are gen-
erated using mean-shift by setting the spatial band to bs = {5,9} and the range band to
br = {6,12,18}. Using the graph-based segmentation, we get the remaining nine partitions
by varying σ = {0.5,1.0,1.5} and k = {100,300,600}. The minimum region size is set to
200 pixels for both segmentation methods. An obtained segment si = {q1, . . .qK} can be
seen as a list of pixel coordinates that describes the region i. In the following sections, we
denote the obtained pool of segmented regions as S = {s1, . . .sN}, where N defines the re-
sulting number of regions produced by the 15 different segmentation procedures for a given
test image I.
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3.2 Grouping the Pixel-Level Information
Instead of classifying all regions in the set S, e.g., using an SVM [16], we aim to generate an
overall class distribution by summarizing the local results on the pixel level within a given
region si ∈ S. Taking into account the pixel level classification, we obtain an overall region
class distribution in terms of log likelihoods with

logP(c|si) = ∑
q∈si

logP(c|L,q) . (4)

In contrast to [16], where the individual region class labels of different segmentations vote
in an accumulation procedure, we determine the classification consistency for each region
and construct the final segmentation providing the input for our context integration process.
Given the class distribution in terms of log likelihoods for each region si ∈ S, we first intro-
duce a normalization step to enforce ∑

|c|
j=1 p j = 1. Then, we compute the entropy H(si) to

identify those regions providing a probability distribution with dominant classes: A region
that includes a dominant class will minimize the entropy, while a weakly classified segment
with nearly uniform distribution will obtain a high entropy. Our classification consistency
measurement, based on the entropy H(si) for a region si ∈ S, is defined as

H(si) =−
|c|

∑
j=1

p j log p j, p j =
logP(c = j|si)

∑
|c|
k=1 logP(c = k|si)

. (5)

Considering the set of generated segmentations S and the corresponding consistency mea-
surements H(S) = {H(s1), . . .H(sN)}, we construct the final image partition as follows: For
each pixel q in image I we assign the corresponding segmentation index i∗q ∈ {1, . . . ,N} by
minimizing the obtained entropies over all segments in S that include q:

i∗q = argmin
q∈si

H(si). (6)

These indexes are stored in an image structure and provide the final partition for the CRF
stage, that incorporates the contextual knowledge. Figure 2 shows some examples of gener-
ated entropy images, where each pixel includes the minimized entropy obtained by the dif-
ferent partitions in S. Assigning the most likely object class c∗q = argmaxk logP(c = k|q,si)
provides the temporary classification maps presented in Figure 2.

4 Integrating the Co-occurrence Information
For each test image we generate an individual co-occurrence matrix θ that represents most
probable class configurations, e.g., cars cannot appear with water or books do not appear in
images covered with trees. The semantic context information is obtained by evaluating the
leaf nodes, considering the feature representation, at run-time and accumulating the addition-
ally generated co-occurrence relationships for all pixels in an image. Since we accumulate
all permutations of possible class appearances during the training, we obtain the final prob-
ability matrix by normalizing θ(ci,c j) by row-wise sums [4, 18]. Then, each element in the
final co-occurrence matrix θ gives the joint probability that a class ci appears with the class
c j. In this work, we use the elements of the normalized matrix θ(ci,c j) as pairwise potentials
to integrate the semantic context. Moreover, we perform the labeling on a region adjacency
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graph, which is faster than optimizing the labels on a full image grid. The energy E(c) in the
can now be defined as

E(c) = ∑
i

D(ci)+∑
i, j

wi jV (ci,c j), wi j = λ
2B(si,s j)

B(si)+B(s j)
, (7)

where D(ci) denotes the data term including the unary potentials according to D(ci) =
− log(P(c|si)) and P(c|si) is the posterior class distribution of a region si. To incorporate the
region sizes into the minimization process (favoring larger regions), we compute a penalty
term wi j according to the normalized amount of common boundary pixels between the re-
gions si and s j. B(·) is a function for computing the number of boundary pixels of a given
region. The factor λ controls the influence of the common border and is learned during the
training process. The pairwise class potentials V (ci,c j) include the contextual knowledge
and are computed according to V (ci,c j) =− log(θ(ci,c j))δ (ci 6= c j). In this work we apply
the efficient primal-dual strategy of [11] to minimize the energy defined in Equation 7.

5 Experimental Evaluation

In this section we present extensive results of our proposed method. The experiments mainly
concentrate on the two versions of the MSRC datasets [21, 22]. However, we also report a
classification rate for the challenging VOC2007 [5] image collection. The MSRCv1 includes
240 images with available annotations on the pixel level. For the experiments, we randomly
split the dataset into 120 training and 120 test images following the evaluation procedure
presented in [20]. The MSRCv2 consists of 532 images, that include 21 different labeled
classes. The experiments on this dataset are performed using the suggested training/testing
splits in [21, 22] to obtain comparable results. 276 images are used for training and 256
for testing. In all accomplished experiments, we collect the training data considering the
available ground truth labeling. Since we aim to train a classifier on the pixel level incorpo-
rating a small neighborhood of n = 21 pixels, an application of the segmentation methods
is not required and, therefore, speeds up and simplifies the data acquisition. The RF is only
trained on a subset the local feature patches, which are sparsely collected on a 5× 5 image
grid. In our experiments we train a forest with T = 10 trees and a maximum depth of 15.
In each binary splitting node we perform tests to select discriminative features maximizing
the information gain with respect to the classes. Each tree is trained on a subset of training
data including 50000 feature vectors. Due to unbalanced labeling of the training data, we
apply an inverse weighting, similar to [22], taking into account the number of samples for
each class to simulate a balanced dataset.. At evaluation time, the local patch descriptor
is extracted at each position of the test image and parsed down the tree to obtain the final
averaged class distribution.

In a first experiment we evaluate all different stages of our approach on the pixel level and
compare the results to state-of-the-art performance. We show the raw results obtained by the
RF classifier, the classification rates of grouping the pixels using multiple segmentations, and
the classification rates using a CRF formulation for the integration of contextual constraints,
thus, allowing to asses the importance of the different steps. Additionally, we report the
classification rates for a globally estimated co-occurrence matrix taking into account the
pure ground truth data (denoted as CRFg). The obtained results at the different stages are
summarized in Table 1. The rates are given in terms of averaged pixel accuracies and mean
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MSRCv2 MSRCv1
Included stages pixel-level class average pixel-level class average

RF classifier 55.8 % 42.2 % 76.1 % 72.2 %
RF + MS 69.8 % 57.7 % 83.5 % 80.7 %

RF + MS + CRFg 71.3 % 60.1 % 84.1 % 81.3 %
RF + MS + CRFi 73.7 % 61.8 % 86.8 % 81.8 %

Table 1: Classification accuracies on the MSRCv1 and MSRCv2 dataset. The results are
evaluated on pixel level and illustrate the performance of the different stages of our approach:
Raw pixel classification integrating the covariance feature into the RF classifier, introducing
spatial support using the multiple segmentations (MS), and the post processing step with a
CRF stage that includes the contextual information (CRFi denotes the individually generated
context information using the structure of the RF, CRFg uses the globally estimated co-
occurance matrix).

MSRCv2 MSRCv1
Method pixel-level class average pixel-level class average

Ours 73.7 % 61.8 % 86.8 % 81.8 %
Schroff et al. [20] 71.7 % n.a. 87.2 % n.a.
Gould et al. [9] 76.5 % n.a. 88.5 % n.a.

Pantofaru et al. [16] 74.3 % 60.3 % n.a. n.a.
Lazebnik et al. [12] 72.14% 62.8 % n.a. n.a.

Table 2: Performance comparison in terms of pixel accuracy and averaged classification
of each object class on the MSRCv1 and MSRCv2 dataset, showing the final classification
results of state-of-the-art approaches.

class percentages. It can be seen that our feature representation, that directly integrates
several cues, results in a reliable initial classification. Moreover, an incorporation of multiple
unsupervised segmentations significantly improves the rates. In addition, the integration of
individually generated context information gives slightly better rates in terms of classification
accuracy than the global estimated co-occurrence matrix.

In [20] rates of 69.7% are reported integrating color, HOGs, and textons, however, using
an RF classifier with 30 trees, each with a maximum depth of 20. Recently, Lazebnik et
al. [12] obtained initial pixel-wise rates of about 53.26% by combining SIFTs, texton filter
responses, color and spatial information in a bag-of-word model. The approaches [9, 16]
reported slightly better results than ours, however they use a relative location prior or addi-
tional spatial information. Table 2 compares the obtained classification to reported rates of
selected state-of-the-art approaches. Figure 2 shows some visual results. On the challenging
VOC2007 images (422 for training and 210 for testing) our approach obtains an averaged
class rate of 29.1%, which is in the range of the 2007 winner approach TKK [5].

Figure 3 shows two representative images and the corresponding, individually at eval-
uation time generated, co-occurrence information. Considering the face image, it can be
seen that the face and the body class are very likely to occur in this image. In case of the
water/bird image, the water class is likely to occur with boat, tree, sky, and bird. The bright
colors denote higher probability for a class co-occurrences. The overall computation of the
final classification for an image takes less than 10 seconds on a single-core PC. However,
the construction of the multiple image segmentations is the most time consuming part of our
approach.
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Figure 2: Visual results selected from the classification procedure on the MSRCv2 database
including 21 object classes. The first column shows the original color images. The initial
results obtained by the RF classification are given in the second column. The third column
shows the computed entropies, where a dark color denotes a high classification consistency.
Moreover, the semantic labeling results using multiple segmentations, the CRF cleaned final
classifications, and the ground truth images are depicted in columns four to six.

6 Conclusion

We have presented an approach for semantic image classification by integrating contextual
constraints such as the class co-occurrences into a random forest classification framework.
Furthermore, we have illustrated that an initial classification on the pixel level can be used to
obtain a reliable region classification. From that, we applied an entropy based measurement
to produce a final image partition providing a segmentation with consistently classified re-
gions. A CRF stage then incorporates context knowledge individually generated for each test
image. In the experimental section we have demonstrated state-of-the-are performance using
our three staged approach. Future work will concentrate on integrating spatial context and
on further improving the performance by including the scale of the different object classes
into the classification pipeline.
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Figure 3: Individually generated co-occurrence matrices that directly correspond to the sam-
ple images: Each color-coded entry of the matrices represents the probability of specified
class co-occurrences. Bright color denotes a high class probability.
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