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Abstract. In this paper we present an efficient technique to obtain ac-
curate semantic classification on the pixel level capable of integrating
various modalities, such as color, edge responses, and height informa-
tion. We propose a novel feature representation based on Sigma Points
computations that enables a simple application of powerful covariance
descriptors to a multi-class randomized forest framework. Additionally,
we include semantic contextual knowledge using a conditional random
field formulation. In order to achieve a fair comparison to state-of-the-art
methods our approach is first evaluated on the MSRC image collection
and is then demonstrated on three challenging aerial image datasets Dal-
las, Graz, and San Francisco. We obtain a full semantic classification on
single aerial images within two minutes. Moreover, the computation time
on large scale imagery including hundreds of images is investigated.

1 Introduction

Internet driven initiatives, like Google Earth and Virtual Earth, collect an enor-
mous amount of aerial and satellite images in order to automatically construct
3D worlds of urban environments because of the demand for fast realistic 3D
modeling, cartography, navigation support, etc. These location-aware applica-
tions on the internet push the development of efficient, accurate, and automatic
technologies. The first step is to acquire high resolution images. In particular, the
Microsoft Ultracam takes multi-spectral images in overlapping strips, resulting
in high redundancy, which adheres every visible spot of urban environments from
many different camera viewpoints. The high redundancy within the data enables
methods for automatic height data generation [1] or full photo-realistic 3D mod-
eling [2]. In contrast to photo-realistic 3D modeling, where the model consists
of millions of triangles with fitted texture extracted from aerial images, we aim
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for synthetic modeling, i.e., based on the information directly derived from the
images to build a virtual model of a city. In addition, a synthetic model reduces
the problem of privacy violations due to modeling the semantic interpretation
instead of the realistic appearance.

Due to high variability in aerial imagery, automatic classification and seman-
tic description still pose an unsolved task in computer vision. We aim to use
appearance cues, such as color, edge responses, and height information for accu-
rate semantic classification into five classes. For instance, using a combination of
color and height data successfully separates the street regions from gray-valued
roof tops or distinguishes between green areas and trees. Figure 1(a) shows cor-
responding color and height images, extracted from the dataset San Francisco.
The classification of aerial images into several classes provides a semantic knowl-
edge of the objects on ground and approves a specified post-processing to build
up a semantic 3D world, where each object is modeled according to its ob-
tained interpretation. A semantic description of a small sub-image is illustrated
in Fig. 1(b).

Fig. 1. A pair of images extracted from the dataset San Francisco consisting of color
and height information, and the corresponding semantic description of the sub-image
(highlighted rectangles).

In [3], the authors proposed an appearance driven approach to exploit color
and infrared data for initial classification. Several methods concentrate on ex-
tracting single object classes, e.g., buildings by integrating only LIDAR data [4]
or height models [5]. The tight integration of 3D data into image classification,
as additional information source, is still a new and upcoming field of research.
Hoiem [6] extracted 3D information, such as surface orientation or vanishing
lines, from single images to improve 2D object recognition. Recent approaches [7,
8] include SfM to improve the interpretation in street side images. In this work,
we exploit dense matching results [1] together with appearance features to obtain
an accurate semantic interpretation.

Shotton et al. [9] proposed simple color value differences in a small neigh-
borhood for initial semantic classification on the pixel level using a randomized
forest (RF) classifier [10]. Schroff et al. [11] extended this approach by including
multiple feature types for an improved RF classification. Strong low level fea-
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ture representations, such as SIFT [12], histograms of oriented gradients [13], or
various types of filter responses [14–16] are widely used in appearance driven su-
pervised classification. However, a compact combination of different feature cues
is computationally very expensive. In addition, an integration into a common
classification framework requires sophisticated techniques.

Thus, our work has three main contributions: To allow an efficient semantic
classification, we first introduce a novel technique to obtain a powerful feature
representation, derived from compact covariance descriptors [17] which is di-
rectly applicable to RF classifiers. Covariance matrices [17] can be efficiently
computed and provide an intuitive integration of various feature channels. Since
the space of covariance matrices does not form a Euclidean vector space [17], this
representation can not be directly used for most machine learning techniques.
To overcome this drawback, manifolds [18, 17, 19] are typically utilized, which,
however, is computationally expensive. In contrast to calculating similarity be-
tween covariance matrices on Riemannian manifolds [18], we present a simple
concept for mapping individual covariance descriptors to Euclidean vector space.
The derived representation enables a compact integration of appearance, filter
responses, height information etc. while the RF efficiently performs a multi-class
classification task on the pixel level. Second, we introduce semantic knowledge by
applying an efficient conditional random field (CRF) stage incorporating again
several feature cues and co-occurrence information. To demonstrate the state-of-
the-art performance we present quantitative results on the Microsoft Research
Cambridge dataset MSRC-9 [15] by integrating visual appearance cues, such
as color and edge information. Third, we apply our proposed method to real
world aerial imagery, performing large scale semantic classification. We extend
the novel feature representation with available height data as an additional cue
and investigate the classification accuracy in terms of correctly classified pixels.
Labeled training data, representing five annotated classes (building, tree, water-
body, green area and streetlayer), provides the input for the training process.

The remainder of this paper is structured as follows. Section 2 describes the
derived covariance region descriptor in detail, illustrates the application to the
RF framework, and also addresses the integration of the contextual constraints.
Section 3 highlights the included feature cues and presents results on the MSRC-
9 dataset and various real world aerial images. Finally, Sec. 4 concludes our work
and gives an outlook on future work.

2 Semantic Classification

In this section we highlight the semantic classification pipeline including the
feature representation based on covariance descriptors and Sigma Points, re-
spectively, the straight forward application to a multi-class RF framework, and
the CRF stage to handle the contextual constraints.
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2.1 Approximated Covariance Representation

Tucel et al. [17, 19] presented a compact feature representation based on covari-
ance matrices for rapid object detection and classification. In fact, covariance
descriptors [17] provide a low-dimensional feature representation that simply
integrates multiple feature channels, such as color, filter responses, height in-
formation, etc. and also exploits the correlation between them. The diagonal
elements provide the variances of the feature attributes in one channel, whereas
the off diagonal elements capture the correlation values between the different
feature modalities. The statistics up to second order of N independent and iden-
tically distributed feature vectors xi ∈ Rd can be represented by the sample
mean µ = 1

N

∑N
i=1 xi and the sample covariance Σ ∈ Rd×d:

Σ =
1

N − 1

N∑
i=1

(xi − µ) (xi − µ)T
. (1)

As shown by Tuzel et al. [17] the concept of integral images [16] can be applied
to compute covariance descriptors on a rectangular image grid in constant time:
Given a multi-channel feature image I of the dimension w × h × d, any n ×m
rectangular region R ⊆ I can be represented by a d×d covariance matrix Σ. An
extension of common integral images to higher dimensions incorporating addi-
tional tensor integral images, enables the computation of symmetric covariance
matrices using the law of total variance. Implementation details can be found
in [17].

Because of the missing symmetry requirement the space of covariance ma-
trices is non-Euclidean [17]. Hence, standard machine learning methods, which
require similarity computations can not be used directly. Instead of exploiting
computationally costly manifolds [17, 19] to obtain a valid covariance similarity
measurement, we propose a technique to represent individual covariance matri-
ces directly on Euclidean vector space. Julier et al. [20] proposed the unscented
transform (UT), which approximates a single distribution by sampling instead
of approximating an arbitrary non-linear function by mapping to manifolds [18].
The UT provides an efficient estimator for the probability distribution and was
successfully applied to unscented Kalman filtering [21], where it overcomes the
drawbacks of truncated (second order) Taylor expansions. In the d-dimensional
case the UT relies on constructing a small set of 2d+ 1 specific vectors si ∈ Rd,
also referred to as Sigma Points [20]. We construct the set of Sigma Points as
follows:

s0 = µ si = µ+ α(
√
Σ)i si+d = µ− α(

√
Σ)i, (2)

where i = 1 . . . d and (
√
Σ)i defines the i-th column of the required matrix

square root
√
Σ. The scalar α defines a constant weighting for the elements in

the covariance matrix and is set to α =
√

2 for Gaussian input signals [20].
In contrast to Monte Carlo methods, where test vectors are selected at ran-

dom, the construction of the Sigma Points can be seen as an efficient mapping of
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a specified set of test vectors ti ∈ Rd that deterministically sample the intersec-
tions of an unit hypersphere with a d-dimensional Cartesian coordinate system.
Here, the mean vector t0 = µ represents the origin. The computed statistics of
these points si accurately capture the original information about Σ up to third
order for Gaussian and up to second order for non-Gaussian inputs [21]. Fig-
ure 2 illustrates the specified sampling of the test vectors and the mapping for
a simplified 2D case.

Since covariance matrices Σ are positive semi-definite by definition, we first
perform a simple regularization Σ = Σ + εI, where I is the identity matrix and
ε = 1e-6, to obtain symmetric positive definite matrices. Due to symmetry and
positive definiteness of the regularized covariance matrices, the efficient Cholesky
factorization can be applied to compute the matrix square root by decomposing
Σ = LLT . Then, L corresponds to

√
Σ and is a lower triangular matrix. In

principle any method for square root factorization can be used, however, the
Cholesky decomposition requires the lowest mathematical operations yielding a
complexity of O(n3/3).

The resulting feature representation Sk =
(
sk
0 , s

k
1 . . . s

k
2d

)
is obtained by con-

catenation of the Sigma Points and captures both, first and second order statis-
tics, which are given by the mean and covariance information. Each of these
generated vectors sk

i ∈ Rd describe Euclidean space, therefore, element-wise dis-
tance computations between corresponding samples of a given distribution are
feasible. The construction pipeline for the set of Sigma Points is summarized in
Algorithm 1.

Fig. 2. The mapping of a fixed set of test vectors ti to the Sigma Points si given in
a second coordinate system, representing the original characteristics of the covariance
matrix Σ = LLT .

The structure of this feature representation Sk perfectly fits the concept of
randomized forest classifiers, where the learning and evaluation strategy is based
on comparing randomly selected attributes of an available representation. Note
that, since a reference representation is missing, similarity measurements, such
as the Foerstner metric [18] are intractable to directly use in decision trees. In
the following section we show how our representation can be applied straight
forward to a RF framework.



6 Kluckner et al.

Algorithm 1 Construction of our proposed feature representation based on
Sigma Points.
Require: Mean vector µk and covariance matrix Σk

1: Perform a simple regularization Σk = Σk + εI
2: Compute matrix square root Σk = LLT

3: Compute sk
i according to (2)

4: Construct the set of Sigma Points Sk =
(
sk
0 , s

k
1 . . . s

k
2d

)

2.2 Randomized Forest Framework

Randomized forests [10] have proven to give robust and accurate classification
results for multi-class tasks [9, 11, 22]. An RF consists of an ensemble of bi-
nary decision trees, where the nodes of each tree include split criteria that
give the direction of branching left and right down the tree until a leaf node
is reached. Each leaf node li in a given maximal depth D contains a learned
class distribution P (c|li). By averaging the decisions over all T trees in a for-
est the resulting accumulated probabilities yield an accurate class distribution
P (c|L) = 1

T

∑T
i=1 P (c|li). To rapidly grow each tree of the forest, the split

node criteria are learned using only a subset S ′ of the whole training data S.
For training a class label ck is assigned to each feature representation Sk ∈ S.
The learning proceeds from the root node top-down by tiling the available subset
at each split node into left and right sets. Proposed splitting decisions in [9, 22]
are achieved by comparing two or multiple randomly chosen elements sk

i and sk
j

of the given feature sample Sk. In our implementation we follow a strategy sim-
ilar to [22], randomly taking into account the correct corresponding dimension
a ∈ {1 . . . d} selecting two weighted elements i and j according to

αsk
i (a) + βsk

j (a) =
{
> γ, split left
≤ γ, split right . (3)

Here, α, β, and γ denote the greedy-optimized parameters that minimize the
information gain with respect to the training labels [9, 22]. We take the numbers
of split node tests as suggested in [22]. Once the forest is trained, we evaluate
the classifier at each pixel location by parsing down the extracted feature rep-
resentation in the forest and accumulating the class distribution to obtain an
overall probability map P (c|L).

2.3 Incorporating Contextual Information

Although our feature representation includes a spatial neighborhood of n ×m
implicitly, each pixel is classified independently. In this work we apply an effi-
cient conditional random field (CRF) stage based on linear programming [23]
to incorporate semantic contextual constraints yielding a smooth labeling of
the final image classification. In addition, we include edge information into the
four-connected graph to exactly capture the real object boundaries.
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In order to obtain the contextual semantic information, we construct a dataset
dependent co-occurrence matrix by counting the frequency of class labels in the
training images within randomly chosen rectangular sub-windows [9]. The fre-
quency counts can be performed quickly on single images using integral struc-
tures [16]. Furthermore, we follow the concept of [24] to compute a normalized
co-occurrence matrix θ(ci, cj) representing the pairwise semantic contextual in-
formation of the grid nodes i and j. The application of the CRF allows us to
include the posterior class distribution P (c|L), the likelihood co-occurrence ma-
trices θ(·) and an edge penalty function to preserve the object boundaries. Given
a four-neighborhood connected image I we define an energy with respect to the
class labels according to

E (c) =
∑

i

D(ci) +
∑
i,j

wijV (ci, cj), (4)

where D(ci) denotes the data term, including the unary potentials according to
D(ci) = − log (P (ci|L)) at grid node i. The pairwise class potentials are com-
puted according to V (ci, cj) = − log(θ(ci, cj))δ(ci 6= cj) and include the semantic
knowledge. The weight wij describes an edge penalty term between the nodes
i and j. Following the concept suggested in [11], where the authors used color
distance computations to capture the object boundaries, we exploit the height
information in case of the aerial images. Thus, the weight is constructed with
wij = exp

(
−λ‖hi − hj‖2

)
, where hi, hj are the height values at the neighboring

graph nodes. λ defines a factor and is learned while training. In this work we
apply the strategy of Komodakis et al. [23] to minimize the energy defined in (4).
In the experimental evaluation we present overall results incorporating semantic
contextual information into the classification pipeline.

3 Experimental Evaluation

Due to efficient computation of our region based covariance representation, we
exploit several feature cues incorporating a small spatial neighborhood. First,
we construct the required integral images to compute the covariance descriptors
including the feature cues, such as color channels, first derivatives in x and y
direction, and the height values. Then, the feature instances are constructed
according to our proposed concept (see Sec. 2.1). The collected samples provide
the representation for training and testing. In the following, we first evaluate
our classification pipeline on the standard MSRC-9 [15] evaluation dataset. By
integrating appearance and height information we illustrate the application to
real world aerial imagery and investigate large scale capability.

3.1 Experiments on MSRC-9 Dataset

In our first experiment we use the MSRC-9 dataset with nine on the pixel
level labeled classes to provide results for a comparison to state-of-the-art ap-
proaches [11, 25]. For the training and the testing procedure we randomly split
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the dataset including a total number of 240 images, 120 training and 120 test
images. The training samples, consisting of the set of Sigma Points S and a
target label vector c, are regularly collected on a 5 × 5 grid with a small spa-
tial neighborhood of n = m = 21 pixels. The corresponding label is extracted
by considering the available ground truth images. Confirming the observation
in [9], the CIELab color space generalizes better than raw RGB values. The first
derivatives are computed on the L-channel. We apply small synthetic affine dis-
tortions to the training images capturing an invariance to shape deformations [9].
In addition, we extend the test images, according to the spatial neighborhood,
to obtain class probabilities at the image borders. Due to randomness of our ap-
proach, we repeat the experiment 20 times independently to obtain meaningful
averaged classification rates. In this work, we choose a relatively small size of
the forest (T = 15 trees and a maximum depth of D = 10) to provide both,
efficiency in testing and classification accuracy.

Our pixel-wise RF classification returns rates of 64.2% using only color and
71.1% integrating both, color and derivative information. The feature represen-
tation Si at a pixel i integrating only color yields a concatenated vector with a
dimension of 21 attributes, while an extension to include derivatives increases
the size to 55. In [11] rates of 72.2% are given for only incorporating color infor-
mation, however using a forest with 20 trees each with a maximum depth of 20.
Running the full classification cue including the CRF stage achieves an average
classification performance of 84.2%, while in [11] and [25] rates of 87.2% and
84.9% are reported, respectively. Running the full classification cue, consisting
of the feature extraction, the evaluation of the classifier at each pixel and the in-
tegration of semantic knowledge using the CRF stage, on a single image requires
less than 2 seconds on a standard single core PC. Figure 3 depicts a selection of
semantic classification results on the MSRC-9 dataset.

Fig. 3. A selection of results on the MSRC-9 dataset. From left to right: color images,
pure pixel-wise classifications, final result using RF and CRF and ground truth labeling.

Considering the results of our first experiment on the MSRC dataset, we con-
clude that an integration of color and derivatives enhances the classification rates
significantly. Including semantic contextual information, using an efficient CRF
stage further improves the results. The comparison shows that our throughout
simple approach is competitive with existing methods [11, 25].
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3.2 Experiments on Aerial Images

The second experiment evaluates the classification pipeline on huge real world
aerial images. We apply separately trained RF classifies to single aerial images
performing a semantic classification into five classes (building, tree, waterbody,
green area and streetlayer) on the level of pixels.

In this work, we perform experiments on three different datasets, generated
by the Microsoft Ultracam: The dataset Dallas includes large building struc-
tures and gray valued areas, Graz shows a colorful characteristic with challeng-
ing building blocks, and the images of San Francisco have mainly suburban
appearance. The color images have a dimension of 11.5K × 7.5K pixels and
provide a ground sampling distance (GSD) of 8 cm (Graz ) and 15 cm (Dallas,
San Francisco). Due to high redundancy a dense matching process [1], taking
into account three adjacent images, yields range images representing the surface
model. Subtracting the surface model from the extracted ground plane using,
e.g., [26] produces the relative height information that is directly applicable to
our classification procedure as an additional feature channel. The dimension of
the resulting feature vector increases to 78, if CIELab color, derivative, and
height information are integrated. Figure 1(a) shows a pixel synchronous pair of
a color and the corresponding height image. For each dataset we independently
label three images providing the training labels on the pixel level. Additionally,
we generate two non-overlapping images as ground truth data for testing. Simi-
lar to the MSRC training process the target labels are then collected taking into
account these training maps.

In case of the aerial images we compute our feature representation integrating
the color, texture, and height information and train an RF classifier with 15
trees and maximum depths of 10 separately for each dataset. The dimension of
the spatial neighborhood is set according to the datasets GSD with n = m =
2(50/GSD + 1). The trained RFs are evaluated at each pixel location using
a fourth of the full image resolution. The obtained classification rates for the
three datasets are summarized as confusion matrices in Fig. 5. A combination
of color, derivatives, and height information results in averaged rates of 92%
(Dallas), 93% (Graz ), and 88% San Francisco. For instance, using only color
and derivative cues yields low classification accuracies of 79% (Dallas), 78%
(Graz ), and 73% San Francisco.

Figure 4 depicts a full semantic classification including the CRF stage of a
single image taken from the Graz dataset. The feature extraction and pixel-wise
classification of a single aerial image of Graz covering an area of approximately
0.5 km2 requires about 35 seconds, the CRF stage increases the computation time
to approximately 80 seconds. This scales to an overall computation of about 1.5
hours on a standard PC given a complete dataset, e.g., Graz with 155 images.
Note that for a full dataset processing the CRF stage can be applied to a fused
classification result instead of using the per-image classification, which speeds
up the computation drastically. Figure 6 illustrates a selection of classified sub-
images extracted from full processing steps.
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Fig. 4. Full semantic classification of a single image taken of the dataset Graz. The
image provides a ground sampling of 8 cm and covers an area of approximately 0.5 km2.

(a) Dallas (b) Graz (c) San Francisco

Fig. 5. Computed confusion matrices on the three aerial image datasets. We obtain
classification rates of approximately 90% on the three challenging datasets. The low
gray-valued buildings in Dallas are sometimes mixed with the streetlayer class which
can be caused by inaccurate terrain models. Due to similar spectral ranges small shadow
regions in the streets are classified as waterbody in Graz. Many small trees inside of
courtyards and the hilly terrain in San Fransisco explain the relatively low classification
rate for trees.
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Fig. 6. Representative sub-images extracted from full semantic classification results.
From left to right: a hotel complex with a pool/trees on the top in Dallas, a church
surrounded with vegetation in Graz, a typical building block of San Fransisco, and a
detail showing a river in Graz.

4 Conclusion

This work has proposed an efficient approach for semantic classification of images
by integrating multiple types of feature modalities, such as appearance, edge
responses, and height information. We presented a novel feature representation
based on covariance matrices and Sigma Points, respectively, that can be directly
applied to multi-class RF classifiers. By including contextual information using
a CRF stage, we achieved an accurate semantic description of test images on the
pixel level. We performed experiments on the MSRC dataset and on huge real
world aerial images and demonstrated accurate classification results with low
computational costs. Further work will investigate the influence of additional
data cues, like infrared and pan-chromatic images, on the classification quality.
In addition, we work on exploiting the redundancy by fusing multiple image
classification results of different viewpoints.
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