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Abstract. Person re-identification, i.e., recognizing a single person across spa-
tially disjoint cameras, is an important task in visual surveillance. Existing ap-
proaches either try to find a suitable description of the appearance or learn a dis-
criminative model. Since these different representational strategies capture a large
extent of complementary information we propose to combine both approaches.
First, given a specific query, we rank all samples according to a feature-based
similarity, where appearance is modeled by a set of region covariance descrip-
tors. Next, a discriminative model is learned using boosting for feature selection,
which provides a more specific classifier. The proposed approach is demonstrated
on two datasets, where we show that the combination of a generic descriptive
statistical model and a discriminatively learned feature-based model attains con-
siderably better results than the individual models alone. In addition, we give a
comparison to the state-of-the-art on a publicly available benchmark dataset.

1 Introduction

Due to ceaseless advances in the research in semi-conductor, communications, and im-
age sensors there is an increasing number of public areas that are subject to video
surveillance. Thus, it becomes infeasible to analyze the ever growing amount of data
– automatic systems are required. This especially applies for person re-identification, a
central task in many surveillance scenarios, which can be described as recognizing an
individual in different locations across a network of non-overlapping cameras. Besides
of specific re-identification scenarios, e.g., tracking criminals over multiple cameras,
typical tasks also include anonymous applications such as crowd analysis by identify-
ing single instances. In general, this task has to be considered very challenging. Typical
problems that have to be handled are extremely varying appearances of a person across
the camera network (due to changing lighting conditions, different viewpoints, varying
poses, etc.), people occluding each other, or a high number of very similar instances.
Thus, motivated by the large number of practical applications and still unresolved prob-
lems there has been a considerable scientific interest within the last years.

For instance, Gheissari et al. [6] fit a triangulated graph to each individual to account
for pose variations. However, the approach is only applicable for similar viewpoints.
The same applies for the approach of Wang et al. [22], who segment an image of a



person into regions and capture their color spatial structure by a co-occurrence matrix.
A more flexible approach was presented by Farenzena et al. in [4] exploiting perceptual
principles relying on symmetry and asymmetry. They first run a segmentation step to
obtain a person’s silhouette and then accumulate the feature responses of color and
texture features to a signature. Bird et al. [2] propose to segment the query image in
equally spaced horizontal segments and extract the median HSL color of the foreground
pixels of each of these segments.

In contrast, instead of designing specific features by hand, other methods aim to
learn a suitable feature set or to directly generate a ranking model. Bak et al. [1] run a
person detector and estimate a visual signature using Haar-like features that have been
selected for each individual using AdaBoost. A similar but more sophisticated approach
was presented by Gray and Tao [8]. They also select the most relevant features (color
and texture) using AdaBoost but additionally estimate a likelihood ratio test for compar-
ing corresponding features providing a similarity function. Lin et al. [13] and Schwartz
et al. [18] propose to learn pairwise dissimilarities which can be applied for classifica-
tion. Both approaches, however, require a training stage and labeled samples. Prosser
et al. [16] formulate the person re-identification problem as a ranking problem. They
introduce Ensemble RankSVM, which allows to learn a subspace where the potential
true match gets the highest rank.

To further improve the classification results additional cues can be exploited. Makris
et al. [14] and Rahimi et al. [17] simplify the problem by temporal reasoning on the spa-
tial layout of the observed environment. Javed et al. [10] learn transitions between cam-
eras to cope with problems such as illumination changes. Zheng et al. [23] enrich the
description of persons by contextual visual information coming from the surrounding
people.

These approaches can mainly be subdivided in two groups: (a) methods which em-
ploy a representation of descriptive statistics of the human appearance (using hand
crafted features) [4,6,17,22] and (b) approaches that are based on discriminative learn-
ing [3,8,13,16,18]. Thus, to take advantage of these complementary information cues,
we apply the two strategies in parallel. First, we estimate a generic covariance-based
description and calculate a similarity measure yielding a rank model. For examples
that can not be classified in this way we compute a more specific discriminative model
using boosting for feature selection. Moreover, we introduce a new covariance-based
descriptor and adopt covariance features for the usage within a boosting framework.
In the experimental results, we demonstrate the benefits of the proposed approach on
two different datasets. In particular, we show that using a descriptive and discriminative
model in parallel clearly improves the person re-identification capability. Additionally,
we give a comparison to the state-of-the-art showing competitive results.

2 Person Re-Identification System

Given two camera views observing different locations of a scene, the goal of person
re-identification is to select a certain person in one view and to recognize it in the other
view. In the work on hand, we assume that we have already detected the persons in
both views and we will refer the image of the selected person to as the probe image and



the images searched through the gallery images [7]. In particular, our system, which
is illustrated in Figure 1, consists of a descriptive person model (see Section 3) and a
discriminative person model (see Section 4), which are run consecutively.

Fig. 1. Overview of the proposed system. After applying a descriptive model to obtain an initial
ranking, a discriminative model can be used to refine the result.

For each probe image we first apply the descriptive person model to get an initial
ranking of all gallery images. The first 50 images of this ranking are shown to a human
operator, who then decides whether the searched person has been found or not. If not,
we run the second stage, i.e., learn and evaluate the discriminative person model and
rank the samples according to their confidence values. Since this model captures differ-
ent aspects of an individual, focusing on details best separating it from others, there is
a good chance that it can improve the ranking.

The descriptive model is based on a hand designed feature representation, hence,
it can be estimated for any given single image. The discriminative model, however, is
learned for each instance requiring positive and negative training data. Since we focus
on person re-identification in a surveillance scenario, where multiple images of a person
(multi-shot scenario) are available, we can use these images as training samples. If just
one probe image is available (single-shot scenario), we can generate virtual samples us-
ing geometrical transformations and displacements. Hence, obtaining positive training
samples is not much of a problem.

Though, for the negative training samples a more sophisticated sampling mecha-
nism is required. For this purpose we use our descriptive model as starting point. As
described before, applying this model already generates an initial ranked list of person
images. Thus, we sample the negative images from the end of the list. Assuming that
the descriptive person model provides a “good” ranking those images should be most
dissimilar to the searched person. The overall principle is illustrated in Figure 2.

3 Descriptive Person Model

In the first stage of our person re-identification system we generate a descriptive statisti-
cal model which encodes visual appearance information. Considering the given task, the



Fig. 2. Sampling of training images for the discriminative model. Positive samples are obtained
from the trajectory of the query person, negative samples are drawn from the worst matches of
the initial ranking provided by the descriptive model.

employed representation must meet requirements of specificity, invariance and compu-
tational efficiency. It implies that on the one hand the visual description must encompass
discriminating visual information. On the other hand it must remain mostly unaffected
in presence of photometric, view and pose changes. Moreover, for practical applica-
bility the representation should be computed and matched rapidly at small memory
requirements.

For our purpose we employ the region covariance descriptor of Tuzel et al. [20],
which meets these criteria quite well. The descriptor is capable to combine multiple
complementary cues, easy to compute and generates a compact signature. Since the
descriptor aggregates several visual features, structural information of human visual
appearance – such as the brightness relationship between upper and lower body halves
– is represented only to a limited extent. In order to enhance the structural specificity
of the representation, we use a set of covariance descriptors computed from multiple
horizontal stripes covering the area of an image patch. This strategy is similar to the
multiple region scheme used by [20] and to the principal axis histogram signature em-
ployed by [9].

For a given bounding box R with dimensions W × H a set of region covariance
descriptors is computed in the following manner: The image within the bounding box
IR(x, y) is used to compute a set of features, which represent intensity, color and tex-
ture. In order to capture spatial, color and gradient information, in our case the em-
ployed set of visual features comprises of

{f} =

[
y,L,a,b,

∣∣∣∣∂L∂x
∣∣∣∣ , ∣∣∣∣∂L∂y

∣∣∣∣] , (1)

i.e., the y pixel coordinate vector, the L, a, b color channels and the horizontal and
vertical derivatives of the luminosity channel, respectively. The x-component of pixel
coordinates is excluded from the feature set, thus allowing some invariance with respect
to view variations when the person is seen from various sides.

The bounding boxR is divided intoN (N = 7 in our experiments) equally large hor-
izontal stripes {Sl}l=1..N and within each stripe the covariance descriptor is computed



as

Cl =
1

z − 1

z∑
k=1

(fk − µ) (fk − µ)
T
, (2)

where Cl denotes the covariance matrix computed over z feature values within the l-th
stripe and µ represents the vector of mean values computed on the individual features
of the feature set.

The obtained set of covariance matrices
{
Cl
}
l=1..N

defines a compact descriptor
which encodes the interdependence between individual features computed inside the re-
gion of interest. A coarse structural information is captured using the set of covariances
from multiple horizontal regions and by the weak spatial dependence given by the only
slightly specific variation within the y-coordinate feature.

Similarity computation between two human appearances is performed by estimating
the distance between two covariance matrices [5] in pairwise manner by

ρ
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i
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j
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)
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where Cl
i

and Cl
j

are computed for two different images i and j, but using the same
stripe element with index l. λk denotes the generalized eigenvalues of Cl

i
and Cl

j
, and

d is the number of features within the employed feature set (d = 6 in our case).
The covariance-based distance between two human appearances is defined as

d̄ij =
1

N

N∑
l=1

ρ
(
Cl

i , C
l
j

)
, (4)

where d̄ij is the mean covariance distance measure obtained from N stripe-versus-
stripe comparisons. When a specific probe image is used as query, the probe image is
compared to all gallery images and a set of distances is obtained. This set of distances
is used to generate a ranking for every image in the gallery with respect to the probe.

4 Discriminative Person Model

In the second stage of our system we apply a discriminative model, which is estimated
by Boosting for Feature Selection [19, 21]. Thus, similar to [1, 8] the goal is to select
the most discriminant features for a specific instance from an over-complete feature set.
However, unlike these methods, our approach does not involve any labeling of training
data by hand. Moreover, the goal is not to learn a similarity function between image
pairs but similar to [16] to finally generate a ranking of all gallery images. In particular,
we train a model for each probe image and evaluate it on all gallery images. Those are
then sorted according to their confidence values: a higher confidence results in a higher
rank.



4.1 Estimating Ranks by Boosting for Feature Selection

Given a training set of positive and negative samples
S = {(x1, y1), ..., (xL, yL)}, where xl ∈ IRm is a sample and yl ∈ {−1,+1} is the
corresponding label, a set of possible features F = {f1, ..., fM}, a learning algorithm
L, and a weight distribution D, that is initialized uniformly by D(l) = 1

L . Then, the
main idea of boosting for feature selection is that each feature fj corresponds to a single
weak classifier hj and that boosting selects an informative subset ofN features. In each
iteration n, n = 1, ..., N all features fj , j = 1, . . . ,M are evaluated on all samples
(xl, yl), l = 1, . . . , L and hypotheses are generated by applying the learning algorithm
L with respect to the weight distribution D over the training samples. The best hypoth-
esis is selected and forms the weak classifier hn. The weight distribution D is updated
according to the error of the selected weak classifier.

The process is repeated until N features are selected, i.e., N weak classifiers are
trained (N = 20 in our experiments). Finally, we estimate a confidence measure3 C
according to a weighted linear combination of all weak classifiers hn:

C(x) =

N∑
n=1

αnhn(x). (5)

4.2 Features

Due to the popularity various different features, e.g., Haar-like [21], Edge Orientation
Histograms [12], or boundary fragments [15] have been introduced for the application
with boosting for feature selection. Such features mainly capture generic visual ob-
ject properties and have shown excellent performance for object recognition/detection
and tracking. However, for the re-identification task they are often not discriminative
enough. In particular, as also discussed in Section 5.1, we found that the most impor-
tant information queues are intensity changes between the upper and lower body of a
person and color. Thus, for our application we use a combination of horizontally divided
Haar features and covariance features. Moreover, to avoid that too much background in-
formation is modeled by the (local) features we prohibit features that are placed close
to the image borders.

Since Haar features are well known in the context of boosting (e.g., [21]) in the
following we focus on the discussion on the covariance features capturing the essential
color information. As described in Section 3, covariance matrices, in general, provide
an elegant way of integrating various different feature channels, in our case RGB color
channels, into one compact representation. They capture the variance of these channels
and the correlation between them. However, since the space of covariance matrices does
not form a Euclidean space they cannot directly be used in a boosting framework. To
overcome this limitation, we follow the approach described in [11], allowing to describe
the covariance matrices in a Euclidean vector space. In particular, for the d-dimensional
case a set of 2d + 1 specific vectors si ∈ IRd, called Sigma Points, is constructed as
follows:

3 If required a strong classifier H can be estimated by H(x) = sign (C(x)).



s0 = µ si = µ+ α(
√
C)i si+d = µ− α(

√
C)i, (6)

with i = 1 . . . d, µ and C being the data’s mean vector and covariance matrix respec-
tively, and (

√
C)i being the i-th column of the covariance matrix square root. The scalar

α is a constant weighting for the elements in the covariance matrix and is set to α =
√

2
for Gaussian data. The points si accurately capture the statistics of the original covari-
ance matrix up to third order for Gaussian and up to second order for non-Gaussian
data. The final feature representation is built by concatenation of all Sigma Points into
one vector. Hence, Sigma Points provide a very powerful representation that is capable
of integrating various different feature channels into one compact feature vector.

With this representation we are now able to efficiently capture local color informa-
tion in our boosting algorithm. As for Haar features, we use a rectangular shaped region
for extracting color information (RGB) from an image. All pixels within the covariance
feature’s region are used to calculate the mean vector µ, covariance matrixC and finally
the Sigma Points representation. This enables us to capture very discriminative, local
color features of a person (e.g., red bag), as opposed to the descriptive statistical model
described in Section 3, which extracts color and gradient information from regular stripe
regions laid over the person image. As weak learner hj we apply a Bayesian decision
criterion for the Haar features and a multidimensional nearest neighbor classifier for the
Sigma Points. Haar and covariance features are illustrated in Figure 3.

(a) (b)

Fig. 3. Applied features: (a) Haar features mainly capture intensity changes between the upper
and lower body of a person, (b) covariance features extract local color information in form of
vectors of Sigma Points.

5 Experimental Results

We evaluated our approach on two datasets4, the public VIPeR dataset [7] (single-shot
scenario) and our own person re-identification dataset5 (multi-shot scenario). Examples
of both are shown in Figure 4. As performance measure we use Cumulative Matching
Characteristic (CMC) curves [22], which represent the expectation of the true match
being found within the first n ranks.

4 Other benchmarks have been proposed (e.g., [1,4,16]), however, since either no annotations are
available or the datasets are not uniquely defined, we did not used them for our experiments.

5 Available at http://lrs.icg.tugraz.at/downloads.php.



(a) (b)

Fig. 4. Example image pairs from the VIPeR dataset (a) and example trajectory images from our
multi-frame dataset (b). Upper and lower row correspond to different camera views.

5.1 VIPeR Dataset

The VIPeR dataset consists of 632 person image pairs taken from two different camera
views. Most of the example pairs contain a viewpoint change of about 90 degrees as well
as significant changes in pose and illumination, making person re-identification very
challenging. To compare our method to other approaches, we followed the evaluation
procedure described in [4, 8]. The authors split the set of 632 image pairs randomly
into two sets of 316 image pairs each, one for training and one for testing, and build the
average over several runs. Since we do not need a training set, we evaluate our algorithm
on a subset of 316 randomly selected image pairs and also average the results of several
runs. Considering images from one camera as the probe set, and images from the other
camera as the gallery set, we match each probe image with all images from the gallery
set.

When applying our discriminative person model we need positive and negative
training samples for the boosting step. In our scenario positive training samples are
extracted from person trajectories, and negative training samples are drawn from the
gallery images that received the lowest ranks in the initial, descriptive ranking step.
However, the VIPeR dataset does not provide trajectories, just image pairs. Thus, we
generate virtual positive training images from the probe image by randomly applying
slight geometric distortions and smoothing. Figure 5 and Table 1 show the average re-
sults of our approach on the VIPeR dataset of 5 runs on randomly selected subsets of
316 image pairs.

As one can see, the descriptive and discriminative person model have similar perfor-
mance. However, since they describe different aspects of a person, taking into account
both models yields a significant improvement. This is shown by a third curve that is
generated using the model returning the higher match rank for each probe image, sim-
ulating the human operator decision described in Section 2. Moreover, in Table 1 we
compare the performance of our approach on the range relevant for our approach, i.e.,
the first 50 ranks, to state-of-the-art methods [4, 8, 16]. As can be seen we obtain com-
petitive results, especially, for rank 1. Even though in contrast to [8,16] we do not need
any (hand) labeling of data and unlike [4] we do not use a foreground-background seg-
mentation. However, we expect that using a segmentation step will improve our results
notably, especially in cases of great pose variations, e.g., varying leg postures.



Fig. 5. CMC curves of our approach on the VIPeR dataset. The blue curve shows the descriptive
and the green curve shows the discriminative person model. The combination of both models is
depicted in cyan color.

Rank ELF SDALF ERSVM Our Approach
1 12% 20% 13% 19%
10 43% 50% 50% 52%
25 66% 70% 71% 69%
50 81% 85% 85% 80%

Table 1. Matching rates for ELF, SDALF, ERSVM and our algorithm on the VIPeR dataset.

As discussed in Section 4, we apply only Haar and covariance features for our re-
identification task. In the following, we illustrate that exactly these features are best
suited for our task by evaluating different features on the first 30 image pairs of the
VIPeR dataset: Haar-like, histograms of oriented gradients (HOGs), local binary pat-
terns (LBPs), covariance features using RGB channels, as well as their combinations.
The obtained results in form of CMC curves are depicted in Figure 6. It can clearly be
seen that color (captured by covariance features) is the strongest cue, followed by Haar-
like features, which particularly capture intensity changes between the upper and lower
body of a person. HOGs and LBPs, on the other hand, perform rather poorly, since
they concentrate on finer structures that are often not visible in the gallery image due to
viewpoint changes. In fact, the best performance was achieved using a combination of
Haar-like and covariance features.

5.2 Multi-Shot Dataset

Since the intended use case for the proposed method was to apply person re-identification
on surveillance data, we generated a multi-shot dataset. It consists of images extracted



Fig. 6. Different feature types evaluated on the first 30 image pairs of the VIPeR dataset: Haar
(red), HOG (green), LBP (cyan), Covariance (blue), Haar + Covariance (magenta), combination
of all types (black)

from multiple person trajectories recorded from two different static surveillance cam-
eras. Images from these cameras contain a viewpoint change and a stark difference in
illumination, background and camera characteristics (e.g., green cast). Since images
are extracted from trajectories, several different poses per person are available in each
camera. We have recorded 475 person trajectories from one camera and 753 from the
other one, with 245 persons appearing in both views. Thus, each of the 245 persons in
the probe set is searched in a gallery set of 753 individuals. Each trajectory consists of
approximately 100 to 150 images, depending on the walking speed of an individual. For
the gallery set we equidistantly extracted 5 images per trajectory. The maximum rank
returned by these 5 images defines the rank of a person.

On this dataset, positive samples for the boosting step can easily be extracted from
the trajectory of the searched person. To get some additional variation into the positive
training set, we also generate a few virtual samples, as for the VIPeR dataset. To acquire
negative training samples we again use the ranked list of gallery images provided by our
descriptive model. For the features used in the boosting step we use the same setup as
for the VIPeR dataset.

Figure 7 shows the average results of our approach on this dataset after 3 runs. As
shown by the curves, in contrast to the VIPeR image pairs, the discriminative model
slightly outperforms the descriptive model. This can be explained by greater variability
captured if positive training samples are extracted from a whole trajectory. Thus, an
overfitting to the small number of positive samples can be prevented. Finally, like on
the VIPeR dataset, taking into account descriptive and discriminative information leads
to superior performance.



Fig. 7. CMC curves of the proposed algorithm on our multi-frame dataset. The blue curve shows
the descriptive and the green curve shows the discriminative person model. The combination of
both models is depicted in cyan color.

6 Conclusion

Typical approaches for person re-identification either estimate a visual signature de-
scribing the appearance of a query sample or train a discriminative model. In this paper
we took advantage of both approaches and introduced a system combining descriptive
and discriminative models. We first run an appearance-based matcher using a covari-
ance description, which has shown to be a considerable trade-off between speed and
accuracy. For examples where this representation exhibits low specificity in a second
stage a discriminative model is estimated by boosting for feature selection. In partic-
ular, we found that two types of features describing intensity transitions and color in-
formation (i.e., Haar features and Sigma Points) are best suited for the given task. The
experimental results demonstrated that compared to the single cues using the proposed
approach significatly better results can be obtained. In addition, we gave a comparison
to state-of-the-art methods on a publicly available dataset. Even though avoiding any
labeling and having only a limited amount of training data we can report competitive
results.

Acknowledgments. This work has been supported by Siemens AG Österreich, Cor-
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