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Abstract

Since the introduction of electronic personal documents in recent years the analysis of

passport photographs has become an important field of research. Such photographs

have to fulfill a set of minimal quality requirements defined by the International Civil

Aviation Organization (ICAO). As some of the specified requirements are related to

certain image regions only, these regions must be located in advance. In this work an

unsupervised segmentation method for color face images is presented. The developed

tool is intended to be part of an automatic passport photograph inspection framework.

Our focus is on knowledge based image segmentation. Hence we developed a total

variation model that allows us to incorporate prior knowledge about typical passport

photographs into the segmentation process. Since uniformity of the image background

is one quality requirement defined by ICAO, our tool also contains a background clas-

sifier, which decides whether the background region is uniform or not. This enables

the inspection framework to reject photographs with a non-uniform background at an

early stage. We have conducted several experiments on face images from two different

datasets in order to evaluate the performance of our algorithm. The obtained results

demonstrate that our method is fairly robust and outperforms other methods targeted

at the same problem, in particular an expert system and an AdaBoost classifier.

Keywords: Segmentation, Face Images, Prior Knowledge, Total Variation, Back-

ground Classification, ICAO
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Chapter 1

Introduction

Contents

1.1 Motivation and Problem Definition . . . . . . . . . . . . . . 1

1.2 ICAO Machine Readable Travel Documents . . . . . . . . . 3

1.3 Knowledge Based Image Segmentation . . . . . . . . . . . . 4

1.4 Outline of the Master’s Thesis . . . . . . . . . . . . . . . . . 6

1.1 Motivation and Problem Definition

The goal of the project was to develop a fully unsupervised segmentation tool for color

passport photographs, which assigns each image pixel to one of the following classes:

face, hair, shoulder or background. This tool is planned to be part of an automatic

passport photograph inspection framework that checks whether a passport photograph

meets the minimal quality requirements defined by the International Civil Aviation

Organization [28]. These requirements include conditions that apply to the whole

photograph (e.g. brightness, contrast) as well as conditions that are only related to

certain regions in the photograph (e.g. hair must not cover face, background must be

uniform). In order to be able to examine such region-specific conditions, the individual

image regions must be located in advance. This is the main function of our method.

However, since one criterion for valid passport photographs is a uniform background,

a background classifier is also included in the tool. The classifier decides whether the

background region is uniform or not, and therefore allows the inspection framework to

1



1.1. Motivation and Problem Definition 2

reject photographs with a non-uniform background at an early stage.

The only constraint on the input images is that they must be normalized so that a

person’s eyes lie on predefined positions within the image, as shown in Figure 1.1. This

is achieved by a process called canonization: the original image is scaled, rotated and

translated in order to place the eyes correctly [49]. As a result of the transformation

necessary to obtain a canonical image a so called padding frame often arises in the

transformed image. This is the case if the original image is not large enough to fill the

entire canonical image. Usually these missing parts are set to a predefined color and

therefore are easy to segment. However, as face images with arbitrary backgrounds can

contain any color, we do not identify the padding frame by color matching. Instead it

must be specified by the user. Due to the fact that the padding frame has already been

determined by the canonization stage this is not a problem at all in this work.

Figure 1.1: Canonization step. The original image is transformed in
order to place the eyes on predefined positions. The black stripes in the
right image denote the padding frame. The image is taken from [5].

From the above description of the input image format it is clear that the face

region is the only region that is surely present in the image. All other regions may or

may not appear in the image, depending on the image content and the canonization.

Photographs of bald people, for example, do not contain a hair region. The shoulder

region can also be missing, because it either has already been missing in the original

image or it has got lost because of the transformation applied in the canonization

stage. In photographs of people with voluminous hair the background region may be
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Figure 1.2: Main project goal. A canonical input image is partitioned
into face, hair, shoulder and background region.

completely occluded by hair so that it is not visible in the image. Because of these

reasons no assumptions on the number of regions actually present in the image can be

made beforehand. Instead this information must be obtained during the segmentation

process. In Figure 1.2 the main project goal is summarized.

1.2 ICAO Machine Readable Travel Documents

The International Civil Aviation Organization was formed in 1944 by 52 nations as an

international institution for safe and economic air traffic. In particular the organization

has established the following objectives for the period 2005 to 2010:

• Enhancing safety in global civil aviation

• Enhancing security in global civil aviation

• Environmental protection, i.e. minimizing the adverse effect of global civil avia-

tion on the environment

• Enhancing efficiency of aviation operations

• Maintaining continuity of aviation operations

• Strengthening law in international civil aviation
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One division within the the broad field of functions of ICAO are machine readable

travel documents (MRTDs). For centuries now passports have served as an instrument

for the identification of people, mostly in the context of traveling and tourism. Further-

more passports can represent a certain diplomatic protection in foreign jurisdictions.

There has been a variety of different forms of passports throughout history, ranging

from handwritten recommendations on parchment in the early years, to standardized

travel documents including pictures and biometric data. In early years, where traveling

and tourism were very infrequent, the effort of checking a person’s travel documents

was negligible. However, in modern times globalization and mass tourism dramatically

increased the administrative workload necessary for control procedures. As a result

a new form of travel documents that shifts this workload from human controllers to

the computer is needed. Therefore these documents have to be machine readable. In

a typical scenario a human controller is equipped with a machine reader that scans

passports and automatically extracts the necessary information. This information is

then used to verify the authenticity of the passport, or to check a person against a

watch list.

Clearly, one prerequisite for machine readable travel documents is standardization.

This includes the document format as well as the stored data. Since a modern passport

contains a photograph of its owner, ICAO also defined a number of conditions that

passport photographs have to fulfill [29]. As already mentioned in the previous section,

some of these requirements apply to the whole photograph (e.g. brightness, contrast,

image format), while others are only targeted at specific image regions (e.g. hair must

not cover face, background must be uniform, person must not smile). To be able to

examine region-specific conditions the location of the individual image regions must be

known. For example, background uniformity can only be checked after the background

region has been extracted from the whole image. Thus we have to divide the image

into a set of disjoint regions that correspond to objects visible in the image, a task that

is known as image segmentation in computer vision.

1.3 Knowledge Based Image Segmentation

Image segmentation is the partitioning of an image into a set of disjoint regions in such

a way that these regions comply with objects present in the image. While this is a

rather simple task for humans, it is a very hard one for computers. The human visual
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system automatically divides the field of view into semantic regions. In order to do so it

uses a lot of different cues, like object appearance, edges, texture, proximity, similarity

and symmetry. Taking a look at Figure 1.3, what does one see? One might not be

able to identify the depicted scenes at first glance, but after a while one will probably

recognize familiar objects and be able to categorize the scenes.

(a) (b)

Figure 1.3: Two examples of difficult image segmentation

In Figure 1.3a one can see a cow. And Figure 1.3b shows a Dalmatian placed pretty

much in the image center, walking towards the shadow of a tree located in the upper

left corner. But how is it possible for the human visual system to recognize objects

in such distorted images? The key is prior knowledge. People who have never seen a

Dalmatian, a tree or a cow before will most likely not be able to see these objects in the

images. On the other hand people who are aware of these objects will most probably

have no problem in identifying them.

We see that introduction of prior knowledge can significantly simplify image anal-

ysis tasks, or even make them possible in the first place. Using only simple edge or

region based segmentation techniques for our complex task of segmenting color pass-

port photographs is likely to fail. It is obvious that incorporating prior knowledge will

help us considerably in solving the task, particularly as we know what to expect in

typical passport images.
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1.4 Outline of the Master’s Thesis

In Chapter 2 we first give an overview of several classical segmentation methods. We

start with threshold based techniques (Section 2.2) and describe the basic principles

as well as more sophisticated algorithms, like optimal thresholding in Section 2.2.1.

Next edge based methods are reviewed in Section 2.3, including edge detectors (Sec-

tion 2.3.3), the snake model (Section 2.3.4) and geodesic active contours (Section 2.3.5).

Region based segmentation approaches are examined in Section 2.4. In addition to ba-

sic splitting and merging methods (Sections 2.4.1 to 2.4.3) we also outline the ROI-SEG

algorithm, an advanced method that achieves image segmentation by combining sub-

segmentation results (Section 2.4.4). In Section 2.5 we focus on total variation models,

in particular the ROF model (Section 2.5.1), the TV-L1 model (Section 2.5.2) and the

weighted total variation (Section 2.5.3), on which our algorithm is based. Chapter 2

concludes with a description of two methods that aim for solving the same problem

as we intend to, namely an expert system (Section 2.6.1) and an AdaBoost classifier

(Section 2.6.2).

In Chapter 3 our segmentation algorithm is presented in detail. After a short

overview (Section 3.1) the individual steps are explained. These are initialization (Sec-

tion 3.2), region growing (Section 3.3), program flow and definition of start regions

(Section 3.4) and post-processing (Section 3.5). Finally we describe the background

classifier that is also included in our segmentation tool in Section 3.6.

Chapter 4 is devoted to our experiments and their results. After outlining the

used dataset (Section 4.2) and defining the error metrics (Section 4.3), we compare

our algorithm to an algorithm based on an expert system and another technique based

on an AdaBoost classifier in Sections 4.4 and 4.5. After all Section 4.6 shows some

qualitative results of our method.

Finally in Chapter 5 we make some concluding remarks regarding our segmentation

algorithm and give an outlook of possible future improvements of our method.



Chapter 2

Related Work

Contents

2.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Edge Based Methods . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Region Based Segmentation . . . . . . . . . . . . . . . . . . . 18

2.5 Total Variation Models . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Segmentation of Face Images . . . . . . . . . . . . . . . . . . 24

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 Image Segmentation

Image segmentation is a fundamental problem in computer vision and has been a re-

search topic for many years. It is one of the most important techniques for the analysis

of image data. The goal is to divide an image into regions that have a strong correlation

with objects of the real world contained in the image. In [48] Sonka et al. differentiate

between two kinds of segmentation, namely complete and partial segmentation. A com-

plete segmentation of an image R consists of a finite set of disjoint regions R1, ..., RN ,

which correspond uniquely to image objects:

R =

N⋃
i=1

Ri, Ri ∩Rj = 0 ∀ i 6= j (2.1)

7



2.2. Thresholding 8

To achieve a complete segmentation, higher level processing that incorporates knowl-

edge about the scene is usually necessary. The exception are tasks where contrasted

objects located on a uniform background have to be segmented, like assembly parts,

blood cells or printed characters. Such problems can be solved with a simple threshold-

ing approach, no knowledge is needed. In a partial segmentation, on the other hand,

the extracted regions do not correspond directly to image objects, but instead are cues

to aid higher level processing. A typical example for partial segmentation is the detec-

tion of parts of object boundaries, which then can be grouped by a higher level process

in order to obtain regions complying with objects. Hence the common approach for a

complete segmentation of images containing complex scenes is a partial segmentation,

followed by one or more higher level processes.

Sonka et al. also divide segmentation methods into three classes according to the

dominant features they use. The first class encompasses methods that use global knowl-

edge about an image, usually in form of a histogram of image features. The second

class contains edge based approaches. These methods detect edges in an image and try

to group them meaningfully into edge chains that correspond to object borders. Region

based segmentation methods form the third group. Their goal is to find regions that

comply with image objects directly. Note that the second and third group solve a dual

problem. Each closed boundary represents a region, and each region can be described

by its closed boundary. Due to their different nature edge based and region based

algorithms give different results in most cases. Thus one can combine their segmenta-

tion results in a single description structure, like a region adjacency graph. In such a

graph nodes represent regions, and graph arcs represent adjacency relations according

to detected region borders.

2.2 Thresholding

Gray value thresholding is the simplest and oldest segmentation technique. It is only

suitable for very simple problems, where objects are characterized by a rather constant

reflectivity or light absorption of their surfaces and differ clearly from the background.

In its simplest form thresholding transforms an input image f into a binary image g as
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stated in the following formula, where T is the gray value threshold:

g(i, j) = 1 for f(i, j) > T

g(i, j) = 0 else
(2.2)

As one can imagine, choosing an appropriate value for T is crucial for successful

image segmentation. However, a single threshold for the whole image (global threshold)

will fail in many cases. Only very simple problems, for example segmentation of dark

objects on a bright background under controlled illumination conditions, can be solved

with such an approach. But if gray value variations within objects or background

occur, a more advanced technique, like adaptive thresholding, is required. Adaptive

thresholding uses a threshold value that varies over the image as a function of local

image characteristics. This can be realized, for instance, by dividing the image into

subimages and defining a local threshold in each subimage. If a subimage does not

provide enough data for reliable threshold determination, its threshold is interpolated

from the thresholds of neighboring subimages. Finally each subimage can be processed

using its own threshold value.

There exist many modifications to basic thresholding as defined by Equation (2.2).

One option is to use a set D of gray values instead of a single threshold, so that the

image is segmented into regions of pixels with gray values from the set and background

otherwise:

g(i, j) = 1 for f(i, j) ∈ D

g(i, j) = 0 else
(2.3)

This segmentation method is called band thresholding. Additionally to segmenting

images this thresholding definition can be used as border detector. Given an image of

dark objects on bright background one just has to search for pixels with gray values

that are darker than the background, but brighter than the objects. Defining D in this

way will result in detection of object borders.

Of course band thresholding is not restricted to a single set D of gray values. One

can define several disjoint sets of gray values D1, D2, ..., DN , and assign pixels a certain

number according to the set that contains their gray value, e.g. 1, 2, ..., N . As a result

the segmented image is no longer binary, but rather consists of a limited set of gray

values.
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2.2.1 Threshold Detection Methods

All thresholding methods mentioned so far have one thing in common. They rely

on a suitable choice of the threshold value(s). Choosing an appropriate value can be

simplified greatly if some a priori knowledge about the segmentation result is available.

An example for this is the segmentation of letters on a printed text sheet. If we know

that the letters cover 1/p of the sheet area, we can use the image histogram to determine

a threshold value T such that 1/p of all image pixels have gray values less than T , and

the remaining pixels have gray values larger than T . Unfortunately, we usually do not

have such concrete prior knowledge, and more complex threshold detection methods

are needed.

Normally these advanced methods try to derive a suitable threshold value from the

analysis of the image histogram. For example, the histogram of an image of dark objects

on a bright background is bi-modal (see Figure 2.1). It shows two peaks, one at darker

gray values originating from the objects, and one at brighter gray values caused by the

background. To separate objects from background, it makes intuitive sense to define the

threshold as the gray value that has a minimum histogram value between the two peaks.

For multi-modal histograms several thresholds are necessary, one at every minimum

between two maxima. However, locating peaks in an image histogram is not always

that easy as in case of the example shown in Figure 2.1. Often it is very difficult or even

impossible to decide whether a local maximum in the histogram is significant or not

(see [42] for details). Furthermore one has to bear in mind that even a histogram with

distinctive peaks and well chosen thresholds does not guarantee a correct segmentation

result, because an image histogram does not provide any information about the local

distribution of the gray values. For example, an image consisting of only two equally

large regions, one being white and the other being black, has almost the same histogram

as a salt-and-pepper noise image. Hence it is imperative to check segmentation results

that are derived solely from histogram analysis, using no other image properties.

Despite this disadvantage many histogram based segmentation approaches have

been developed. One option, for instance, is to suppress pixels that have a high gra-

dient magnitude, i.e. border pixels, when constructing the image histogram. This

results in deeper valleys between histogram peaks and simplifies the determination of

suitable threshold values. Further examples of histogram transformation methods can

be found in [53] and [54]. Another method is optimal thresholding, an approach that
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Figure 2.1: Bimodal histogram taken from [48]

tries to minimize the segmentation error. Here the histogram is approximated by a

weighted sum of probability densities with normal distribution, as shown in Figure 2.2.

Depending on the number of normal distributions used to represent the histogram,

one or more optimal thresholds can be determined. They are defined as the gray val-

ues corresponding to the minimum probabilities between the maxima of the normal

distributions. More threshold detection algorithms, like histogram concavity analysis,

entropic methods and relaxation methods, are described in [46].

Figure 2.2: Histogram approximated by two normal distributions, one
derived from the objects present in the image, and one derived from the
background. The figure is taken from [48].
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2.3 Edge Based Methods

Edge based segmentation methods use information about image edges in order to divide

an image into regions corresponding to objects. They consist of two steps. First edges

are detected by an edge detector. But the detector result alone is usually not sufficient

to segment an image. Thus the found edges must be combined into edge chains that

comply better with object borders in a second processing step. Note that the resulting

edge chains represent a partial segmentation only in many cases, and further processing

is necessary to extract full regions from edge chains.

2.3.1 Border Detection

Edge based segmentation algorithms encounter two main problems. The first one is the

detection of edges where no real object border exists, primarily caused by image noise

and object textures. The second case are missing edges at object border locations,

resulting from noise and occlusions.

To overcome these problems several methods have been developed. In [34] Kundu

and Mitra propose edge image thresholding, a very simple approach for reducing the

detection of outlier edges caused by noise. It is based on edge magnitudes. Edge

pixels with a magnitude smaller than a certain threshold are removed, because they

are likely to be the result of noise present in the image. Consequently only strong edges,

which most probably correspond to object borders, are used when constructing edge

chains. As with threshold based segmentation methods the difficulty is the selection

of a suitable threshold value. Again, some a priori knowledge, like the expected edge

length, can simplify the choice. Other algorithms use hysteresis to filter the output of

an edge detector. Two thresholds T1 and T2, T1 > T2, are defined. Edge pixels with a

magnitude greater than T1 are assumed to be valid, i.e. not induced by noise, and edge

pixels with a magnitude smaller than T2 are considered to be the result of image noise

and thus are removed. Pixels that have an edge magnitude in the range [T2, T1] are

examined more precisely. If they border another pixel that is already markers as edge,

then they are marked as edge too. Otherwise they are removed. But filtering edges on

the basis of their magnitudes is not the only possibility. One can use different filtering

criteria, like the edge length, or the average strength of an edge.
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2.3.2 Region Construction from Borders

If we have achieved a complete segmentation in the previous step, which means that the

detected borders already partition the image into regions, we are finished. However, in

most cases the result after border detection is only a partial segmentation consisting of

border parts rather than closed borders. Extracting regions from a partial segmentation

is a difficult task that requires some higher level knowledge. An example for such a

region construction method is the superslice method [38]. It tries to find relevant

regions by comparing detected borders to regions that have been derived by gray value

thresholding of the original image. Several different thresholds are used to find suitable

regions. Finally those regions that best match the detected region borders are accepted.

2.3.3 Edge Detectors

Since edge detectors play a crucial role in edge based image segmentation, we will give

a brief overview of them in the following sections. Edge detectors are used to locate

intensity changes within images. As is well known from mathematics, such changes

can be described with the help of derivatives. Because an image function depends

on two variables, the image coordinates, edge detectors use partial derivatives. One

form of describing edges is the image gradient, that is a vector consisting of the partial

derivatives of a function. At every function value it points in the direction of the largest

change of the function, and its length is proportional to this largest variation. In case

of an image function f(x, y) the gradient is defined as follows:

grad f(x, y) = ∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
(2.4)

The gradient magnitude and direction are calculated as:

|∇f(x, y)| =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

and φ = arg

(
∂f

∂x
,
∂f

∂y

)
(2.5)

Edges are characterized by the same properties, magnitude and direction, which

can be derived directly from the gradient. The edge magnitude is identical to the

gradient magnitude, and the direction of the edge equals the gradient direction minus

90◦. Since digital images are discrete, the derivatives used in Equation (2.5) must be

approximated by differences of neighboring pixels.
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For the detection of edges in an image several edge detectors have been developed.

Sonka et al. divide them into three classes. The first group are operators that detect

edges by searching for maxima of the first derivative of the image function. An ex-

ample is the well known Sobel operator [47], which is capable of determining the edge

magnitude as well as the edge direction. The second class encompasses operators that

search for zero-crossings of the second derivative of the image function in order to find

edges. Due to the underlying principle these detectors create closed loops of edges, i.e.

there are no gaps that have to be filled in a post-processing step. This property was

seen as an advantage in original papers, but there are also applications where this be-

havior is a drawback. Two examples for such second derivative based operators are the

Marr-Hildreth [37] and Laplacian of Gaussian (LoG) [30] detector. The problem with

algorithms based on second derivatives is their increased sensitivity to noise compared

to methods using first derivatives. The Laplacian of Gaussian operator reduces this

vulnerability to noise by smoothing the image with a Gaussian filter prior to compu-

tation of second derivatives. Furthermore it can be approximated very efficiently by

the difference of two Gaussian filters with different standard deviations, the so called

Difference of Gaussians (DoG) operator (see [36] for details). The last category of

detectors are parametric edge models. They are based on the assumption that the

image intensity function is a sampled and noisy version of an underlying continuous or

piecewise continuous function. This continuous image function can be estimated from

the discrete image, and certain image properties, like edges, can then be derived from

this estimate. To represent the piecewise continuous image function so called facets are

used. This leads to the term facet model [22–24] for such an image representation.

2.3.3.1 Scale Space

As stated in the previous section, many edge detectors compute differences between

pixels in a local neighborhood. Of course the size of this neighborhood affects the

detection result. But what is the right size? The answer to this question depends on

the objects that are investigated, and choosing the right scale in advance can be very

difficult or even impossible. The solution to this problem is the analysis of an image

at different scales. These different scales are obtained by smoothing the original image
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stepwise, usually with a Gaussian filter:

G(x, y) =
1

2πσ2
e−

(x2+y2)
2σ2 (2.6)

Each of the smoothed images represent one scale in the so called scale space, ranging

from the original image, which contains all details, to a very blurred image, where only

coarse image structures remain. If, for example, the task is to segment richly textured

objects, spurious edges arising from the object textures can be eliminated easily by

using a more smoothed image in the scale space instead of the original one. Among the

detectors mentioned in the previous section the Laplacian of Gaussian operator is the

only one that already takes scale into account, so no scale space is needed when using

this detector. The principle is the same. The image is filtered with a Gaussian kernel

prior to edge detection. By changing the filter’s standard deviation the Laplacian of

Gaussian operator is tunable for edges at different scales.

2.3.3.2 Canny Edge Detector

In [6] Canny proposes an edge detector that also makes use of scale space theory. It is

intended to be optimal according to the following three criteria:

Good detection: Important edges should not be missed, whereas the detector should

not respond to distracting edges

Good localization: The distance between the position of the detected and the real

edge should be minimal.

Single response: A single image edge should only result in a single detected edge.

Multiple responses to single edges should be minimized.

The first step towards edge detection is Gaussian filtering of the image in order

to eliminate unimportant edges, just like described in the scale space theory. After

smoothing the image the normal to the edge n is estimated for every pixel as:

n =
∇(G ∗ f)

|∇(G ∗ f)|
(2.7)

Now edges are located by searching for local maxima of the image f convolved with

the operator Gn in the direction n. Gn is the first derivative of a Gaussian G, again,



2.3. Edge Based Methods 16

in the direction n:
∂Gn
∂n
∗ f = 0, Gn =

∂G

∂n
(2.8)

This leads to:
∂2G

∂n2
∗ f = 0 (2.9)

The search for local maxima in the direction perpendicular to the direction of the

edge is called non-maximal suppression. The next step is calculating the edge strength

throughout the image. The strength s, that is the magnitude of the gradient of the

image function f , is evaluated according to the following formula:

s = |∇(G ∗ f)| (2.10)

Finally the resulting edge image is filtered to get rid of spurious edges. This is done by

thresholding with hysteresis, as described in Section 2.3.1.

2.3.4 Snakes

So far we have considered the problem of edge based image segmentation as a two

stage task, consisting of an object border detector that is followed by some higher level

process for region construction. Active contour models, or snakes, form a different

approach. They were invented in 1987 by Kass et al. [33] and can be used to solve

a variety of computer vision problems, for instance object segmentation, stereo image

matching and object tracking. A snake is an energy minimizing spline C(s) that is

guided through the image by internal forces, which depend on the shape of the snake,

and external forces, which depend on the image. Thus the snake’s energy depends on

its shape and location. Kass et al. defined the energy functional to be minimized as

follows:

ESnake =

∫ 1

0
Einternal(C(s)) + Eimage(C(s)) + Econstraints(C(s)) ds (2.11)

Einternal: This is the internal energy of the spline due to bending. It can act as

a membrane or a thin plate. The behavior is controlled by the parameters α

(elasticity) and β (stiffness). If β is set to zero at a certain point of the snake, the

snake becomes second order discontinuous at that point and develops a corner
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there.

Einternal = α(s)

∣∣∣∣∂C∂s
∣∣∣∣2 + β(s)

∣∣∣∣∂2C

∂s2

∣∣∣∣2 (2.12)

Eimage: This energy term is derived from the image data that is currently covered by

the snake and attracts the snake to salient image features. The energy term is

modeled as a weighted combination of three different functionals:

Eimage = wlineEline + wedgeEedge + wtermEterm (2.13)

Eline is a very simple functional, pulling the snake towards lines. Depending on

the sign of wline, the snake follows either light lines or dark lines. The second

functional Eedge attracts the snake to contours with high image gradient. The last

functional Eterm is a termination term that finds terminations of line segments

and corners.

Econstraints: This energy term allows the user to define additional constraint forces

designed to help solving a certain problem.

But there are also disadvantages of the snake model. In [7] Caselles et al. reveal

two problems. First of all in its original form the model is not able to change the

topology of the evolving contour. For example, if the initial snake surrounds several

image objects that should be segmented, it is not possible to capture them correctly.

Instead the result will most likely be a curve similar to the convex hull of the objects.

The second limitation is that the snake model is not geometric, i.e. the energy defined

in Equation (2.11) depends on the parameterization of the curve and is not directly

related to the geometry of the objects.

2.3.5 Geodesic Active Contours

Geodesic active contours (GAC), proposed by Caselles et al. in [7], are a further

development of the snake model of Kass et al. They are defined as the following energy

optimization problem:

min
C

{
EGAC(C)

}
= min

C

{∫ L(C)

0
g(|∇I(C(s))|) ds

}
(2.14)



2.4. Region Based Segmentation 18

L(C) is the Euclidean length of the curve C, and g is an edge function that aims

at stopping the evolving curve when it arrives at object borders. The obtained edge

magnitude values have to lie in the interval (0, 1]. Caselles et al. define the edge

function g as follows:

g(|∇I|) =
1

1 + |∇(Gσ ∗ I)|p
, with p = 1 or 2 (2.15)

Another possibility is to use a function that is optimized for natural images, such as

the function proposed by Huang et al. in [27]:

g(|∇I|) = e−η|∇I|
κ

, e.g. with η = 0.1 and κ = 1.0 (2.16)

Note that the user has to define additional constraints, since C = 0 always mini-

mizes the GAC energy. The main advantage of geodesic active contours over snakes

is that they are geometric and independent of the topology of a problem. This means

that there is no need to estimate crucial parameters, like α and β in Equation (2.12),

and that the evolving contour can adapt to the topology present in the image. For

instance, if a geodesic active contour is applied to segmentation problem containing

several objects, the evolving contour automatically splits and merges, according to the

objects. Another advantage of geodesic active contours is their well founded mathemat-

ical framework, which makes them applicable to many different applications. However,

the energy defined in Equation (2.14) has one drawback, it is non-convex. Consequently

minimizing it will not lead to a globally optimal solution, but instead a local minimum

will be found. This means that the result depends on the initialization of the geodesic

active contour.

2.4 Region Based Segmentation

In the previous sections we have described how an image can be segmented by finding

borders between regions. The methods presented in this section detect regions directly.

Generally region based segmentation methods are better suited in case of noisy or richly

textured images, where correct border detection is extremely difficult. To be able to

decide if a certain pixel belongs to a certain region a homogeneity criterion is needed. It

can be based on gray values, color, texture, shape, etc. Having defined a homogeneity
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criterion the resulting regions of the segmented image must satisfy the following two

conditions, where H (Ri) is a binary homogeneity evaluation of the region Ri:

H (Ri) = TRUE, ∀ i = 1, 2, ..., N (2.17)

H (Ri ∪Rj) = FALSE, ∀ i 6= j, Ri adjacent to Rj (2.18)

2.4.1 Region Merging

Region merging begins with an image full of small start regions that fulfill

Equation (2.17), but usually do not fulfill Equation (2.18). The easiest way of

initializing region merging is to define a start region in every pixel. After initialization

adjacent regions that can be combined without violating the chosen homogeneity

criterion are being merged. This goes on until no more neighboring regions can be

connected maintaining condition Equation (2.17). There exist different versions of this

method differing in the way how the algorithm is initialized and the merging criterion.

2.4.2 Region Splitting

Region splitting is the opposite of region merging. It starts with the whole image

being one region. This single region usually does not meet criteria Equation (2.17) and

therefore has to be split into smaller regions. The splitting continues until all regions

fulfill Equations (2.17) and (2.18). Although this approach seems to be dual to region

merging, generally the results returned by the two methods are different, even if the

same homogeneity criterion is used.

2.4.3 Region Splitting and Merging

As stated in [25], a combination of region splitting and merging can definitely improve

the segmentation result. Such methods use a pyramid image structure and work as

follows. If a region on a certain pyramid level is not homogeneous, it is split into four

regions on the level below. If, on the other hand, there are four similar regions on a

pyramid level that have the same parent in the upper level, these regions are merged.

When no more splitting or merging is possible any two adjoining regions that can

be combined into a homogeneous region are merged, even if they belong to different
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pyramid levels or have different parents. Finally an optional last step can remove small

regions by uniting them with the most similar adjacent region.

2.4.4 ROI-SEG

In [15] ROI-SEG, an unsupervised color segmentation method based on the combina-

tion of subsegmentation results, is presented. Starting from detected regions of interest

(ROIs) the proposed algorithm builds several differently focused subsegmentations of

the same image. First, the color distribution within each region of interest is modeled

by a Gaussian mixture model. Then Bhattacharyya distance values measuring the sim-

ilarity between pixel colors and Gaussian mixture models are calculated for all pixels

in order to sort them. These values are then forwarded to a modified version of the

maximally stable extremal region (MSER) detector, which returns a set of connected

regions, all having a similar color appearance as the corresponding region of interest.

These connected regions are then combined by analyzing a local quality measure. The

authors use the mean Bhattacharyya distance value of every connected region for this

task. Pixels are assigned the label of the region with the locally lowest mean Bhat-

tacharyya distance. The whole process is illustrated in Figure 2.3.

Figure 2.3: ROI-SEG program flow. The figure is taken from [15].
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2.5 Total Variation Models

In the previous section we have discussed several classical segmentation methods, rang-

ing from threshold based approaches over edge based algorithms to region based algo-

rithms. For our task of segmenting color face images a combination of edge and region

based techniques seems to be the right choice. On the one hand we want to use color

and texture information, and on the other hand the segmented regions should coin-

cide with detected region borders. We have decided to use a geodesic active contour

model and add a supplemental region term to incorporate color, texture and shape

information. This results in the following energy optimization problem:

min
C

{
EGAC Region

}
= min

C

{∫ L(C)

0
g(C)︸ ︷︷ ︸

GAC

+λ

∫
p(C)︸ ︷︷ ︸

Region

}
(2.19)

But, as already stated in Section 2.3.5, geodesic active contours have one major

drawback. The defined energy is non-convex, so that the minimization algorithm is

likely to get stuck in a local minimum. To still find a satisfying solution a good ini-

tialization is necessary. In order to overcome this disadvantage we have developed a

model that is based on a weighted total variation (TV) norm, which was introduced

by Bresson et al. in [3]. As will be described in Section 2.5.3, this weighted TV-norm

minimizes the same energy as a geodesic active contour. However, it is convex and thus

allows for calculating a globally optimal solution.

In recent years variational methods have been applied very successfully to a number

of inverse problems in computer vision. Such inverse problems are tasks where model

parameters have to be estimated from given data, as opposed to direct problems, where

data is obtained from a given model. An example of an inverse problem is the recon-

struction of an image x from a blurred version Ax of it to which some random noise n

has been added:

y = Ax+ n (2.20)

Clearly, reconstructing the original image x from the observed image y is very

difficult, sometimes even impossible. To be able to obtain a reasonable solution at least

some information about the operator A and the noise n must be available. Inverse

problems are typically ill-posed. The opposite are well-posed problems. According to
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Hadamard [21] a problem is well-posed if the following three conditions are satisfied:

1. A solution is existent.

2. The solution is unique.

3. The solution depends continuously on the data, i.e. it is stable.

2.5.1 ROF Model

Rudin, Osher and Fatemi were the first who applied variational methods to a computer

vision problem, in particular edge preserving image denoising [45]. The goal is to

recover the original image u(x, y) from the observed, noisy image u0(x, y). The relation

is stated in Equation (2.21), where n is some additive noise:

u0(x, y) = u(x, y) + n(x, y) (2.21)

For a continuous representation denoising can be formulated as a least squares approx-

imation of u:

min
u

∫
Ω
|u0(x, y)−Au(x, y)|2 dx, Ω ... image domain (2.22)

First the image u is transformed via a linear operator A, a blur for example, and

afterwards some random noise n is added. This is an inverse problem, just as described

before. Image denoising is then connected to the following constrained minimization

problem (ROF model), with
∫

Ω |∇u| dΩ being the total variation of u:

min
u

∫
Ω
|∇u| dΩ,

constrained by

∫
Ω
u dΩ =

∫
Ω
u0 dΩ and

∫
Ω

(u− u0)2 dΩ = σ2
(2.23)

The first constraint ensures that the additive noise has zero mean, whereas the second

constraint determines the standard deviation of the noise. Unfortunately, the ROF

model in its original form is non-convex.

In [10] Chambolle et al. restated the image denoising problem. By changing the

original constraint
∫

Ω (u− u0)2 dΩ = σ2 to
∫

Ω (u− u0)2 dΩ 6 σ2, Chambolle et al.

obtained the following unconstrained, non-convex minimization problem, where λ > 0
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is a Lagrange multiplier:

min
u

{
EROF

}
= min

u

{∫
Ω
|∇u| dΩ +

1

2λ

∫
Ω

(
u− u0

)2
dΩ
}
, (2.24)

The first term in Equation (2.24) is named regularization term and minimizes the

variance of u, but preserves discontinuities, like edges, at the same time. The second

term is called data fidelity term and minimizes the difference between u and u0. It uses

a L2-norm, and thus the model is often referred to as TV-L2-model. However, using

the L2-norm in the data fidelity term results in a loss of contrast in the denoised image,

a severe drawback of this version of the ROF model.

2.5.2 TV-L1 Model

In order to overcome the drawbacks of the ROF model researchers have developed

different modifications of the original ROF model (see [1] for an overview). For instance,

in [11] Chan et al. propose using the L1-norm instead of the L2-norm for the data fidelity

term in Equation (2.24):

min
u

{
ETV -L1

}
= min

u

{∫
Ω

∣∣∣∇u∣∣∣dΩ + λ

∫
Ω

∣∣∣u− u0

∣∣∣ dΩ
}

(2.25)

The derived model is called TV-L1 model and has some attractive features. It

outperforms the ROF model in removing impulse noise, like salt-and-pepper noise for

example, and it preserves the contrast that is present in the image. This makes the TV-

L1 model very useful for shape denoising, as presented by Nikolova et al. in [39], and

selection of features of a certain scale, as proposed by Chen et al. in [12]. Consequently

the order in which structures in the image disappear depends completely on their

geometry (e.g. area, length) and not on their contrast. Unfortunately these favorable

properties come with a main disadvantage. The TV-L1 model is not strictly convex,

which means that the global minimum is not unique. The existence of more than one

globally optimal solution makes the optimization task more difficult.

2.5.3 Weighted Total Variation

The weighted total variation approach was introduced by Bresson et al. in [3]. The

novelty of their method compared to the TV-L1 model is the weighting g of the total
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variation term:

min
u

{
ETVg

}
= min

u

{∫
Ω
g |∇u| dΩ + λ

∫
Ω

∣∣∣u− u0

∣∣∣ dΩ
}

(2.26)

∫
Ω
g |∇u| dΩ = TVg(u) ... weighted TV (2.27)

In [4] Bresson et al. proved that if u is a characteristic function 1ΩC of a set ΩC

whose boundary is denoted C, and u is allowed to vary continuously between [0, 1], and

g is an edge detector, Equation (2.27) describes a geodesic active contour as defined in

Equation (2.14):

TVg(u = 1ΩC ) =

∫
Ω
g |∇1ΩC | dΩ =

∫
C
g ds = EGAC(C) (2.28)

Furthermore these constraints turn the weighted total variation into a convex func-

tional, so that a globally optimal solution can be derived. This is a major advantage

over geodesic active contours described in Section 2.3.5, which are non-convex.

2.6 Segmentation of Face Images

For many years now face detection and localization systems have been the subject

of research activities, and a lot of different approaches have been developed. A very

brief overview can be found in [50]. The invented systems include methods that use

skin color in order to locate a face in an image [8, 26, 51], statistical methods like

Active Shape Models (ASM) and Active Appearance Models (AAM) [16, 17, 35], neural

networks [43, 44], boosting [52, 55] and support vector machines [40]. Since the main

purpose of these algorithms is face detection and localization, most of them return only

the locations and dimensions of rectangles containing detected faces. However, some

of the mentioned methods provide more detailed information, like Active Shape and

Active Appearance Models, which return location and contour for every face.

In contrast to the variety of different face detection and localization approaches,

the problem of segmenting face images has not gained much attention in the research

community up to now. As stated by Subasic et al. in [50], no method for segmentation

of passport photographs into face, hair, shoulder, background and padding frame has

been developed preliminary to their expert system approach.
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2.6.1 Expert System

In [50] Subasic et al. present an rule based expert system that uses domain knowledge

for segmentation of canonical face images. Their method consists of two main steps,

a low-level segmentation algorithm and the expert system itself. Figure 2.4 illustrates

the proposed method.

Figure 2.4: Block diagram of the proposed expert system taken from [50]

In the first stage the image is divided into a set of homogeneous regions by mean-

shift filtering [13, 14]. The user has to determine the trade-off between the number

of obtained regions and the likeliness that this first segmentation discards important

details. Less initial regions reduce the processing time for the second stage, but increase

the probability of losing essential details at the same time.
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After partitioning the image into a set of homogeneous regions, the expert system

follows. It consists of a set of rules, which are designed with knowledge about the

scene in typical passport photographs, and facts, which are determined by a number

of attributes, like region properties (e.g. color and texture) and region neighborhood

information. A rule consists of two parts, the “if” part and the “then” part. The “if”

part specifies the facts that have to be fulfilled in order to make the rule applicable,

and the “then” portion defines the actions that are performed when executing the rule.

Typical actions are of course the assignment of labels (face, hair, shoulder, background

and padding frame) to certain regions of the initial segmentation and the adjustment

of parameters of other rules. The inference engine of the expert system automatically

examines the current facts, and then chooses one of the applicable rules for execution.

If several rules can be chosen, the rule with the highest priority is taken. Usually rules

are ordered in a way so that individual image regions are segmented consecutively,

namely in the following sequence: padding frame, face, hair, shoulder and background.

Of course applying a rule can change the facts. In this case the inference engine has

to check the applicability of all rules again. However, it is not possible for a rule

to change the facts in a manner that would activate rules of an already segmented

image region. For example, a rule for the hair region can not cause a rule for the face

region to become applicable again. Also rules usually do not change the affiliation of

already labeled regions, except for two special cases. A face region in ear’s position

can be changed into a hair region, and a hair region in typical shoulder position can be

changed into a shoulder region.

The padding frame, if existing, is very easy to segment, because it has a predefined

color. Therefore it is processed first. Afterwards the segmentation process continues

with the face region, since this is the only region that is certainly present in the image.

The algorithm picks a seed region between the person’s eyes and starts color based

region growing. A region grows by adding neighboring regions with similar properties.

Rules for such a region growing process are defined for every region, but simple region

growing is not sufficient in most cases. Thus the majority of rules of the expert system

are designed to handle special situations. Examples for this kind of rules are the

relaxation of parameters in case of poor illumination, or the detection of beards based

on high entropy and expected position within the image. After the face region has

been segmented, the hair region follows. Again, a seed region, this time located above

the already segmented face, initiates a region growing process, and specific situations
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are treated with appropriate rules. The next region to be segmented is the shoulder

region. The algorithm chooses a seed region that lies below the face region and starts

the same process as for the previous two regions. The last region is the background

region. With the region growing approach a correct segmentation of the background

region is very difficult because of the large variations in the appearance of this region.

Hence it is determined by elimination. After having segmented all other regions, the

remaining, still unlabeled image areas are considered background.

Finally the segmentation result is refined by morphological post-processing, which

consists of the following steps: closing of holes in regions, gray value morphological

opening, dilation and erosion, as well as filtering based on the region size. A segmen-

tation example of the expert system is shown in Figure 2.5.

(a) Input image (b) Mean-shift seg-
mentation

(c) Result of expert
system

(d) Result af-
ter morphological
post-processing

Figure 2.5: Segmentation example of the expert system taken from [50]

2.6.2 AdaBoost Classification

In [18] a method for segmentation of passport photographs based on AdaBoost (short

for adaptive boosting) classification is presented. Again, the goal is to divide a canon-

ical face image into face, hair, shoulder, background and padding frame region. Like

the expert system described in the previous section this method uses a two step ap-

proach. The first stage is the same as for the expert system, a mean-shift algorithm

that partitions the image into a set of homogeneous regions.

The second stage consists of several classifiers for the individual image regions. Like

in case of the expert system, the padding frame can be segmented easily, whereas the

segmentation of the background region is very difficult. Consequently the background
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region is determined by elimination. This results in three regions that have to be

classified, in particular the face, hair and shoulder region. For each of these regions

a separate classifier is trained using the AdaBoost method [52]. The classifiers rely

on several different features, like color values, position coordinates, region probabil-

ity maps (see Section 3.2.1 for details) and various texture features (e.g. statistical

values calculated from intensity values or wavelet filters combined with oriented edge

detectors).

To train the classifiers a set of hand labeled face images is necessary. First every

training image is segmented into homogeneous regions by the mean-shift algorithm,

and the features used for classification are calculated for each of these regions. Then

the three classifiers for face, hair and shoulder region are trained using the AdaBoost

method. AdaBoost is an iterative machine learning algorithm that constructs a strong

classifier as a linear combination of simple (weak) classifiers. In every iteration the

weak classifier that produces the smallest error on the current training set is chosen

and added to the strong classifier in order to improve the overall performance. After

each iteration the weights of training samples that have been classified correctly in the

previous iteration are decreased, whereas the weights of wrongly classified samples are

increased. In this way the algorithm always focuses on hard training samples when

adding a new weak classifier. When the overall error is small enough or the maximum

number of iterations has been reached the training is stopped.

To segment an image all three trained classifiers are applied to the homogeneous

regions of the image obtained by mean-shift segmentation. A homogeneous region is

then labeled according to the classifier with the highest response, provided that this

maximum response is greater than a certain threshold. Homogeneous regions that

received no strong response are labeled as background. Finally the segmentation result

is refined by morphological post-processing.

2.7 Discussion

In this chapter we have presented various segmentation methods, ranging from simple

thresholding over edge based approaches to region based methods. As already men-

tioned in Section 1.3, these simple approaches are likely to fail in our case. Therefore we

need more sophisticated methods, like total variation models. Such variational models
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have been applied very successfully to a number of different computer vision problems,

among others image segmentation. Thus we have derived a total variation model that

allows us to combine an edge based approach, in particular a geodesic active contour,

with a region-term encompassing color, texture and shape information. A disadvan-

tage of variational models is the computational cost involved in finding an adequate

solution. How we solve the derived model, and how knowledge is incorporated into the

segmentation process is described in the next chapter.

We have concluded this chapter with a description of two methods that aim at

solving the same problem as we intend to. One is an expert system that introduces

knowledge into the segmentation process by well defined rules. The other uses classifiers

trained with AdaBoost. Since both methods are especially designed for segmentation of

face images in the context of machine readable travel documents specified by ICAO, we

will compare our algorithm to them in Chapter 4. We expect our method to achieve a

higher performance than these algorithms, because our approach uses prior knowledge

right from the beginning of the segmentation process, i.e. the result does not depend

on an initial low-level segmentation. While we incorporate knowledge at all stages of

the algorithm, which are definition of start regions, region growing and post-processing,

the expert system and the AdaBoost classifier only use knowledge in the labeling stage,

but not in the segmentation stage itself. In the next chapter a detailed description of

our method follows.
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3.1 Overview

In this chapter we describe our segmentation algorithm in detail. We start with a

short overview of the individual stages of the proposed method in this section. Next in

Section 3.2 some preliminary steps that have to be carried out prior to segmentation

are outlined. Then we present the region growing mechanism, which is based on the

energy optimization problem stated in Equation (2.19). We show how this optimization

problem can be solved. This is done in Section 3.3. After that the whole program flow

is described in Section 3.4. We illustrate how we achieve a segmentation by defining

start regions and letting them grow. The last segmentation stage is post-processing,

which is explained in Section 3.5. Finally we conclude Chapter 3 with the description

of our background classifier in Section 3.6.

30
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In order to solve the task of segmenting color passport photographs we use a

knowledge-based approach. The basic stages of the proposed method are as follows:

Initialization: Before the actual segmentation process can start some preliminary

steps are necessary. These are calculation of shape information based on ground

truth data, image pre-processing and calculation of gradient and texture infor-

mation.

Definition of start regions: This stage and the next stage, namely region growing,

are performed iteratively. First the region growing process is initialized by defin-

ing a start region. Then this start region grows and, after the growing process

has stopped, the resulting region is used to guide the definition of a new start

region for another region. For example, after the face region has been found, a

small region above the face region is used to initialize the hair region growing pro-

cess. In this way knowledge about the scene is incorporated into the segmentation

process.

Region growing: The region growing process uses gradient, color, texture and shape

information and is based on a total variation framework. Again, knowledge about

the individual regions in the image is used to guide the growing process.

Post-processing: The post-processing stage corrects the segmentation result based

on general as well as region-specific rules designed with knowledge about the

scene. General rules, for example, include removal of small outlier regions and

morphological processing. An example of a region-specific rule is the removal of

hair regions that have no contact to the face region.

Background classification: The background classifier is an addition to the segmen-

tation tool. It allows the passport photograph inspection framework to reject

images with a non-uniform background at an early stage. To determine whether

the background region is uniform or not, our classifier examines the standard

deviation and the gradient magnitude within the background region.

As one can see, the proposed segmentation algorithm incorporates prior knowledge

whenever possible, in particular in the definition of start regions, the region growing

process and the post-processing stage. In the following sections all five steps are de-

scribed in detail. Figure 3.1 illustrates the whole program flow of our algorithm. Most

of the face images used throughout this chapter are taken from [5].
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Figure 3.1: Program flow of our algorithm
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3.2 Initialization

3.2.1 Calculation of Shape Information

To increase the performance of our segmentation tool, we use knowledge about the

region distribution in typical canonical face images: the face is located in the center,

the hair adjoin to the upper head, the shoulders are underneath the face, and the back-

ground is usually located in the upper image corners and, depending on the hairstyle,

can pass down the image on both sides of the face. This knowledge must be incorpo-

rated in the segmentation process in order to avoid regions to be found in completely

uncharacteristic image areas. For example, it would make no sense to detect shoulder

regions located above the head, or to find face regions near the image corners only

because of color similarity. Since we have to deal with arbitrary backgrounds, such

situations are not uncommon. To solve this problem, our method uses a shape proba-

bility map for each region. The probability map is two-dimensional and has the same

size as the image. For each location in the image the map contains a value representing

the probability that the corresponding region appears at this location. In this way

the probability map supports regions in proper places, whereas regions in uncommon

places are attenuated.

To calculate the probability maps, ground truth data is needed. We use 439 hand

labeled face images in order to obtain the maps. A counting algorithm iterates through

all ground truth images and constructs the probability maps for all regions simulta-

neously. First each probability map is initialized, so that all values are zero. Then

for every image those values in a probability map covered by the corresponding region

are incremented. When all images have been processed, all values are divided by the

number of images. After that values near one indicate places where a certain region

has appeared many times, whereas values near zero represent untypical image areas

for this region. Figure 3.2 shows the probability maps of the face, hair, shoulder and

background region. As one can see, some minor corrections of the probability maps

are necessary. For the face region the probability is increased in the lower image area.

This removes the shape penalty for wider necks. Another correction has to be applied

to the background probability map, which shows a lower probability close to the image

borders because of the padding frame, which is often present in the images from our

dataset. To correct this, the background region probability is increased near the image



3.2. Initialization 34

border.

(a) Face (b) Hair (c) Shoulder (d) Background

Figure 3.2: General shape probability maps calculated from 439 hand
labeled face images. The higher the probability of a pixel is the whiter it
appears in the image.

A special case is the hair region. While the shape probability concept works well for

the face and shoulder region, the hair region cannot be represented appropriately by a

single shape probability distribution, because the hairstyle can differ significantly from

person to person. Figure 3.2b shows the problem: while the probability map calculated

from all 439 images is suitable for personal photographs of people with rather short

hair, it causes large segmentation errors on images showing people that wear long hair.

As one can see in Figure 3.2b, the image area with the highest probability, that is the

area covered by most hairstyles, represents short hair very well. In contrast to this

the probability for longer hair is rather small in this shape probability map, causing

the segmentation algorithm sometimes to fail on images of persons with long hairstyle.

Especially if the image background is cluttered, the lower hair region is likely to be

labeled as background region.

To overcome this problem, we use three different shape probability maps for the hair

region: one for short, one for medium and one for long hair. Since the shape of the hair

region directly affects the shape of the background region (the background region is

large for small hair regions and vice versa), also three different shape probability maps

are calculated for the background region. The calculation for these probability masks

is carried out in the same manner as described before. The sole difference is that for

each probability mask only the corresponding images (short, medium or long hair) take

part in the counting process. To avoid having to classify every image by hand, several

hair masks are used for each of the three different hairstyles. The class of the hair



3.2. Initialization 35

mask that best fits the hand labeled hair region determines to which probability mask

an image contributes. The best fit is defined in the sense of minimum overlap error.

A logical XOR-operation is performed on both regions (hair mask and hand labeled

hair region), and the number of set pixels in the operation’s result describe the overlap

error. Figure 3.3 shows some of the different hair masks, and Figure 3.4 depicts the

different shape probability maps for the hair and the background region respectively.

The same hairstyle classification procedure is carried out during the segmentation

process. There it decides which shape probability maps should be activated based on

a first guess of the hair region present in the image. This is described in more detail in

section Section 3.4.2.3.

(a) Short hairstyle (b) Medium hairstyle

(c) Long hairstyle

Figure 3.3: Some of the hair masks used for hairstyle classification

3.2.2 Image Pre-Processing

At this stage the input image undergoes some basic pre-processing steps: color space

transformation, contrast enhancement and median filtering.
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(a) Hair and background for short hairstyle (b) Hair and background for medium
hairstyle

(c) Hair and background for long hairstyle

Figure 3.4: Special shape probability maps calculated from 439 hand
labeled face images

3.2.2.1 Color Space Transformation

First, the image is transformed from the RGB to the Lab color space (Figure 3.5).

While images consist of a red (R), green (G) and blue (B) channel in the RGB space, a

Lab image is represented as luminance (L) and two color channels (a, b). The luminance

L ranges from 0 (black) to 100 (white), the color channel a from -127 (green) to 128

(red), and the color channel b from -127 (blue) to 128 (yellow). The reason for this color

space transformation are the drawbacks of the RGB space for color analysis. As outlined

by Vezhnevets et al. in [51], the RGB space suffers from highly correlated color channels,

significant perceptual non-uniformity and mixing of luminance and chrominance data.

Perceptual uniformity is a color space property favored in skin color detection systems.

Since skin color is rather a perceptual phenomenon than a physical property of an

object, a color representation similar to the color sensitivity of the human visual system

seems to be well suited for such systems. In perceptually uniform color spaces a small

change of a component’s value is perceived approximately equally across the range of
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that value. Lab is a color space that has this property.

Furthermore luminance and chrominance data are separated in this color space.

Many of the works in skin color modeling and detection try to reduce the dependency of

skin color in images on illumination conditions by dropping the luminance component

and, by doing so, even gain speed. However, Vezhnevets et al. point out that the

omission of the luminance component does not improve the discrimination of skin and

non-skin color. Kakumanu et al. even conclude in [32] that dropping the luminance

component actually reduces the skin detection performance. In our case dropping the

luminance component has not been a choice anyway, because a complete segmentation

of the image is required, instead of just detecting skin pixels. To distinguish, for

instance, several different gray levels (e.g. gray background, white shirt and black

hair), the luminance component is necessary as it holds significant information.

(a) Image (b) R channel (c) G channel (d) B channel

(e) L channel (f) a channel (g) b channel

Figure 3.5: Image with RGB and Lab color channels

3.2.2.2 Contrast Enhancement

The second pre-processing step is contrast enhancement. The face images from our

test dataset showed an unbalance in the Lab channels. It seems that the luminance
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channel L of typical face images has a rather good contrast (except for outlier im-

ages taken under very bad illumination conditions), whereas the two color channels

a and b are very dull. Since a region’s color distribution is described by a Gaussian

model, the segmentation process would mainly be driven by the dominant luminance

channel. Contrast enhancement performed on each channel separately eliminates this

problem [20], as depicted in Figure 3.6.

(a) L channel (b) a channel (c) b channel

Figure 3.6: Color channels of contrast enhanced Lab image

3.2.2.3 Median Filtering

Finally a median filter with kernel size [3, 3] is applied to the image. It reduces both

image noise and diversity within regions, but preserves borders at the same time. The

noise reduction is especially important for the calculation of the gradient image de-

scribed in the next section. Figure 3.7 shows the pre-processed image.

Figure 3.7: Pre-processed image
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3.2.3 Calculation of Gradient and Texture Information

The region growing process uses gradient and texture information among others in order

to segment a region. Hence a gradient magnitude image is calculated from the input

image. To reduce the influence of unimportant edges, the input image is filtered with

a Gaussian kernel prior to gradient calculation. Using the following equation proposed

by Huang et al. in [27] for natural images we obtain the gradient image (Figure 3.8a):

g(|∇I|) = e−η|∇I|
κ

, e.g. with η = 0.1 and κ = 1.0 (3.1)

Then we derive the texture information from the gradient image. The texture

information will only be used as an additional feature to color in the hair segmentation

process. Here it provides a good differentiation criterion, since hair is richly textured in

most cases. Hence it is sufficient to distinguish between image areas with rather dense

and image areas with quite sparse texture. A typical example where texture plays an

important role is the segmentation of gray hair on a uniform, gray background. But

it also helps to improve the differentiation between hair and face region, because skin

usually does not show much texture. To obtain the texture information, we calculate

the local standard deviation of the gradient image. Each pixel in the texture image

contains the standard deviation of a local neighborhood around the corresponding pixel

in the gradient image. Finally the texture values are scaled in order to range from 0 to

255. Figure 3.8b illustrates the texture image.

(a) Gradient (b) Texture

Figure 3.8: Gradient image and texture image derived from it
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3.3 Region Growing

For better understanding the region growing process is described at this point before

the other sections. As already mentioned, the basic idea is to define a start region and

then extend it to image areas with similar color and texture properties respectively. In

addition the image gradient and knowledge about the shape of the expected regions

are incorporated into the growing process. All in all the growing process is based on

the following four features:

• Color

• Texture

• Gradient

• Shape

For our growing algorithm we combine a geodesic active contour model with a region

model that incorporates color, texture and shape information into the growing process,

as stated in Equation (2.19). Due to its non-convexity we replace the GAC-term in

this equation with the weighted total variation TVg according to Equation (2.28) and

obtain the following energy optimization problem:

min
u

{
ETVg Region

}
= min

u

{∫
Ω
g |∇u| dΩ︸ ︷︷ ︸

TVg

+λ

∫
Ω
uf dΩ︸ ︷︷ ︸

Region

}
(3.2)

For the weighting g we use the edge measure g(|∇I|) = e−η|∇I|
κ

, which is optimized for

natural images. With the parameter λ the influence of the TVg-term and region-term on

the segmentation result can be controlled. A small λ means that the result is primarily

determined by the TVg-term, whereas a high λ makes the region-term to the main

contributor. We define the function f as a probability ratio that forces the segmentation

to partition the image into homogeneous regions. The involved probabilities encompass

color, texture and shape information for the corresponding region:

min
u

{
ETVg Region

}
= min

u

{∫
Ω
g |∇u| dΩ︸ ︷︷ ︸

TVg

+λ

∫
Ω
u log

p2

p1
dΩ︸ ︷︷ ︸

Region

}
(3.3)
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The two probabilities p1 and p2 in Equation (3.3) represent the foreground, that

is the currently growing region and the background or remaining image respectively.

Thus we have a formulation in which one region competes against another region, often

referred to as background. Note that in this context the term background does not

refer to the background region that we want to segment in the passport photograph,

but to the antagonist of the growing region under investigation.

3.3.1 Solving the TVg-Region Model

Solving total variation models is a demanding task. The reason for this is the non-

differentiability of the L1-norm in the TV-term at zero. Many different approaches

exist, ranging from explicit time marching algorithms to graph cut methods. A short

overview with corresponding references can be found in [41]. We decided to use an

iterative method proposed by Chambolle et al. in [9]. It is based on introducing a

second variable v and leads to the following convex energy optimization problem:

min
u,v

{
ETVg Region

}
= min

u,v

{∫
Ω
g
∣∣∣∇u∣∣∣dΩ +

1

2θ

∫
Ω

(u− v)2 dΩ + λ

∫
Ω
v log

p2

p1
dΩ
}

(3.4)

Introducing a second variable v leads to a third term in the TVg-region model, the

connection term 1
2θ

∫
Ω(u− v)2 dΩ. The parameter θ controls the influence of the TVg-

term and the region-term respectively. The minimization task is now split into two

steps. First the energy is minimized in terms of u with v being fixed, and then the

energy is minimized in terms of v with u being fixed. These two steps are iterated until

convergence:

1. min
u

{ ∫
Ω
g |∇u| dΩ +

1

2θ

∫
Ω

(u− v)2 dΩ
}

(3.5)

2. min
v

{ 1

2θ

∫
Ω

(u− v)2 dΩ + λ

∫
Ω
v log

p2

p1
dΩ
}

(3.6)

According to Chambolle et al. Equation (3.5) can be solved by using a dual variable

p = ∇u
|∇u| :

v = constant un+1 = v + θ div p

pn+1 =
pn + τ

θ∇u

1 +
τ
θ
|∇u|
g

(3.7)
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In practice the timestep τ has to be less or equal than 1
4 in order to achieve convergence.

For Equation (3.6) we obtain:

u = constant
1

θ
(v − u) + λ log

p2

p1

!
= 0

⇒ v = u− λθ log
p2

p1
, v = max(0,min(1, v))

(3.8)

After every iteration of the region growing process (Equations 3.7 and 3.8) the

probabilities p1 and p2 can be updated according to the actual segmentation. However,

to decrease the runtime of our algorithm new probability values are only calculated

after significant changes in the region topology. Furthermore we also keep track of the

variation of u and v for all pixels in the image. Pixels where the variation of these

variables is very low are considered to be steady, and thus they are excluded from

further iterations. In this way we gain a notable speedup, especially for larger images.

3.3.2 Probability Calculation

Equation (3.3) just allows two regions to compete against each other, but we have to

segment up to four different regions. The easiest way of solving this problem is to let

the individual regions grow successively. But this leads to a dependency of the result

on the growing order. Earlier growing regions have an advantage over later ones. The

region that grows first has the highest chance of adapting itself to yet unlabeled areas,

while regions growing afterwards would not come across so many still unlabeled pixels.

Hence the first region would grow most easily, whereas the last region would be most

hindered, because many of the unlabeled image areas would already be occupied by

the other regions. It is of course possible for a later growing region to displace another

region that has grown earlier. However, this is rather unlikely, because the earlier grown

region has already adapted itself to the newly added image areas, which means that its

probability p1 in these areas has risen.

To avoid that one of the regions is preferred, the regions grow alternately. We start

with the first region and perform one iteration of the growing process, then we move

on to the next region and again perform one iteration. This process continues until all

regions have completed the first iteration. After that the growing algorithm starts the

second iteration on all regions, and so on. In this way we minimize the influence of the

growing order on the result.
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3.3.2.1 Region Probability p1

To obtain the probability p1 in Equation (3.3), we build a Gaussian model in the feature

space (see [32] for a survey of different distribution modeling techniques). As stated

by Vezhnevets et al. in [51], parametric modeling methods such as Gaussian models

are well suited for problems with limited training data due to their interpolation and

generalization ability. Hence for our task of extending rather small start regions (the

training data) a parametric method is well suited. The feature space is either three

dimensional (three color channels) or four dimensional (three color channels and one

texture channel), depending on the growing region. The model parameters, which are

mean vector µ and covariance matrix Σ, are derived from all pixels that are currently

inside the region using the following equations:

µ =
1

n

n∑
i=1

ci, Σ =
1

n− 1

n∑
i=1

(ci − µ)(ci − µ)T (3.9)

These parameters are updated every few iterations during the growing phase. Hav-

ing calculated the Gaussian model the joint probability density function (pdf), defined

as

p(c) =
1

(2π)
N
2 |Σ|

1
2

e−
1
2

(c−µ)TΣ−1(c−µ), (3.10)

gives us the desired probability p1. Here c is a three or four dimensional feature vector

respectively, and p(c) represents the probability that a pixel with a certain color (and

texture) belongs to the region from which the Gaussian model was derived.

3.3.2.2 Background Probability p2

To derive the probability p2 in case of several simultaneously growing regions, we use

their Gaussian models. The calculation is almost the same as in case of the growing

region’s probability term p1. The only difference is that we now have to combine

multiple Gaussian models. We us a simple maximum operation, because it is fast and

gives good results. For each pixel p2 is the maximum of the probability values derived

from the models of the current background regions, i.e. all regions except the currently

growing one. In this way the growing region encounters maximum resistance and will

only extend to image areas that have a smaller probability for all other regions. Note

that there are no additional computational costs involved in building the Gaussian
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models for calculating p2, because usually, if multiple regions are present in the image,

we let all of them grow simultaneously. And this means that we need these models

anyway for calculation of the regions’ probabilities p1.

Furthermore we also have to deal with the case of only one growing region. For

example, when extending the face start region, we do not have any knowledge about

the other regions. Hence we can not define a competing region for the growing face

region. Instead we simply define a fixed threshold for p2. With this value we can adjust

how easy or hard it is for the region to grow. The higher the value the harder it is for

the region to extend.

3.3.2.3 Multimodal Probability Calculation

For the face, hair and shoulder region a single Gaussian model in the feature space

is usually sufficient to represent the region properties well. However, the situation is

different for the background region. While a uniform background region can of course

also be represented by a single Gaussian model, such a model is likely to fail in case of a

non-uniform background region. For example, if there is a great color diversity present

in the background, the Gaussian model might adapt itself to a subset of these colors

only. As a result image areas containing one of the remaining colors might be covered

by another region with a more appropriate Gaussian model. On the other hand it is

also possible that the model adapts to the whole set of different colors and becomes

very general. Hence the background region can easily displace other regions due to its

unspecific color model.

To avoid these problems, we use multiple Gaussian models for the background re-

gion. Using the mean-shift segmentation algorithm we identify all different subregions

within the background region. Then for each of these subregions a Gaussian model is

derived. The final probability p1 for every pixel is obtained in the same way as the prob-

ability values p2 when multiple regions are growing simultaneously (Section 3.3.2.2).

It is defined as the maximum among all probability values derived from the subregion

models. Figure 3.9 shows how the background start region is partitioned into sub-

regions after applying the mean shift segmentation algorithm. After the background

region has grown, a new subdivision is performed in the next probability update step.

However, the background region can easily displace other regions due to its multimodal

probability calculation. Imagine, for instance, that a few pixels corresponding to a
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person’s hair are covered by the background region. If these few pixels are turned into

one of the background region’s subregions by the mean-shift algorithm, the hair region

would most likely be replaced by the background region. That is why we define a

minimum subregion area. Only subregions found by the mean-shift algorithm that are

big enough are considered in the probability calculation.

(a) Background start
region

(b) Subregions
within background
start region

(c) Grown back-
ground region

Figure 3.9: The left image shows the image overlaid with the background
start region (green). In the middle image one can see various subregions
detected by the mean shift algorithm. On the right the grown background
region and its subregions are presented. Note that the different subregion
colors serve only as a visualization tool and have no further meaning. For
the regions that we want to segment (as well as their start regions) the
following colors are used throughout this document: face is red, hair is
yellow, shoulders are blue and background is green. The padding frame is
depicted in purple.

3.3.2.4 Incorporation of Shape Information

The last step of the probability calculation is the incorporation of shape information.

This is achieved by weighting the calculated probabilities p1 with the corresponding

shape probability maps described in Section 3.2.1. Since the probability values for p2

are derived from the values of p1 (except for the case when a fixed threshold is used),

the shape information is also included there. In Figure 3.10 the effect of weighting

the probabilities is presented. One can see how a region’s probability is diminished

in improper image areas. For example, the face probability is reduced in outer image

areas, whereas it remains nearly unchanged in the center.
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(a) Image (b) Face probability (c) Weighted face
probability

(d) Image (e) Shoulder proba-
bility

(f) Weighted shoul-
der probability

Figure 3.10: The upper row shows the effect of incorporating shape in-
formation into the probability calculation for the face region. Note how
the probability is reduced in improper image areas. The same effect is
presented for the shoulder region in the lower row.

3.4 Program Flow and Definition of Start Regions

3.4.1 Overview

Before segmenting a certain image region, an initial region, the start region, must be

defined. This initial region serves as starting point for the region growing process.

The only constraint on the input face images is that they must be canonical so that a

person’s eyes lie on predefined positions within the image. These positions are usually

chosen in a way to ensure that the face appears centered in the image. Furthermore,

the face region is the only region that is certainly present in the image. As already

stated in Section 1.1, all other regions may or may not appear in the image. So the

only assumption that we can make at the beginning of the segmentation process is that

there is a face located in the middle of the image.
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According to this the algorithm defines a start region in the image center. This

start region is now used to initiate the region growing process in order to find the face

region. After the growing process has converged, two new start regions are defined.

One start region is located directly above the actual face region and serves as starting

point for the hair region. The other starting region is located directly underneath the

actual face region and corresponds to the shoulder region. Again, a region growing

process is initiated that allows both regions to grow simultaneously. Finally after

convergence of the process, the start region for the background region is defined in the

upper image corners, and a further growing run is started. Now the first segmentation

run is complete. Every region has grown once. During this first segmentation run

we use a rather strict parameter setting for the growing process. We do so because

we want to avoid that regions extend too far and grow into other regions. Having a

first estimation for the regions the result is refined by a second segmentation run. The

parameters for the growing process can be relaxed during this second run, because all

regions in the image now grow simultaneously, competing against each other.

At this point it makes sense to recap the parameters that influence the region

growing process. The previous description of the growing algorithm pointed all involved

parameters out. On the one hand there are fixed parameters that are never changed

during the segmentation process (e.g. τ and θ), on the other hand some of them are

used to steer the region segmentation in a certain way. In this section we focus on

the program flow and therefore are interested in the parameters that guide the region

growing. In the following we also outline the differences in setting these parameters for

the individual regions.

Definition of Start Region Of course the highest influence comes from the defini-

tion of the start region, since the region growing algorithm tries to extend this initial

region to image areas with similar color and texture respectively. Hence defining suit-

able start regions is crucial, because even small deviations from the desired start point

for a certain image region can cause the region growing process to fail in finding this

region. Fortunately we have some prior knowledge about the scene which makes the

definition of appropriate start regions much easier. The definition of a start region is

also the point where a region is assigned a certain label. Again, this is possible because

of knowledge about the scene shown in the image.

In contrast to this it is also possible to use low-level segmentation techniques, which
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involve no knowledge about the scene, at first. Afterwards one can apply the region

growing process to the regions found in the previous step in order to refine the seg-

mentation. An early version of our segmentation tool was based on such an approach.

For obtaining the initial segmentation we used the ROI-SEG algorithm described in

Section 2.4.4. Beside the fact that defining the start regions using prior knowledge is

much more robust, a further disadvantage of this approach is the additional labeling

effort. Here, contrary to the knowledge based segmentation where the labeling is inher-

ent in the segmentation process, labels must be assigned to the segmented regions in an

extra step. Therefore information about the regions’ topology and with it knowledge

about the scene is needed. So, while the first approach uses knowledge right from the

beginning, the latter involves knowledge only in the labeling step, performing the seg-

mentation step completely free of knowledge about the scene. Examples for the latter

method are the expert system described in Section 2.6.1 and the AdaBoost classifier

outlined in Section 2.6.2. As will be shown in the Chapter 4, our method is superior

to methods involving knowledge only in the labeling stage.

Feature Space The features used for segmentation have a high effect on the result

too. We use color as well as texture information, but not for all regions. While the

three color channels L, a and b are used for every region, the texture information is

only provided when segmenting the hair region. Experiments showed that for the face,

shoulder and background region color information alone is sufficient, and moreover

texture information is rather obstructive for these regions. Especially the face region

suffered from adding texture as additional feature, either leaving large areas around

eyes, nose and mouth uncovered due to increased texture in theses regions, or adapting

itself to these regions and hence growing into the also richly textured hair region.

A performance gain by using texture as an additional feature was only achieved for

the hair region. The hair of most people shows a rather dense texture (exceptions, for

instance, are people with hair so dark that individual hair streaks are no longer visible

in the passport photograph). This information can be used in cases where a person’s

hair color is very similar to the color of the background, e.g. an elder person with gray

hair in front of an also gray background region (gray is an often chosen color for uniform

backgrounds). Another observation regarding hair is its frequently shaded appearance.

In many cases the hair region contains several shades from the same color depending on

hairstyle and reflectance properties. Imagine, for example, an image showing a woman
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with dyed hair. Often the hair roots have a different (the original) color than the rest

of the dyed hair. But also the color of natural hair can vary significantly within an

image. To reduce the influence of these color shades, the four features used for the

segmentation of the hair region are scaled discriminatively.

Feature scaling is a technique commonly used in data clustering algorithms. The

idea is that different features are differently important for clustering. Because of that

a weight factor is assigned to each feature according to its importance. Features with

higher weights have greater importance than features with lower weights. A detailed

description of feature scaling can be found in [19] and the references mentioned therein.

The authors describe a technique called Adaptive Feature Scaling, which improves

the performance of clustering gene microarray data. Their algorithm also takes into

account that a single feature can have a different importance for individual clusters,

and therefore every feature has several weight factors, one for each cluster.

In our case it is sufficient to use feature scaling only for the hair region. For

segmenting the other regions only color information is used, and, as already mentioned

in Section 3.2.2.1, we treat the luminance component L as equally important as the

color components a and b. For the hair region the texture feature is assigned a weight

factor of one, i.e. its value ranges from 0 to 255 just as the values for the three color

features normally do. The color channels a and b are multiplied with a weight factor of

0.5, hence their range is halved. Since the luminance component L is mainly responsible

for the shaded appearance of hair in images, its importance is even further reduced by

assigning a weight factor of 0.25.

Shape Probability Maps The shape probability maps also play an important role,

as they can severely influence the segmentation result. Although they are pre-calculated

we can manipulate the region growing process with their help. This is achieved by

choosing the most suitable probability maps for the hair and background region based

on an estimation of the hairstyle after the first segmentation run. Additionally the maps

can be multiplied with a weight factor in order to increase or decrease their influence.

Experimentally we found the following suitable weight factors for the individual regions:

2 for face, 1 for hair, and 4 for shoulder as well as background region. While the shape

information has medium influence on the face region, the effect on the hair region is

rather low, and the effect on the shoulder and background region is rather high. This

comes from the fact that hair can have various different shapes due to the variety of
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possible hairstyles. So the contribution of shape information to the first segmentation

run is cut back for the hair region. In contrast to this the shoulder and background

region must be limited more strongly to avoid the shoulder region to extend to upper

image regions and the background region to grow into the center.

Minimum Background Probability Parameter The region growing process uses

a probability ratio that indicates likeliness to which of two different regions a pixel

belongs to. The two probability values are derived from two Gaussian models in the

feature space, one for each of the competing regions. The first region, which is the

region that is currently growing, is considered to be the foreground region, the second

region is the background region. Note that in this context the term background region

does not refer to the actual background region in the image, but instead it stands for

a growing region’s opponent. One can specify a value for the minimum background

region probability in order to make it more or less difficult for a region to grow. A high

value for the minimum background probability makes it harder for a region to expand,

and a low value simplifies the growing process.

Usually a minimum background probability is only specified if there is only one

region currently growing. In this case it can be seen as a threshold that controls how

strong the region grows. For the face, shoulder and background region the same value

is used. However, for the hair region a smaller value has to be used, because the hair

region uses a fourth dimension in the feature space (three color channels and texture).

In the case of letting all regions in the image grow simultaneously the minimum

background probability can be set to minus infinity, which means that the background

region probability is purely derived from the feature space models, as described in

section Section 3.3.2.2. This allows each region to grow freely from any threshold, only

restricted by the other competing regions.

Thus with the help of the minimum background probability parameter we can

control the growing behavior of various regions. As previously mentioned, we want

the regions to grow very conservatively in the first segmentation run, and allow them

to compete with each other in the second run. This can be achieved by setting the

minimum background probability parameter appropriately.
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Probability Calculation Mode Finally one can choose between single and multi-

modal probability calculation for the growing process of a certain region. If single modal

probability calculation is enabled, only one Gaussian model is calculated in the feature

space. Multimodal probability calculation uses several Gaussian models, and the final

probability is the maximum of all the probabilities derived from these Gaussian models.

The only region in the image that usually grows multimodally is the background region.

For all other regions one can assume at least a certain degree of homogeneity, so one

Gaussian model in the feature space is sufficient. But for the background region this

assumption is unrealistic, since the image background is arbitrary. This ranges from

completely uniform to very cluttered backgrounds.

3.4.2 First Segmentation Run

In order to decrease the run time of our method the segmentation is carried out using a

multiresolution approach. First the geometrical resolution of the input image is reduced

and the segmentation process is applied to this smaller image. The result of this first

step is then scaled up to the original resolution again and serves as starting point for a

second segmentation process. Since the image is already roughly segmented, this second

run is quite fast, although the image’s full resolution is used. After this overview that

should help understanding the main concept of our segmentation tool the following

sections will describe the whole program flow in detail.

3.4.2.1 Background Uniformity Test

Before actually starting with the face region, which is the only region surely present in

the image, we try to estimate whether the background is uniform or not. We define a

test region located in the upper image where usually the background is located. Then

the standard deviation of the pixels’ color values within the test region is checked. If

it is small enough, the background region is considered to be uniform and we start

with the segmentation of the background region instead of the face region. We do so

because if the background is uniform, it is very easy to segment, even without any

knowledge about the other regions. And later, when segmenting the other regions,

already knowing the background region is a big benefit, especially when defining the

hair start region. The test region serves as the starting region of the background

growing process. The only difference to a normal background region growing process
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is the fact that in this case multimodal probability calculation is turned off, because

we assume a uniform region. After this first step we have an estimation of whether

the background is uniform or not, and, if the background seems to be uniform, the

corresponding region in the image. The background uniformity test is visualized in

Figure 3.11.

(a) Test region in-
dicates non-uniform
background.

(b) Test region in-
dicates uniform back-
ground.

(c) Grown uniform
background region

Figure 3.11: Background uniformity test. In the left image the test
region indicates a non-uniform background. In contrast to this the back-
ground seems to be uniform in the middle image. We let grow the uniform
test region and obtain an estimation of the true background region (right
image).

3.4.2.2 Face Region

Now the algorithm tries to segment the face region. Figure 3.12 shows the corre-

sponding start region located in the image center. To increase the performance of our

algorithm, we use a skin detector based on two statistical Gaussian mixture models

in color space [31]. One model represents the skin class, and the other the non-skin

class. Using Equation (3.11) with probabilities derived from these two models one can

classify a pixel as skin or non-skin. The classification result depends on the specified

threshold T . The higher this threshold is the less skin pixels will be detected:

P (c|skin)

P (c|nonSkin)
> T (3.11)

Our algorithm now applies the skin detector to the face start region. Pixels that are

labeled as non-skin are removed from the start region. In doing so we gain robustness in
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cases where parts of the face are covered, e.g. by glasses or a beard. If such outlier pixels

were not removed, we would obtain a very bad initial face color model for segmentation,

so that the face region would easily grow into unsuitable image regions. Especially the

hair region would often be displaced by the face region, since the color of hair and

beard are usually the same.

But one problem remains. If a person’s skin appears very unnatural in an image,

for example due to bad illumination conditions, the fact that we only have predefined

color models can lead to high false positive or false negative rates. Also people can

have different ethnicity, and the predefined color models might not be well suited for

all possible ethnicities. Luckily the classification result can be tuned by the threshold

value. Furthermore we already know where we can expect skin pixels in an image,

although we do not know their exact positions. The idea is now to start with a very

high threshold value, thus only very few skin pixels will be detected. Then the threshold

is lowered until a sufficiently large portion of the start region is classified as skin. In

the worst case the skin appearance in the image is so bad that the threshold has to be

lowered to zero. The result is that all pixels in the start region are classified as skin,

thus the whole start region is used. Having now defined the face start region properly

we can execute the growing algorithm in order to obtain a first version of the face

region.

(a) Entire face start
region

(b) Skin inside face
start region

(c) Skin inside face
start region

Figure 3.12: The face start region is located in the image center. Applying
the skin classifier gives us the final start region. While the changes caused
by the classifier are minor in the middle image, the right image shows a
case where the start region is reduced significantly by the the classifier.
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3.4.2.3 Hair and Shoulder Region

The next step is the definition of start regions for the hair and shoulder region. We

know that hair is usually located above the face. Special cases are bald and half-bald

people, which have no hair or only little hair near the ears respectively. The position

of the shoulder regions is underneath the head, in the left and right image corner. To

find suitable start regions, we use the already segmented face region. But we must take

into account that this first version of the face region is a rather conservative estimation

of the true face region. Recall that we want to avoid the case where a region grows

into another region in the first segmentation run. Hence the parameters during the

first segmentation run are quite strict, preventing the face region to grow into image

regions with moderate color dissimilarities. As a result the face region usually does not

cover the entire true face region after the first segmentation run, because the border

zones have slightly different colors in most cases. Especially the border zone between

face and hair, where the hairline starts, is often missed by the first face segmentation

run.

To overcome this problem, we refine the segmented face region. To do so, we

calculate the probabilities for all image pixels according to the current face color model,

that is a Gaussian model derived from the pixels of the current face region. Next

we estimate the distribution of the probability values within the current face region

by calculating their mean and standard deviation. Finally we enlarge the segmented

face region by adding pixels that have a probability value greater or equal than the

mean probability minus the standard deviation. Figure 3.13 shows the effect of this

extension process. The enlarged face region is much closer to the border of the true

face region than the originally segmented region. However, in some cases the segmented

region is extended too far, for example crossing the border between face and hair and

stopping amid the hair region. Fortunately this situation is not that harmful, because

the enlarged region is only used for defining start regions for segmenting the hair and

shoulders. In most cases even a too far extended face region leads to suitable start

regions. But to be on the safe side we check the size of the enlarged region. If it is too

large compared to the original face region, we treat it as outlier and use the originally

segmented face region instead.

Now that we have prepared the face region we calculate its convex hull. Note that

there can be some outlier face pixels located around the face region. To avoid distortions
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(a) Face region (b) Face probability (c) Refined face re-
gion

(d) Face region (e) Face probability (f) Refined face re-
gion

Figure 3.13: The left column shows the grown face regions. The middle
column shows the probabilities derived from the current face color model.
The higher the probability of a pixel is the whiter it appears in the image.
The right column shows the refined face regions. While the changes between
the grown face region and its refined version are very small in the first
example (upper row), the second row shows a case where refining the face
region has significant influence.

caused by these pixels, we use only the largest part of the face region for calculating the

convex hull. The portion of the convex hull that lies above the eyes and is not already

covered by another region (e.g. uniform background region) is then used as start region

for the hair region. To define the shoulder start region, we use three points. One is the

lower left image corner, one is the lower right image corner, and the last one is a point

located approximately in the middle of the person’s neck. One has to bear in mind

that the two corner points must not necessarily be the corner pixels, since the image

corners might be covered by a padding frame. The third point is calculated using the

lower boundary of the extended face region. It lies centered between the left and right

image border, slightly above the enlarged face region’s lower boundary. Defining the

third point in this way gives us robustness in cases where the face region reaches all the
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way down to the lower image border. Finally that part of the spanned region that is

not already covered by the extended face region or any other region forms the shoulder

start region. Both start regions are shown in Figure 3.14.

(a) Non-uniform
background

(b) Uniform back-
ground

Figure 3.14: Hair and shoulder start regions

The next step depends on the background uniformity estimated at the beginning of

the segmentation procedure. If the background seems to be uniform, we directly jump

to the second segmentation run, which means that all regions currently present in the

image grow simultaneously with relaxed parameters. This is described in Section 3.4.3.

If the background seems to be non-uniform, the hair and shoulder start regions are

extended by the growing algorithm. The two regions grow simultaneously to avoid that

one region grows into the other due to color similarity. Imagine, for instance, a person

with black hair wearing a dark pullover. If the hair region extends at first, it could

easily grow into the shoulder region and even displace it completely. Vice versa the

shoulder region could grow up into the hair region. Although it is very unlikely that

the entire hair region would be displaced by the shoulder region in the latter case, both

scenarios probably lead to a wrong estimation of the person’s hairstyle.

To estimate the hairstyle, we use the pre-calculated hair masks that have already

been described in Section 3.2.1. The classification process is exactly the same. After

the growing process for hair and shoulder regions has finished, we compare the grown

hair region to every hair mask by a logical XOR-operation. The hair mask that results

in the smallest overlap error determines the hairstyle class (short, medium or long hair),

and with it the shape probability maps for the hair and background region that are

used in all further growing processes.
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3.4.2.4 Background Region

Now we can define the starting region for the background region. As already men-

tioned, this starting region is located near the upper image corners. In contrast to the

starting region definition used in the very first step of the segmentation procedure, the

estimation of background uniformity, this time the starting region reaches down to the

lower image corners, but is only allowed to cover yet unlabeled pixels. To improve the

robustness, the background starting region is cut back slightly at borders with already

segmented regions. This is carried out using morphological processes. Figure 3.15b

shows the background start region.

However, there are cases where no background is visible in the image due to a very

voluminous hairstyle. But in the most of such cases the hair region does not completely

cover the corresponding image region after the first segmentation run because of the

stricter parameter setting. As a result some of the yet unlabeled hair pixels are defined

as background start region, and the background and hair region start competing against

each other for the same region, namely the hair region. To gain robustness for this kind

of images, we define a minimum area for the background start region. If the start region

is smaller than this threshold, it is very likely that it only consists of outlier pixels, and

therefore the start region is removed. This means that no background region will be

detected.

(a) Face, hair and
shoulder region

(b) Face, hair and
shoulder region with
background start re-
gion

Figure 3.15: The left image shows the face, hair and shoulder region after
letting hair and shoulder region grow. Note that the regions do not entirely
cover the true image regions due to the rather strict parameter setting
during the first segmentation run. The right image shows the background
start region.
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At this point we have finished the first estimation of the regions present in the image.

We have segmented the face region and, dependent on the background uniformity, start

regions or even estimations for the other regions. If we assume a uniform background,

the algorithm has segmented the background and face region, and has also defined start

regions for hair and shoulder. If the background seems to be non-uniform, the algorithm

has segmented the face, hair and shoulder region, and has defined a background start

region (except for cases where the background is entirely covered by hair). In both

cases we are now ready for the second segmentation run, in which all regions currently

present in the image grow simultaneously.

3.4.3 Second Segmentation Run

In the second run the algorithm tries to refine the rather coarse first image segmen-

tation by letting the different regions compete against each other. Therefore we relax

the parameter setting by lowering the minimum background probability parameter as

described in Section 3.4.1. As already mentioned, we could set this parameter to mi-

nus infinity so that there is no additional value constraining the competing regions.

However, doing so can easily result in regions growing into improper image areas, be-

cause a minimum background probability value of minus infinity enforces a complete

segmentation of the image. Although this is the desired behavior of a segmentation

algorithm, we have to be careful at this stage of our method. Imagine, for example,

a small object with reddish color similar to the face region located somewhere in the

background. Furthermore let’s assume that the remaining background has a completely

different color, as for instance gray. On the one hand the probability that this small

object belongs to the background would be very low due to color dissimilarity. On

the other hand the probability for this region being a face region would also be low,

since it is located in an inappropriate image area. Setting the minimum background

probability parameter to minus infinity would force the algorithm to assign a certain

label to the small object in the background. The algorithm would choose the label

with the highest probability among all labels, regardless of how small this maximum

probability actually is. As a result regions that are very tough to segment correctly are

assigned a false label, instead of just marking them as unknown. So in our example it

could happen that the small object is labeled as face, although it would be much more

reasonable to label it as unknown for now. Thus we use a very low, but finite value
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for the minimum background probability parameter during the second segmentation

run. We ignore tough regions that have only a low probability for any of the labels at

the moment and deal with them later in the post-processing stage. There we can use

knowledge about the regions’ constellation to assign labels to all still unknown image

regions.

Note that during this second segmentation run some of the regions may disappear.

This can happen in cases where a region is not actually present in the image, a common

example are shoulders that are completely covered by hair. After the first segmentation

run the upper part of the true hair region might be correctly marked as hair, whereas

the lower part might be wrongly labeled as shoulders. This is a direct result of the way

we define the hair and shoulder start region. Now if the hair region is strong enough

during the second segmentation run, it can entirely displace the false shoulder region.

Unfortunately in the majority of cases such false shoulder regions can resist and do not

vanish. For this reason we have to check the shoulder regions in the post-processing

stage and correct the false ones.

The last step before the post-processing stage is up-scaling. At this point we have

a segmented image on reduced resolution. Hence we scale the current result up to the

original image resolution, and let then grow all regions once more, just like we did in

the previous step. Finally, after the growing process has converged, we have a refined

version of our previous result (Figure 3.16). This segmentation result is now forwarded

to the post-processing stage.

(a) Image overlaid
with regions

(b) Pure regions

Figure 3.16: Segmentation result after second segmentation run
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3.5 Post-Processing

The post-processing stage enhances the segmentation result by removing or relabeling

of regions and examining yet unlabeled image areas. To do so, we again use prior

knowledge about the scene in the image. One can think of the post-processing stage

as being like an expert system, consisting of several rules. Some of them are general

and are valid for the whole image, whereas others are specific to certain regions. All

the rules are checked consecutively and, if suggested by the current rule, corrections

are made. In the following rules description when we speak of regions we mean single

regions, that is although regions belong to the same label they are treated separately

(e.g. the left and the right shoulder region, if not connected, are considered two separate

regions).

3.5.1 Morphological Processing and Small Region Removal

The first post-processing step consists of morphological processing and small region

removal. This rule is general and therefore applied to the whole image. First every single

region is morphologically opened using a small disk as structure element. The main

purpose of this operation is to eliminate misclassifications along region borders. Due to

color similarity it is quite common that the borderline between face and background or

face and shoulders is labeled as hair. In other cases the face region extends along the

borderline between shoulder and background region. Morphological opening is perfectly

suited to remove such unwanted disturbances. However, one must pay attention when

dealing with images showing a person with short hair. Although correctly segmented,

morphological opening could easily remove the entire hair region.

But how to distinguish between a properly detected short hair region and a dis-

turbing hair region along the borderline between face and background? The decision

is based on the experience that in most cases the hair region of people with short hair

reaches roughly down to the ears’ onset, which lies approximately on one line with

the eyes in a canonical image. And because the eyes’ positions are known from the

canonization process, the decision is based on their y-coordinate. The part of the hair

region that lies above the eyes is stored temporarily as a backup to be able to restore it

after morphological opening. So even if the hair region has vanished due to the opening

process, the valid part of it can be restores with the backup mask. The minor drawback
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that arises of this morphological step is the loss of finer structures, especially in the

hair region (e.g. hair ends sticking out into the face, shoulder or background region).

The second part of the first pre-processing step is the removal of small regions. The

regions we want to detect in our face images are rather big, hence very small regions

are likely to be either the result of noise present in the image or simply misclassified

regions (e.g. eyes labeled as hair because of dominant color similarity). In both cases

we can reject such regions and label them as unknown for now. The effects of the first

post-processing step are visualized by Figure 3.17.

(a) Image (b) Segmenta-
tion before first
post-processing step

(c) Segmentation
after first post-
processing step

(d) Image (e) Segmenta-
tion before first
post-processing step

(f) Segmentation
after first post-
processing step

Figure 3.17: Two examples showing the effect of morphological processing
and small region removal

3.5.2 Removal of Improbable Background and Face Regions

The second post-processing step is the removal of improbable background and face

regions. A valid background region must have contact with the upper, left or right
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image border, that means the actual image border or the corresponding padding frame.

There are only a few, extremely rare cases where this definition fails. For example,

images of people with a very unusual hairstyle can contain a valid background region

that is completely surrounded by the hair region and has no contact to the image

border. Nevertheless our test database does not contain such a special case, and in

consideration of the rareness of this kind of cases we ignore them.

Proper face regions must have a centroid lying within a predefined region in the

image center. This centroid test region is designed in a way so that the main face region

as well as the ears and the neck can pass the test, but outlier face regions detected in

the background are rejected. Figure 3.18 illustrates the second post-processing step.

(a) Image (b) Segmenta-
tion before second
post-processing step

(c) Highlighted up-
per, left and right im-
age border

(d) Segmenta-
tion after second
post-processing step

(e) Image (f) Segmenta-
tion before second
post-processing step

(g) Highlighted cen-
troid test region

(h) Segmenta-
tion after second
post-processing step

Figure 3.18: The upper row shows how improbable background regions,
located between face and hair/shoulder region, are removed. The lower row
illustrates the removal of an outlier face region located above the head.
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3.5.3 Correction of Nested Regions and Removal of Improbable Hair

and Shoulder Regions

The next post-processing step is the correction of nested regions and the removal of

improbable hair and shoulder regions. A nested region is a region that is completely

surrounded by another region. As one can imagine, such regions do not occur in usual

face images, except for ears that are enclosed by hair, the whole face surrounded by

hair (due to long hairstyle) or skin enclosed by the shoulder region (due to a special

blouse). As already mentioned in the description of the second post-processing step,

the rare case of a background region surrounded by hair is ignored. A similar case,

shoulder region surrounded by hair, is also neglected because of its rarity. All in all

the following cases of nested regions are treated as segmentation errors and hence are

relabeled according to the surrounding region’s label:

• Face region entirely enclosed by the background region

• Hair region entirely enclosed by the face, shoulder or background region

• Shoulder region entirely enclosed by the face, hair or background region

• Background region entirely enclosed by the face, hair or shoulder region

• Unknown region entirely enclosed by any other region

In detail the nested region correction works as follows. The algorithm checks every

single region and examines its neighborhood. It starts with the regions labeled as

background and then processes the other labels in the following order: shoulder, hair,

face and unknown. It is important that the unknown regions are processed last, because

under some circumstances a nested region is labeled as unknown. Such unknown regions

have weaker constraints that allow them to become relabeled more easily. That means

that a nested region labeled as unknown at first can be assigned a real labeled in the

final run, where all unknown regions are examined.

First the current region’s neighboring regions must be determined. In order to get

the neighbors the region is subtracted from its morphologically dilated version. This

gives us the region’s contour which helps us to get the labels of all neighboring pixels by

a simple logical AND-operation of the contour and the labeled image. Pixels that are

yet unlabeled (unknown) and pixels belonging to the padding frame are removed from
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the set of neighboring pixels, because they don not hold any significant information

for the process of relabeling nested regions. Unfortunately nested regions are often

surrounded by a lot of unlabeled pixels, and only a few of their neighboring pixels

have a real label. For the purpose of making the algorithm more robust the contour

is allowed to grow from a width of one pixel up to a certain thickness. After every

contour growing step the ratio between reliable neighbors, that is neighboring pixels

that have a real label, and neighboring pixels labeled as unknown or padding frame is

checked. If the neighboring pixel set contains enough neighbors that have a real label, it

is marked as reliable and the growing process stops. An additional set containing only

the neighbors that are directly adjacent to the region currently examined (determined

during the first run of the contour growing process) is also stored, because these direct

neighbors are needed later. As one can imagine, if the contour width is greater than

one pixel, it is possible that the neighboring pixels set contains pixels with the same

label as the region (if, for example, two nested regions of the same label are only one

pixel apart). Such pixels having the same label as the currently examined region must

also be removed from the set to ensure the correct functionality of our algorithm.

Now that we have a region’s neighborhood information we further examine the

region in order to check whether the region is an invalid nested region that needs

relabeling or not. First we verify that the set containing the neighboring pixels is

reliable. Only if we can trust the neighborhood information, the relabeling process

continues with the next step, the investigation of the currently examined region’s size.

Sometimes we have to deal with rather large regions in the image that have only

one other neighboring region. For example, one can think of an image showing a person

with long hair, where the background region is completely separated from the other

regions by the hair region. Although they have only one neighbor such valid regions

must of course not be relabeled. Luckily these valid regions are usually adjacent to the

image border. If a region adjoins to the image border, it is not relabeled, no matter

how many neighboring regions it has.

This additional verification step before relabeling nested regions increases the ro-

bustness of the relabeling algorithm. In some cases the segmentation algorithm fails to

correctly classify the border zones between regions and labels them as unknown. This

can lead to the situation that one region, let’s say region A, directly adjoins to a second

region B, but between A and a third region C lies a border zone of unknown pixels.
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So we only find pixels of region B, but no pixels of region C in the neighborhood of

region A. If there are enough pixels of region B adjacent to region A, the neighbor-

hood information is marked as trustable and region A would be relabeled as region B,

although region A should ideally have two neighbors, namely region B and region C.

The problem of missing a region’s neighbor particularly affected the shoulder regions,

for example, when there was a zone of unknown pixels between the shoulder and face

region, but not between the shoulder and background region. Without the verification

step such a shoulder region would most likely be relabeled as background region. Note

that the relabeling criterion based on a region’s vicinity to the image border does not

apply to unknown regions. Since we do not have any information about the true label

of an unknown region, such regions are assigned the most probable label that we can

find, which in case of nested regions is the label of the surrounding region. Figure 3.19

visualizes the correction of invalid nested regions.

(a) Image (b) Segmentation
with nested regions

(c) Segmentation af-
ter correction

(d) Image (e) Segmentation
with nested regions

(f) Segmentation af-
ter correction

Figure 3.19: Two examples in which invalid nested regions are corrected

For the removal of improbable hair and shoulder regions a region’s neighborhood

must be examined too. Because of this the removal step is carried out together with
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the previously described correction of nested regions. Hair regions with no connection

to the face make no sense and are obviously outliers. If possible, such hair regions are

relabeled according to the rules for correcting nested regions, else they are labeled as

unknown.

Improbable shoulder regions are regions that adjoin the hair region and have similar

color. Under certain circumstances hair can be mislabeled as shoulder region in images

where long hair almost completely covers the shoulders of a person. If this is the

case, we usually have to deal with a correctly segmented and labeled upper part of

the hair region and a misclassified lower part labeled as shoulder region. To decide

whether a shoulder region has to be relabeled as hair region or not, we must examine

the neighborhood of the shoulder region as well as the similarity between the shoulder

and the hair region. Only shoulder regions that are directly adjacent to a hair region

can be meaningfully relabeled and take part in the similarity test. If a shoulder region

also passes this test, i.e. its color and texture is similar to the color and texture of

the hair region, the shoulder region is changed into a hair region. In most cases when

it is necessary to relabel such improbable shoulder regions the true shoulder region is

also visible in the image, even though only small parts of it are present at the lower

image border. To find these true shoulder regions, the region growing process is once

more initiated with the corresponding start region. But this time the region is only

allowed to grow in yet unlabeled pixels near the lower image border. We choose the y-

coordinate of the centroid of the former shoulder region as limit. Only unlabeled pixels

below this limit are considered in the growing process. The removal of improbable hair

and shoulder regions is depicted in Figure 3.20.

3.5.4 Labeling Unknown Regions

The fourth and last post-processing step deals with regions that are still unlabeled.

Since nested regions have already been corrected, these unknown regions are border

regions between other, labeled regions. This means that they have more than one

neighboring region, and we have to decide for every pixel which label among the labels

of all neighbor regions is most suitable. From our experiments we know that such

border regions are rather elongated. An example is the common case of an unlabeled

region extending along the border line between the face and the hair region, a result of

the morphological process described in section Section 3.5.1. To classify the unknown
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(a) Image (b) Segmentation
with improbable hair
regions

(c) Segmentation af-
ter relabeling

(d) Image

(e) Segmentation
with improbable
shoulder regions

(f) Segmentation af-
ter relabeling

(g) Segmentation
with new shoulder
start region

(h) Segmentation
with newly grown
shoulder region

Figure 3.20: In Figures 3.20a-3.20c an example of removing improbable
hair regions is presented. Figures 3.20d-3.20h show a case where the shoul-
der regions are very similar to the adjacent hair region, and therefore are
relabeled as hair. Afterwards a new shoulder region segmentation process
is initiated.

regions, the neighboring pixels of every unlabeled pixel are examined. Of course just

neighboring pixels that already carry a valid label are considered. If there are only

pixels of one certain label among them, the decision is easy and the unknown pixel is

assigned this sole label. But if there are more valid labels available, we must choose the

most probable one. In order to do so a probability map is calculated for all four labels

as specified in section Section 3.3.2.1. Each of the four maps contains the probability

values for one label based on the image content. The unknown pixel is now assigned the

label that, among all neighboring labels, has the highest value at the pixel’s position

in its probability map.

One last thing to mention is that several iterations through the image pixels are

necessary for a complete elimination of unlabeled pixels. The reason for this is the
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sequential processing of the unlabeled pixels. We start in the top left image corner, go

down the first column, then the second column and so on until we reach the bottom

right image corner. If the segmented and labeled image would be updated immediately

after an unknown pixel has been changed, outflow effects could occur. To avoid such

effects, an update is performed only after all unlabeled pixels have been processed.

The drawback of this approach is that several runs are necessary to assign all unknown

pixels a valid label.

Finally the previous post-processing step, the correction of nested regions, has to

be carried out once more. This is necessary, because it is not guaranteed that all nested

regions were revised during the first correction run due to the possibility of unreliable

neighborhood information caused by unlabeled pixels (see Section 3.5.3 for details).

Now that all pixels have been assigned a certain label any invalid nested regions still

present can be eliminated. Usually there are only a few, if any, nested regions left, so

this time the correction step is quite fast. Note that reversing the order of the last two

post-processing steps, that means first assigning a certain label to all unknown pixels

and then correcting nested regions, would of course prevent us from having to call the

correction step twice. However, the image segmentation should be as good as possible

when assigning labels to unknown pixels solely based on information about neighboring

regions. Hence we first refine the segmentation by correcting nested regions, then all

unknown pixels are assigned a certain label, and lastly still existing invalid nested

regions are revised.

3.6 Background Classification

The final background classification is based on the background region’s standard devi-

ation as well as on the gradient magnitude within it. As already mentioned, we want to

determine whether the background is uniform or not. The principle is much the same

as for the first background uniformity estimation. The only differences are that we now

have the segmented background region instead of just a test region, and that we also

take gradient information into account. The aim of the first uniformity information was

to aid the segmentation process. So the most important criterion was color uniformity.

Slight edges appearing in the background were only of minor importance, so that we

could neglect them. But now we have to decide whether the background in an image

is uniform, i.e. it has a uniform color and contains no edges, or not.
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Before examining standard deviation and gradient magnitude the background re-

gion is slightly cut back, because border zones between the background region and

other regions can easily lead to misclassification. Especially near the hair region there

are often distortions, like hair ends sticking out into the background region. The seg-

mentation algorithm fails to correctly label such fine structures as hair and marks them

as background. To avoid that the background is classified as non-uniform due to these

distortions, the background region is pruned more strongly near the hair region.

std(BG) > T1 ⇒ background is non-uniform (3.12)

P = {pixel p(x, y) | (p(x, y) ∈ BG) & (|∇p(x, y)| > T2)}

|P | > T3 ⇒ background is non-uniform
(3.13)

After preparing the background region we examine the standard deviation within

the reduced region. If it is greater than a certain threshold, the background is classified

as non-uniform (Equation (3.12)), else we further check the gradient magnitude. In a

uniform background region the number of pixels with a gradient magnitude greater than

a threshold must not exceed a certain limit (Equation (3.13)). This definition allows

a few outlier pixels with high gradient magnitude in a uniform background region, so

that we gain some robustness against noise and distortions near region borders.

3.7 Discussion

In this section we have described our knowledge based segmentation algorithm. Seg-

mentation is achieved by letting well defined start regions grow using gradient, color,

texture and shape information. The proposed method integrates prior knowledge when-

ever possible, in particular in the definition of start regions, the region growing process

and the post-processing stage. The main advantage of our algorithm over methods that

also use domain knowledge, like the expert system described in Section 2.6.1, is that

we incorporate knowledge right from the beginning of the segmentation process. The

expert system approach performs low-level segmentation first, and then uses a set of

rules in order to assign labels to the segmented regions. In contrast to this our method

already assigns labels to regions when defining their start regions, so no additional

labeling effort arises.
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In the next chapter we will present the results obtained with our algorithm. Fur-

thermore we will compare them to results achieved by the expert system (Section 2.6.1)

and the AdaBoost classifier (Section 2.6.2), and it will be shown that our method out-

performs both.



Chapter 4

Results

Contents

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Error Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 Overview

In this chapter we present the results of our algorithm. First in Section 4.2 we outline

the dataset used for evaluating the performance of our algorithm as well as the perfor-

mance of the expert system and the AdaBoost classifier described in Section 2.6.1 and

Section 2.6.2 respectively. Afterwards we define several error metrics (Section 4.3). In

Section 4.4 the achieved results are shown, and in Section 4.5 we present a detailed

comparison of the three methods. Finally some qualitative results of our algorithm are

depicted in Section 4.6.
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4.2 Dataset

To obtain the results we used a data set that consists of 320 face images. One part

of these images was taken from the Caltech face database [5], the other portion are

proprietary images provided by Siemens PSE Graz, Biometrics Center. 197 of the 320

face images show a uniform background, while the background in the remaining 123

images is non-uniform. Since homogeneous backgrounds can be segmented more easily

than non-homogeneous ones, the segmentation error is usually lower for images with a

uniform background. All images have been canonized, as this is the only constraint on

the input passport photographs. Furthermore we received hand labeled ground truth

data for all images from Siemens PSE. These annotated images allow us to calculate

a variety of error metrics on our segmentation results, and to compare our algorithm

to other methods. The annotated images also enable us to easily extract potential

padding frames and take them into account when segmenting an image.

4.3 Error Metrics

4.3.1 Per Region Error Metrics

The error metrics described in this section are defined in [2]. For each segmented region

we use two error rates, the false positive and the false negative rate. They are defined

as follows:

• False positive rate (FP): The false positive rate describes the error of seg-

menting a certain region in places where this region actually does not appear in

the ground truth data.

• False negative rate (FN): The false negative rate describes the error of not

segmenting a certain region in places where this region actually does appear in

the ground truth data.

However, one has to bear in mind that precise pixel wise segmentation is a very

hard task, even for a human. One just has to think of border zones between regions.

Determining uniquely to which one of two neighboring regions a border pixel belongs

can be very challenging. Because of this the error rate calculation tolerates a small
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uncertainty at region borders. This is achieved by enlarging the segmented and the

hand labeled region respectively, like shown in Figure 4.1. For the false negative rate

the segmented region has to be enlarged prior to error calculation, for the false positive

rate the size of the hand labeled regions has to be increased. As suggested in [2], we

choose an uncertainty in the region boundaries of 0.005× imageWidth.

Figure 4.1: Border uncertainty. The segmentation result is drawn in red,
the ground truth is plotted in black. Errors are represented by shaded
areas. The figure is taken from [2].

After adjusting the corresponding region size the two error rates can be calculated

with the following formulas. They represent the relative error per region:

FP =
numRegionFalsePositiveP ixels

max(numRegionPixelsGroundTruth, 0.01× imageArea)
× 100 [%] (4.1)

FN =
numRegionFalseNegativeP ixels

max(numRegionPixelsGroundTruth, 0.01× imageArea)
× 100 [%] (4.2)
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The denominator in Equations 4.1 and 4.2 has a lower bound of 0.01 × imageArea.

This saturation term prevents the error rates from shooting up for very small regions,

i.e. regions that consist of only a few pixels. Otherwise every single wrongly labeled

pixel would dramatically increase the error rate for such tiny regions.

4.3.2 Overall Image Error Metrics

The error rates defined in Equations 4.1 and 4.2 are calculated per region. Additionally

we use the following three error metrics for determining the segmentation error on the

whole image:

misclassified =
numMisclassifiedP ixels

imageArea
× 100 [%] (4.3)

unclassified =
numUnclassifiedP ixels

imageArea
× 100 [%] (4.4)

totalError = misclassified+ unclassified [%] (4.5)

4.4 Quantitative Results

In this section we compare our method to the expert system and the AdaBoost classifi-

cation algorithm outlined in Section 2.6.1 and Section 2.6.2 respectively. We evaluated

all three approaches on the dataset described in Section 4.2 using the error metrics

defined in the previous section.



4.4. Quantitative Results 75

4.4.1 Expert System

(a) Images with uniform background

(b) Images with non-uniform background

(c) All images

Figure 4.2: Expert system error histograms
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Mean [%] Std [%] Min [%] Max [%]

Face
FP 4.51 5.67 0.00 31.29
FN 4.44 3.10 0.21 17.45

Hair
FP 12.16 11.11 0.00 69.43
FN 33.81 29.87 0.09 100.00

Shoulder
FP 8.64 13.93 0.00 104.31
FN 15.38 20.11 0.00 100.00

Background
FP 12.73 18.80 0.02 140.02
FN 1.58 2.40 0.00 14.74

Overall image
Misclassified 9.11 5.36 2.28 29.03
Unclassified 1.19 1.59 0.00 8.98
Total error 10.30 5.85 2.94 30.30

Table 4.1: Expert system results on images with uniform background

Mean [%] Std [%] Min [%] Max [%]

Face
FP 2.56 4.11 0.00 21.70
FN 7.60 4.75 0.01 25.06

Hair
FP 40.75 46.11 0.00 338.35
FN 17.38 26.43 0.01 100.00

Shoulder
FP 121.56 156.56 0.11 697.75
FN 20.11 22.54 0.00 88.75

Background
FP 10.31 10.70 0.01 62.76
FN 14.66 14.14 0.00 71.87

Overall image
Misclassified 16.67 6.84 2.82 37.40
Unclassified 2.77 3.50 0.00 26.93
Total error 19.44 7.92 2.82 50.40

Table 4.2: Expert system results on images with non-uniform background

Mean [%] Std [%] Min [%] Max [%]

Face
FP 3.76 5.21 0.00 31.29
FN 5.66 4.11 0.01 25.06

Hair
FP 23.15 32.91 0.00 338.35
FN 27.50 29.65 0.01 100.00

Shoulder
FP 52.04 111.90 0.00 697.75
FN 17.20 21.17 0.00 100.00

Background
FP 11.80 16.19 0.01 140.02
FN 6.61 10.98 0.00 71.87

Overall image
Misclassified 12.01 7.01 2.28 37.40
Unclassified 1.80 2.61 0.00 26.93
Total error 13.81 8.05 2.82 50.40

Table 4.3: Expert system results on all images
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4.4.2 AdaBoost

(a) Images with uniform background

(b) Images with non-uniform background

(c) All images

Figure 4.3: AdaBoost error histograms
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Mean [%] Std [%] Min [%] Max [%]

Face
FP 2.98 4.16 0.01 32.24
FN 1.41 1.85 0.00 10.66

Hair
FP 4.80 12.07 0.00 141.68
FN 16.87 16.30 0.42 100.00

Shoulder
FP 7.91 25.74 0.00 316.52
FN 4.64 11.49 0.00 96.77

Background
FP 9.74 17.59 0.13 137.05
FN 0.81 2.22 0.00 26.87

Overall image
Misclassified 6.39 5.52 1.23 29.22
Unclassified 0.00 0.00 0.00 0.00
Total error 6.39 5.52 1.23 29.22

Table 4.4: AdaBoost results on images with uniform background

Mean [%] Std [%] Min [%] Max [%]

Face
FP 3.52 4.58 0.16 39.07
FN 3.11 3.62 0.03 24.24

Hair
FP 26.69 37.09 0.46 302.52
FN 9.87 8.60 0.65 45.34

Shoulder
FP 130.24 175.93 0.04 968.30
FN 7.92 12.16 0.00 82.86

Background
FP 9.80 11.32 0.00 64.66
FN 8.55 5.26 0.15 22.03

Overall image
Misclassified 14.75 5.97 4.27 32.68
Unclassified 0.00 0.00 0.00 0.00
Total error 14.75 5.97 4.27 32.68

Table 4.5: AdaBoost results on images with non-uniform background

Mean [%] Std [%] Min [%] Max [%]

Face
FP 3.19 4.33 0.01 39.07
FN 2.06 2.80 0.00 24.24

Hair
FP 13.21 27.00 0.00 302.52
FN 14.18 14.25 0.42 100.00

Shoulder
FP 54.93 125.68 0.00 968.30
FN 5.90 11.84 0.00 96.77

Background
FP 9.76 15.47 0.00 137.05
FN 3.79 5.27 0.00 26.87

Overall image
Misclassified 9.60 7.00 1.23 32.68
Unclassified 0.00 0.00 0.00 0.00
Total error 9.60 7.00 1.23 32.68

Table 4.6: AdaBoost results on all images
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4.4.3 Our Algorithm

(a) Images with uniform background

(b) Images with non-uniform background

(c) All images

Figure 4.4: Error histograms of our algorithm
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Mean [%] Std [%] Min [%] Max [%]

Face
FP 3.19 3.02 0.01 16.49
FN 0.92 2.73 0.00 32.58

Hair
FP 16.91 43.98 0.00 421.02
FN 8.93 9.33 0.00 79.78

Shoulder
FP 3.21 10.58 0.00 115.25
FN 5.92 17.21 0.00 100.00

Background
FP 0.68 2.60 0.00 22.43
FN 1.93 3.21 0.00 33.05

Overall image
Misclassified 3.92 3.67 1.39 24.43
Unclassified 0.00 0.00 0.00 0.00
Total error 3.92 3.67 1.39 24.43

Table 4.7: Results of our algorithm on images with uniform background

Mean [%] Std [%] Min [%] Max [%]

Face
FP 3.30 5.00 0.10 29.67
FN 2.70 4.57 0.00 26.63

Hair
FP 21.90 49.06 0.00 317.83
FN 12.06 14.09 0.00 91.37

Shoulder
FP 11.00 31.38 0.00 230.84
FN 11.46 14.58 0.00 95.80

Background
FP 4.52 5.34 0.04 34.94
FN 3.22 4.82 0.00 24.33

Overall image
Misclassified 5.93 3.42 2.00 17.94
Unclassified 0.00 0.00 0.00 0.00
Total error 5.93 3.42 2.00 17.94

Table 4.8: Results of our algorithm on images with non-uniform back-
ground

Mean [%] Std [%] Min [%] Max [%]

Face
FP 3.23 3.89 0.01 29.67
FN 1.60 3.65 0.00 32.58

Hair
FP 18.83 45.99 0.00 421.02
FN 10.13 11.48 0.00 91.37

Shoulder
FP 6.21 21.44 0.00 230.84
FN 8.05 16.45 0.00 100.00

Background
FP 2.16 4.30 0.00 34.94
FN 2.43 3.95 0.00 33.05

Overall image
Misclassified 4.69 3.71 1.39 24.43
Unclassified 0.00 0.00 0.00 0.00
Total error 4.69 3.71 1.39 24.43

Table 4.9: Results of our algorithm on all images
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4.4.4 Comparison

(a) Images with uniform background

(b) Images with non-uniform background

(c) All images

Figure 4.5: Comparison of our algorithm to the expert system and
AdaBoost. The charts present mean error rates and mean overall errors.



4.5. Discussion 82

4.4.5 Background Classification

Our algorithm classifies 99.06% of all image backgrounds correctly, using the following

tresholds in Equations 3.12 and 3.13: T1 = 25, T2 = 0.5 and T3 = 0.005× imageArea.

Only three out of 320 images, one with a uniform and two with a non-uniform back-

ground, are misclassifed. This result is slightly better than the outcome of a (yet

unpublished) background classifier developed at the University of Zagreb, which uses

two neural networks, one for homogeneous and one for non-homogeneous backgrounds.

It makes a correct decision in approximately 98% of the cases.

4.5 Discussion

The results obtained in the previous section demonstrate that our algorithm outper-

forms both, the expert system and the AdaBoost classifier. The expert system has

the worst overall performance of all three methods. Even on the set of images with

uniform backgrounds it has a mean total error of 10.30%. Interestingly the mean false

negative rate for the hair region is also very hight (33.81%), although the background

region is uniform and therefore contrasts strongly with the hair region in most cases.

As expected, the performance decreases on the set of images with non-uniform back-

grounds. Here the mean false positive rate for the shoulder region is extremely high.

121.56% is far from any acceptable value. The mean total error on this set is 19.44%.

Not surprisingly the error values on the set of all images are somewhere in the middle

between the values for the other two sets (the mean total error is now 13.81%).

The AdaBoost classifier generally shows a higher performance than the expert sys-

tem. The mean total error is 6.39% on uniform background images, 14.75% on non-

uniform background images, and 9.60% on all images. However, on the set of images

with non-uniform backgrounds the AdaBoost approach suffers from a very high false

positive rate for the shoulder region too, inacceptable 130.24%.

Our algorithm shows a very good performance on all three datasets. Most error

values are smaller as for the other two methods, or at least approximately equally

good. We obtain a mean total error of 3.92% for uniform background images, 5.93%

for non-uniform background images, and 4.69% for all images. As one can see in

Figure 4.5, our method is quite robust and does not suffer from any extremely high

error values, like the expert system and the AdaBoost classifier. This is a result of the
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good generalization ability of our algorithm. By using only general knowledge about

typical passport photographs we avoid that our method specializes in a certain set of

images. In contrast to this the expert system is rather vulnerable to failing on new

image sets, because it uses very specific rules.

Note that, when looking at the charts in Figure 4.5, one has to bear the duality of

the false positive and false negative rate in mind. One can always minimize one of the

rates by letting the other one grow. Hence a good performance is only given if both

error rates are adequately low.

4.6 Qualitative Results

In this section we conclude Chapter 4 with the presentation of a few of our segmentation

results. Figure 4.5 shows some examples of well segmented images, and in Figure 4.6

cases in which our algorithm has difficulties are illustrated. While the well segmented

examples do not need further discussion, the incorrectly segmented ones deserve closer

attention.

In the first example of Figure 4.6 the tie, which should be labeled as shoulder

region, is misclassified as face region due to color similarity. The second example shows

a case where the hair region grows into the background region. The reason for this

are color and texture similarity (both the hair region and the part of the background

that contains the stairway are fairly textured). The third row in Figure 4.6 presents an

example in which the face regions displaces the hair region at the location of the ears,

again due to color similarity. What is more problematic in this example is the fact

that quite a few hair ends are covered by the background region, a common situation

in images where thin hair ends stick out into the background region. These hair ends

can then lead to wrong decision of the background classifier described in Section 3.6.

The last examples shows an image in which our classifier can not distinguish between

hair and shoulder region, and therefore the shoulder region is mislabeled as hair (see

also Section 3.5.3).
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Figure 4.6: Well segmented images
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Figure 4.5: Well segmented images (continued). The left column shows
the input images, the middle column depicts the images overlaid with re-
gions, and the right column illustrates the pure segmentation results.
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Figure 4.6: Imperfectly segmented images. The left column shows the
input images, the middle column depicts the images overlaid with regions,
and the right column illustrates the pure segmentation results.
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5.1 Conclusion

In this master’s thesis we presented an unsupervised, knowledge based segmentation

algorithm that partitions canonical face images into face, hair, shoulder and background

region. The developed tool is intended to be part of an automatic passport photograph

inspection framework, which checks passport photographs in terms of minimal quality

requirements defined by ICAO. In addition we included a background classifier that

distinguishes between uniform and non-uniform image backgrounds in our tool.

In Chapter 2 we first described different classical segmentation methods. Then we

introduced our approach, which is a combination of a geodesic active contour and a

functional that encompasses region information. This model allows us to incorporate

gradient, color, texture and shape information into the segmentation process. Since

the geodesic active contour is implemented with a weighted TV-norm, we also took a

closer look at convex variational models.

The main part of this work is devoted to the description of our method. In Chapter 3

we showed how the proposed algorithm segments face images by letting well defined

start regions grow, and how our approach integrates prior knowledge about typical

87
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passport photographs whenever possible. In particular domain knowledge is involved

in the definition of start regions, the region growing process and the post-processing

stage.

In Chapter 4 we compared our algorithm to two other methods that also aim at

solving the problem of segmenting face images. One is a rule based expert system,

and the other is an AdaBoost classifier. We showed that our approach is superior to

them. One reason for this is surely its good generalization ability. The knowledge that

we incorporate into the segmentation process is very general and can be applied to

any canonical face image. Thus our algorithm is not optimized for certain image sets,

like, for example, the expert system, which is based on very specific rules. Finally we

concluded the chapter with some qualitative results of our segmentation method.

5.2 Outlook

The results depicted in Figure 4.6 reveal that there is still room for future research. As

one can see in Table 4.9, the hair region has the highest error rates of all regions. Fur-

thermore improving the detection of hair will not only enhance the segmentation result,

but also the background classifier. We have already encountered a significant perfor-

mance gain by introducing individual shape probability maps for different hairstyles.

However, the activation of a certain probability map depends on an estimation of the

hairstyle after the first segmentation run. Consequently hair segmentation errors dur-

ing this first segmentation run can have a considerably negative impact on the overall

result. In order to improve the segmentation of hair one might use more advanced

texture descriptors, like higher order moments or Gabor filters.

Another problem are images of people with long hair where the hair and shoulder

color are very similar. In these cases our algorithm sometimes rejects the shoulder

region and labels it as hair, a consequence of our post-processing policy of relabeling

improbable shoulder regions.

Also glasses can cause problems. They severely affect the definition of the hair

start region, and in the final segmentation they are often labeled as hair due to color

similarity. To overcome this problem a glasses detector might be integrated into the

segmentation algorithm.
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