
DENSE APPEARANCE MODELING AND EFFICIENT LEARNING OF CAMERA
TRANSITIONS FOR PERSON RE-IDENTIFICATION
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ABSTRACT

One central task in many visual surveillance scenarios is
person re-identification, i.e., recognizing an individual person
across a network of spatially disjoint cameras. Most success-
ful recognition approaches are either based on direct mod-
eling of the human appearance or on machine learning. In
this work, we aim at taking advantage of both directions of
research. On the one hand side, we compute a descriptive ap-
pearance representation encoding the vertical color structure
of pedestrians. To improve the classification results, we ad-
ditionally estimate the transition between two cameras using
a pair-wisely estimated metric. In particular, we introduce
4D spatial color histograms and adopt Large Margin Nearest
Neighbor (LMNN) metric learning. The approach is demon-
strated for two publicly available datasets, showing competi-
tive results, however, on lower computational costs.

Index Terms— pedestrian re-identification, appearance
modeling, metric learning

1. INTRODUCTION

Visual recognition of pedestrians within the context of visual
surveillance has a great practical relevance. Reliable recog-
nition is a prerequisite for association across disjoint spatial
locations (cameras) and temporal instances (frames), enabling
the core surveillance tasks of tracking and visual search. Nev-
ertheless, the visual recognition task is very challenging given
the typically substantial pose, view and photometric varia-
tions across different views. Thus, there has been a consider-
able interest in developing methods for automatically solving
this task.

One way to cope with these problems is to find a very
distinctive, but robust feature representation describing a per-
son’s appearance. For instance, Gheissari et al. [1] fit a tri-
angulated graph to each person to deal with pose variations.
However, their approach is limited to people seen from sim-
ilar viewpoints, an assumption that cannot be made in most
realistic setups. The same restriction applies for the method
described by Wang et al. in [2], where the authors divide the
image of a person into regions and capture their color spatial
structure in a co-occurrence matrix. In [3], Farenzena et al.

Fig. 1. Person re-identification system consisting of (a) fea-
ture extraction, (b) metric learning, and (c) image ranking.

segment the silhouette of a person in order to find symmetry
and asymmetry axes, which are then used for accumulating
color and texture features. Cheng et al. [4] apply Pictorial
Structures to tackle the person re-identification task.

Other methods build on learning to obtain a more discrim-
inative feature model. For instance, Lin et al. [5] propose
to learn pairwise dissimilarities applicable for nearest neigh-
bor classification. Prosser et al. [6] regard the person re-
identification problem as a ranking problem and learn a sub-
space where the potential true match gets the highest rank.
AdaBoost is used, e.g., by Gray and Tao [7] and Hirzer et
al. [8]. The first approach selects the most relevant features
(color and texture) using Boosting and estimates a likelihood
ratio test for comparing corresponding features providing a
similarity function. In contrast, the second one trains a query
sample specific classifier and additionally applies a descrip-
tive model, showing that using the complementary informa-
tion leads to improved performance.

Metric learning provides a compromise between both ap-
proaches. Descriptive features are used to describe the data,
however, these features are not directly compared using a Eu-
clidean distance. Instead, a metric is learned from labeled
samples, typically originating from different camera views.
Thus, the learned metric describes the transition from one
camera to the other, making these approaches well suited for
real world scenarios. Furthermore, once learned the metric



can be applied very efficiently, which is especially important
in large camera networks. In particular, similar to Dikmen et
al. [9], we adopt metric learning to enable for a more effective
classification. In our case we build on Large Margin Near-
est Neighbor (LMNN) [10], which was originally intended to
improve nearest neighbor classification. In addition, we use
a more sophisticated representation capturing the descriptive
information considerably better. The approach is evaluated on
two different datasets showing competitive results compared
to the state-of-the-art.

2. SYSTEM DESCRIPTION

In the following, we will describe our person re-identification
system. As illustrated in Figure 1, we build on three different
stages. First, we introduce a compact, but highly descriptive
descriptor encoding the color structure (Section 2.1). Sec-
ond, based on this description we learn a metric (Section 2.2),
which yields a better representation for the final ranking via
nearest neighbor classification (Section 2.3).

2.1. Appearance modeling by multiple 2D projections

A common approach to describe human visual appearance is
via color histograms. Conventional color histograms lack spa-
tial information therefore much effort has been undertaken
to incorporate spatial features in order to enhance structural
specificity. Typical examples range from a set of spatially
localized histograms (e.g., principal axis histograms [11]),
spatial co-occurrence of complementary visual features [2]
to joint spatial-color feature spaces [5]. We employ, simi-
larly to [5], a 4D joint spatial-color feature space spanned by
the pedestrian height space and the Lab color channels. Joint
feature space representations are appealing since they can be
easily constructed, nevertheless, with increasing dimension-
ality they become sparsely populated, generate a large mem-
ory footprint and comparison between features becomes dif-
ficult. We employ a simple concept to approximate a high-
dimensional distribution within a 4D feature space by a set
of its projections: normalized height and Lab color coordi-
nates are quantized to 40 bins, and features of each pixel are
mapped into three 2D histograms spanned by the height-L,
height-a and height-b channels. During similarity computa-
tion the three histograms are compared in a pairwise manner
(probe against gallery) using the Bhattacharyya distance. The
distance considering all three feature-pairs is computed as the
mean of the three individual distances.

2.2. Metric Learning for Person Re-Identification

Metric learning allows to optimize ranking or classification
results by exploiting the intrinsic structure of the feature
space. One appealing class of metric learning algorithms
is Mahalanobis distance learning. Given two data points

xi ∈ Rd and xj ∈ Rd, the squared Mahalanobis distance is
estimated by

d2M(xi,xj) = (xi − xj)
>M(xi − xj), (1)

where M � 0 is a positive semi-definite matrix.
In this work we build on Large Margin Nearest Neighbor

(LMNN) [10] metric learning, which aims at improving k-NN
classification. It has shown to yield robust results over a wide
range of applications. The main idea of LMNN is to establish
a local perimeter plus margin around each instance. Samples
with different labels that invade the perimeter (impostors) are
penalized, yielding the following objective function:

ε(M) =
∑
j i

[
d2M(xi,xj) + µ

∑
l

(1− yil)ξijl(M)

]
. (2)

The first term minimizes the distance between target
neighbors xi, xj , indicated by j  i. The second term de-
notes the amount by which impostors xl invade the perimeter
of i and j, where the slack variable ξijl(M) is given by

ξijl(M) = 1 + d2M(xi,xj)− d2M(xi,xl). (3)

Since direct classification is not applicable in re-identifi-
cation, we relax the task to optimizing the ranking between
probe and gallery images. Thus, we consider an image pair
to be a singleton class and an impostor to be a sample that
prohibits the matching (i.e, the rank-one retrieval). Thus, we
can reduce Eq. (2) to

ε(M) =
∑

(i,j)∈S

d2M(xi,xj)+µ
∑

(i,j,l)∈D

(1−yil)ξijl(M) , (4)

where (i, j) ∈ S indicates that xi, xj are a matching pair
and (i, j, l) ∈ D states that xl is an impostor for xi, xj . To
finally estimate M, the objective function Eq. (4) is minimized
via gradient descent. Conceptually, for triplets with positive
slack the correlation between target neighbors is strengthened
while it is weakened between target neighbors and impostors.

2.3. Image Ranking

Histogram-based features are known to benefit from comput-
ing the χ2 distance in favor of the Euclidean distance. Thus,
to bridge the gap between our histogram-based features and
the proposed learning algorithm, we first perform a homoge-
neous kernel mapping as proposed by [12]. In this way, the
mapping enables us to approximate the χ2 distance without
implications on the learner. Further, after obtaining the kernel
mapping we perform a PCA to reduce the dimensionality of
the feature space. During the learning stage, the thus obtained
features are used as input for learning the Mahalanobis ma-
trix M. During classification the distances between the probe
sample and the stored gallery set are estimated using Eq. (1),
and a ranking is provided.



3. EXPERIMENTAL RESULTS

We evaluated our approach on two publicly available datasets,
the VIPeR dataset [13] and the PRID 2011 dataset [8] (single
shot version)1. These datasets cover a wide range of problems
faced in real world person re-identification applications, e.g.,
viewpoint, pose, and lighting changes, different backgrounds,
etc. Figure 2 shows exemplary images of these two datasets.

(a) (b)

Fig. 2. Example image pairs from (a) the VIPeR and (b) the
PRID 2011 dataset. Upper and lower row correspond to dif-
ferent camera views of the same person.

3.1. VIPeR Dataset

The VIPeR dataset contains 632 person image pairs. The
main challenges are viewpoint, pose and illumination changes
between the two images of an individual. For evaluation on
this dataset, we followed the procedure described in [7], i.e.,
the 632 image pairs are randomly split into a training and a
test set of equal size, and images of pairs in the test set are
randomly assigned to the probe and the gallery set. Each im-
age from the probe set is then matched with all images from
the gallery set. The whole procedure is repeated 10 times and
the average performance is depicted in form of Cumulative
Matching Characteristic (CMC) curves [2], representing the
expectation of finding the true match within the first r ranks.

The corresponding results are shown in Figure 3, where
we compare the original descriptor (as described in Sec-
tion 2.1) to the proposed metric-based evaluation. For the
latter one PCA was used to reduce the number of dimensions
to 45. It can be seen that due to the dimensionality reduction
no performance is lost, and it is revealed that estimating the
camera transition by a learned metric leads to superior re-
sults. In addition, as a simple baseline, we also show results
obtained via Linear Discriminant Analysis (LDA), which can
be considered a simple metric learner. Finally, we give a
comparison to state-of-the-art methods in Table 1, showing
that we obtain competitive results.

3.2. PRID 2011 Dataset

We use the single shot version of the PRID 2011 dataset
which consists of person image pairs recorded from two
different static surveillance cameras. This dataset is quite

1Available at http://lrs.icg.tugraz.at/datasets/prid/index.php.
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Fig. 3. CMC plots for different metrics on the VIPeR dataset.

Method r = 1 10 20 50 100 ttrain
Proposed 14 53 71 89 97 1 min
ELF [7] 12 43 60 81 93 5 hrs

SDALF [3] 20 50 65 85 - -
ERSVM [6] 13 50 67 85 94 13 min

DDC [8] 19 52 65 80 91 -
PS [4] 22 57 71 87 - -

PRDC [14] 16 54 70 87 97 15 min
LMNN-R* [9] 20 68 80 93 99 -

Table 1. Comparison of matching rates in [%] at different
ranks r and, if available, average training times per trial on
the VIPeR dataset. (* Indicates that the best run was reported,
whereas the others reported averaged results!)

challenging due to changes in viewpoint, pose, illumination,
background and camera characteristics. In particular, the
dataset contains 385 persons from one camera view (A) and
749 persons from another view (B), with 200 of them appear-
ing in both views. These 200 image pairs are randomly split
into a training and a test set of equal size. After training, the
test image pairs are evaluated using the procedure described
in [8]. Thus, the 100 test persons from camera A, represent-
ing the probe set, are searched in all persons from camera B
(except the 100 persons used for training), representing the
gallery set with 649 persons.

Like for the VIPeR dataset, this procedure is repeated 10
times and the averaged results for the different approaches are
depicted in Figure 4. Additionally, we compare our approach
to results obtained with the single-shot descriptive model de-
scribed in [8]2 in Table 2. As can be seen, our method outper-
forms the given baseline over all rank scores.

2The authors also describe a discriminative model. However, this model
uses trajectories of tracked persons (i.e., multiple shots), making a fair com-
parison impossible.



Method r = 1 10 20 50 100
Proposed 8 30 41 59 75

Descr. model [8] 4 24 37 56 70

Table 2. Comparison of matching rates in [%] at different
ranks r on the PRID 2011 dataset.
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Fig. 4. CMC plots for different metrics on the PRID 2011
dataset.

4. CONCLUSIONS

We addressed the problem of person re-identification, where
we considered two different aspects. On the one hand side, we
introduced a simple set of multi-dimensional color histograms
approximating a structure-encoding high-dimensional feature
space. However, as can be seen from the experimental re-
sults, the original description solves the task only to some
extent. Thus, we further estimate a metric, mainly describing
the camera transitions, which clearly improves the classifica-
tion results. The results presented for two different large-scale
databases show this benefit. Overall, state-of-the-art results
can be achieved, however, at lower manual and computational
effort. In fact, only image pairs have to be annotated and the
final classification is quite efficient, since a low-dimensional
representation can be applied in the final nearest neighbor
classification.
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