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Abstract

Recognizing persons over a system of disjunct cameras
is a hard task for human operators and even harder for au-
tomated systems. In particular, realistic setups show diffi-
culties such as different camera angles or different camera
properties. Additionally, also the appearance of exactly the
same person can change dramatically due to different views
(e.g., frontal/back) of carried objects. In this paper, we
mainly address the first problem by learning the transition
from one camera to the other. This is realized by learning
a Mahalanobis metric using pairs of labeled samples from
different cameras. Building on the ideas of Large Margin
Nearest Neighbor classification, we obtain a more efficient
solution which additionally provides much better general-
ization properties. To demonstrate these benefits, we run
experiments on three different publicly available datasets,
showing state-of-the-art or even better results; however, on
much lower computational efforts. This is in particular in-
teresting since we use quite simple color and texture fea-
tures, whereas other approaches build on rather complex
image descriptions!

1. Introduction

The re-identification of individuals across spatially dis-
joint cameras has recently attracted a lot if interest in the
scientific community. Especially, since the topic is practi-
cally highly relevant for security applications and statistical
analyses, however, still showing a large number of open,
unresolved issues. These include but are not limited to (a)
the possibly extremely varying appearance of an individual
across a network of cameras (changing view points, illumi-
nation, different poses, etc.), (b) the potentially high number
of “similar” persons (e.g., people wear rather dark clothes
in winter), or (c) missing temporal and spatial constraints
that could be exploited to ease the task.
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Figure 1. Proposed person re-identification system: (a) feature ex-
traction — dense sampling of color and texture features, (b) metric
learning — exploiting the structure of similar and dissimilar pairs,
and (c) classification — nearest neighbor search in the projected
space.
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There are different ways to address these problems. For
instance, descriptive methods seek a very distinctive and at
the same time stable feature representation for describing a
person’s appearance. Gheissari et al. [9] try to fit a trian-
gulated graph to each person to cope with pose variations.
However, their approach works only if people are seen from
similar viewpoints, which is not the case in most practical
setups. The same restriction applies to the work of Wang et
al. [21]. The image of a person is divided into regions and
their color spatial structure is captured by a co-occurrence
matrix. In [8], Farenzena et al. try to combine multiple fea-
tures to describe the appearance of a person by exploiting
perceptual principles. Cheng et al. [4] use Pictorial Struc-
tures for person re-identification. They fit a body configu-
ration composed of chest, head, thighs and legs on pedes-
trian images and extract per-part color information as well
as color displacement within the whole body. The extracted
descriptors are then used in a matching step.



As such approaches often are not distinctive enough and
often rely on hand-crafted features other methods aim at
learning discriminative models. For instance, Bak et al. [1]
first apply a person detector, and then use AdaBoost to
generate a visual signature consisting of Haar-like features.
Gray and Tao [11] use AdaBoost to select the most rel-
evant features out of a set of color and texture features.
To compare corresponding features they additionally esti-
mate a likelihood ratio test providing a similarity function.
Lin and Davis [15] propose to learn pairwise dissimilari-
ties that can be applied to nearest neighbor classification.
Schwartz and Davis [20] use Partial Least Squares reduction
to project high dimensional signatures onto a low dimen-
sional discriminant space. Another method is presented by
Prosser et al. [18]. Here, the person re-identification prob-
lem is formulated as a ranking problem. The authors intro-
duce Ensemble RankSVM, a method that learns a subspace
where the potential true match gets the highest rank.

Hirzer et al. [13] combine both of the aforementioned
strategies, i.e., they apply a descriptive and a discriminative
model in parallel, showing that using the complementary in-
formation captured by both models leads to improved per-
formance. Exploiting geometry was proposed by Baltieri et
al. [2]. They generate a highly sophisticated 3D human
body model from foreground segmented person images,
which can then be matched using a histogram based dis-
tance. Makris et al. [16] and Rahimi et al. [19] simplify
the problem by applying temporal constraints based on the
spatial layout of the observed scene. Javed et al. [14] try to
learn transitions between cameras to cope with illumination
changes, and Zheng et al. [23] use contextual visual infor-
mation that comes from surrounding people.

A midway between descriptive and discriminative ap-
proaches is metric learning. The idea is similar to descrip-
tive methods, i.e., the data is modeled by descriptive fea-
tures, however, for comparing the descriptors not the Eu-
clidean distance is used but a metric is learned; thereby
learning the camera transitions, making such approaches
more suitable for real world scenarios. For instance, Dik-
men et al. [6] learn a Mahalanobis distance that is optimal
for k-nearest neighbor classification using a maximum mar-
gin formulation. Similarly, Zheng et al. [24] also use metric
learning, but formulate it in a probabilistic manner. They
seek a distance that maximizes the probability of a match-
ing pair having a smaller distance than a non-matching pair.

In general, a key advantage of metric learning is the com-
putational efficiency during runtime; once learned only a
linear projection has to be estimated. However, as a draw-
back, for calculating the metric typically computationally
expensive optimization problems have to be solved (e.g.,
[22,5, 12]). Thus, considering a typical practical setup con-
sisting of tens or hundreds of cameras, also the training time
is highly relevant!

To overcome these limitations, we propose a more effi-
cient metric learning approach also exploiting the natural
constraints given by the person re-identification task. First,
since we are given image pairs from different cameras, we
formulate the metric learning task as a binary problem. Sec-
ond, we take into account that already well separable sam-
ples have only little influence in the optimization and can be
skipped. Third, we relax the hard to fulfill positivity con-
straint, yielding a closed-form solution via an eigenprob-
lem. The experimental results on three different publicly
available datasets show that in this way a sufficient approxi-
mation is obtained and that we finally get state-of-the-art or
even better results. This is in particular of interest, since the
computational effort can be reduced by magnitudes and a
rather simple image description extracting color and texture
information is applied.

The rest of the paper is organized as follows. First, in
Section 2 we introduce our new person re-identification sys-
tem, which is then demonstrated for several publicly avail-
able datasets of different complexity in Section 3. Finally,
in Section 4 we summarize and conclude the paper.

2. Person Re-ID System

In this section, we introduce our proposed person re-
identification system, consisting of three stages: feature ex-
traction and dimensionality reduction, metric learning, and
classification. The overall system is illustrated in Figure 1.
Once the embedding and the metric have been learned, the
samples in the search space can be projected onto a lower
dimensional space. During search time an unknown sam-
ple can efficiently be projected onto this space by a linear
transformation followed by a ranking step. In the following,
these steps are discussed in more detail.

2.1. Representation

Color and texture features have proven to be success-
ful for the task of person re-identification. We use HSV
and Lab color channels as well as Local Binary Patterns to
create a person image representation. The features are ex-
tracted from 8x16 rectangular regions sampled from the im-
age with a grid of 4x8 pixels, i.e., 50% overlap in both direc-
tions. In each rectangular patch we calculate mean values
per color channel, which are then discretized to the range 0
to 40. Additionally, a histogram of LBP codes is generated
from a gray value representation of the patch. These values
are then put together to form a feature vector. The vectors
from all regions are concatenated to build a representation
for the whole image. To reduce the computational effort, we
apply dimensionality reduction to the feature vectors. This
is done using standard PCA.



2.2. Pairwise Metric Learning

In the following, we introduce a metric learning ap-
proach for person re-identification exploiting specific con-
straints of the given task. Moreover, we introduce an effi-
cient way to approximately solve the arising optimization
problem. Given n data points x; € R™, one prominent ap-
proach for metric learning is to find a linear projection
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obtained from squared distances

du(zs, ;) = ||L(z; — ;)] 2

The matrix L € R™>*™ induces a metric if it has full rank
and a pseudo-metric otherwise. If additionally class labels
are given, not only the generative structure of the data but
also the discriminative information can be exploited.

In our case, we are given only a huge amount of im-
age pairs (x;, z;) sharing the same label y, making it hard
to find a meaningful discriminative projection. Thus, we
define the sets S = {(z;,z;)|y(x;) = y(z;)} and D =
{(xi,z;)|y(z;) # y(z;)} of similar and dissimilar points,
respectively, allowing us to break down the original multi-
class problem to a binary problem. The goal is to minimize
the distance between similar points and to maximize the dis-
tance between dissimilar points. This can be achieved using
the following objective function
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However, inspired by advanced sampling techniques
(e.g., [17]), we propose to ignore those samples which can
already be separated well in the original space and focus on
the hard samples. As illustrated in Figure 1, similar to Large
Margin Nearest Neighbor (LMNN) classification [22], we
define a subset Z; ;y C D over samples x; (impostors),
which invade the perimeter of a given pair (x;, ;):
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The conjunction of all thus obtained sets finally yields the
impostor set
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To take also into account how much an impostor invades
the perimeter of a pair, we additionally weight the impor-
tance of an impostor:
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Thus, we can re-write the objective function Eq. (3) to
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and define the following optimization problem:
min L(L) 3)
s.t.
LL" =1, )

where the constraint Eq. (9) avoids that the solution col-
lapses to the trivial solution. It can be recognized that
Eq. (8) and Eq. (9) define a semi-definite program (SDP)
[3], which would typically be solved using an iterative pro-
cedure. However, in the following we will show that the
actual problem is much simpler and can be solved more ef-
ficiently.

Thus, estimating the derivative of the Lagrange function

LL)+A(LLT —1) (10)
and setting it to zero, we get
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It is clear that the solution of Eq. (11) yields the eigen-
vectors and eigenvalues of 3¢ — X;. Finally, the eigen-
vectors corresponding to the smallest £ << m eigenvalues
are selected as projection matrix: Ly, € R¥X™_ In this way,
the most informative directions according to the objective
function Eq. (7) are captured. Contrary, since L is an or-
thonormal matrix, keeping all m eigenvectors would rotate
the feature space but the original distances would be pre-
served.

2.3. Classification

In person re-identification we want to recognize a certain
person across different camera views. In the work at hand,
we assume that we have already detected the persons in all
camera views, i.e., we do not tackle the detection problem.



Thus, the goal of person re-identification now is to find
a person image that has been selected in one view (probe
image) in all the images from another view (gallery im-
ages). This is achieved by calculating the distance between
the probe image and all gallery images using the learned
metric, and returning those gallery images with the smallest
distance as potential matches.

3. Experimental Results

We evaluated our approach on three publicly available
datasets, the VIPeR dataset [10], the PRID 2011 dataset
(single shot version) [13], and the ETHZ dataset [20]. We
chose these datasets because they provide many challenges
faced in real world person re-identification applications,
e.g., viewpoint, pose and illumination changes, different
backgrounds, image resolutions, occlusions, etc. For the
VIPeR dataset we reduced the feature vectors described in
Section 2.1 to 100 dimensions. Since the other datasets con-
tain significantly less training samples, we used fewer di-
mensions there in order to avoid overfitting (80 for PRID
2011 and ETHZ SEQ. #1, 40 for ETHZ SEQ. #2 and ETHZ
SEQ. #3). Interestingly, on PRID 2011 we achieved bet-
ter results by using color features alone, i.e., no LBP codes.
This has also been reported in [13]. The number of eigen-
vectors k used for building the projection matrix is set to
half of the feature dimension in all experiments.

3.1. VIPeR Dataset

The VIPeR dataset contains 632 person image pairs
taken from two different camera views. Changes of view-
point, illumination and pose are the most prominent sources
of appearance variation between the two images of a person.
For evaluation we followed the procedure described in [11].
The set of 632 image pairs is randomly split into two sets of
316 image pairs each, one for training and one for testing. In
the test case, the two images of an image pair are randomly
assigned to a probe and a gallery set. A single image from
the probe set is then selected and matched with all images
from the gallery set. This process is repeated for all images
in the probe set. The whole evaluation procedure is carried
out 10 times, and the average result is reported in form of
a Cumulative Matching Characteristic (CMC) curve [21],
which represents the expectation of finding the true match
within the first r ranks.

The thus obtained results are shown in Figure 2a. For
comparison we also give results obtained by using all point
pairs of the class D (Diff) as stated in Eq. (3) (i.e., no
impostors), Linear Discriminative Analysis (LDA) projec-
tion, which could be seen as basic metric learning baseline,
and simple feature matching using Euclidean distance. It
is obvious that using the proposed method leads to a huge
performance gain over LDA projection and simple feature

matching. Furthermore, specifically sampling those points
that invade the perimeter of a pair leads to a much higher
performance than using all point pairs of class D (Diff).
In Table 1 we additionally show a comparison of our to
other person re-identification methods. As can be seen, our
method outperforms the state-of-the-art, however, at a much
reduced computational cost. The results for LMNN [22]
and ITML [5] were obtained using exactly the same fea-
tures and training and test set splits as for our method. The
results for the remaining methods originate from the corre-
sponding papers.

In Table 1 we also analyze the computation time of our
method using a Matlab implementation on a 2.83 GHz quad
core CPU. The big advantage of our approach compared to
others is its training time efficiency, since it does not rely
on computationally complex optimization schemes. Using
the learned metric in the evaluation step is efficient either,
making it suitable for even large scale problems.

Method r=11101{ 20 | 50 | 100 | ttrain
Proposed 22 | 63 |78 |93 | 98 | 0.3sec
LMNN [22] 17 |54 |69 | 8 | 96 | 2min
ITML [5] 13 |53 | 71|90 | 97 | 25sec
ELF [11] 12 | 43 160 | 81| 93 5 hrs
SDALF [8] 20 | 50 | 65| 85 - -
ERSVM [18] 13 |50 |67 |8 | 94 | 13 min
DDC [13] 19 | 52|65 80| 91 -
PS [4] 22 | 57 | 71| 87 - -
PRDC [24] 16 |54 |70 | 87 | 97 | 15min
LMNN-R* [6] 20 | 68 | 80 |93 | 99 -

Table 1. Comparison of matching rates in [%] at different ranks
r and, if available, average training times per trial on the VIPeR
dataset. (* Indicates that the best run was reported, which cannot
directly be compared to the other results!)

3.2. PRID 2011 Dataset

The PRID 2011 dataset consists of person images
recorded from two different static surveillance cameras.
Two scenarios are provided, a multi shot (multiple images
per person in each camera view) and a single shot (one im-
age per person in each camera view) scenario. We used
the latter one for our evaluation. Typical challenges on this
dataset are viewpoint and pose changes as well as signif-
icant differences in illumination, background and camera
characteristics. Camera view A contains 385 persons, cam-
era view B contains 749 persons, with 200 of them appear-
ing in both views. Hence, there are 200 person image pairs
in the dataset. These image pairs are randomly split into a
training and a test set of equal size. For evaluation on the
test set, we followed the procedure described in [13], i.e.,
camera A is used for the probe set and camera B is used for
the gallery set. Thus, each of the 100 persons in the probe
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Figure 2. Average CMC curves of our approach, the eigenvalue problem according to Eq. (3), LDA, and feature matching using Euclidean
distance on (a) the VIPeR, (b) the PRID 2011, and (c) the ETHZ SEQ. #1 dataset.

set is searched in a gallery set of 649 persons (all images
of camera view B except the 100 training samples). Again,
the whole procedure is repeated 10 times and the result is
reported in form of an average CMC curve in Figure 2b. As
can be seen, applying the proposed metric leads to superior
performance compared to using LDA, Euclidean distance,
or directly solving Eq. (3).

In Table 2 we compare our approach to the descriptive
model of Hirzer et al. [13], which also uses the single shot
setup. As can be seen by the numbers, our method clearly
outperforms their model at all ranks.

Method r=1|10 |20 | 50 | 100
Proposed 15 38 |50 | 67| 80
Descr. Model [13] 4 24 | 37 | 56 | 70

Table 2. Matching rates of our approach and the descriptive model
of [13] in [%] at different ranks 7 on the PRID 2011 dataset.

3.3. ETHZ Dataset

The ETHZ dataset [7] contains video sequences of ur-
ban scenes captured from moving cameras. It has origi-
nally been proposed for pedestrian detection, but Schwartz
and Davis [20] provide a modified version of the dataset
for the task of person re-identification. This version con-
sists of person images extracted from three video sequences
structured as follows: SEQ. #1 contains 83 persons (4.857
images), SEQ. #2 contains 35 persons (1.961 images), and
SEQ. #3 contains 28 persons (1.762 images). All images
have been resized to 64x32 pixels. The most challenging as-
pects of the ETHZ dataset are illumination changes and oc-
clusions. However, since person images are captured from
a single moving camera, the dataset does not provide a real-
istic scenario for person re-identification with multiple dis-
joint cameras, different viewpoints, different camera char-
acteristics, etc. Despite this limitation it is commonly used
for person re-identification.

We use a single shot evaluation strategy, i.e., we ran-
domly sample two images per person to build a training
pair, and another two images to build a test pair. The im-
ages of the test pairs are then assigned to the probe and the
gallery set. After learning a metric, each image in the probe
set is matched with all images in the gallery set. The whole
procedure is repeated 10 times to generate an average result.
The CMC curve for SEQ. #1 is shown in Figure 2c, the re-
sults for all three sequences compared to two other methods
also using a single shot evaluation, i.e., SDALF [8] (single
shot version) and PLS [20], are provided in Table 3.

Method r=1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7
SEQ. #1

Proposed 78 84 | 87 (89 90| 91| 91

SDALF [8] 65 | 73|77 179 | 81| 82| 84

PLS [20] 79 | 85|86 | 87 | 8 | 89 | 90
SEQ. #2

Proposed 74 | 81 | 84 | 87 | 8 | 91 | 92

SDALF 64 | 74|79 | 83 | 85 | 87 | 89

PLS 74 | 79 | 81 | 83 | 84 | 85 | 87
SEQ. #3

Proposed 91 | 95|97 |98 |98 |98 | 99

SDALF 76 | 83 | 86 | 88 |90 | 92 | 93

PLS 77 | 81 | 82 | 84 | 8 | 87 | 89

Table 3. Matching rates of our approach, SDALF (single shot), and
PLS in [%] on the ETHZ dataset at the first 7 ranks.

Our results on SEQ. #1 are comparable to PLS [20] and
clearly outperform SDALF [8]. Interestingly, even match-
ing image descriptors directly (Euclidean distance) slightly
outperforms SDALF. On the other two sequences, our
method also delivers state-of-the-art performance (SEQ. #2)
or better (SEQ. #3). However, since the number of training
samples is very small on these two sequences, learning a
metric gets difficult, and compared to LDA or Euclidean
distance matching we get only a little performance gain.



4. Conclusion

Recently, metric learning was introduced for the task of
person re-identification, which is a considerable tradeoff be-
tween descriptive and discriminative modeling. Even show-
ing good results and being effective during evaluation, the
computational costs for training are quite high. We target
this problem by taking into account constraints given by the
task and apply an efficient closed-form solution for the aris-
ing optimization problem. Given labeled image pairs, we
search for a linear projection that keeps similar pairs to-
gether and pushes impostors, i.e., samples that invalidate
the perimeter of a similarly labeled image pair, away. In
fact, it is well known from sampling theory that already
well separable samples provide only little information for a
discriminative model. Finally, we obtain an eigenproblem,
which can efficiently be solved in closed-form. The exper-
imental results on three different datasets demonstrate the
strength of impostor information. We show that using the
learned metric state-of-the-art and even better results can
be obtained; however, on a much lower computational ef-
fort and even using only simple color and texture features.
Nevertheless, future work would include a study of more
sophisticated features and a generalization of the applied
metric learning approach.
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